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A Characterization of Singular-Hyperbolicity

C. A. Morales

1. Introduction

The relationship between dominated splittings and uniform hyperbolicity was ex-
plored by Mañé in his solution of the stability conjecture for diffeomorphisms
[18]. Pujals and Sambarino [22] studied it in their nowadays famous Theorem B:
For C2 surface diffeomorphisms, every compact invariant set with a dominated
splitting whose periodic points are all hyperbolic saddle splits into a hyperbolic
set and finitely many disjoint normally hyperbolic irrational circles. A similar
relationship but between dominated splitting with respect to the linear Poincaré
flow and uniform hyperbolicity was obtained by Aubin and Hertz [6]. Indeed, they
proved that every nonsingular compact invariant set exhibiting a dominated split-
ting with respect to the Poincaré flow and whose periodic points are all hyperbolic
saddle splits in a hyperbolic set and finitely many disjoint normally hyperbolic
irrational tori. In light of these results, it is natural to think about the singular
case, namely, is it possible to obtain a similar decomposition for compact invari-
ant sets with singularities whose nonsingular points exhibit a dominated splitting
with respect to the linear Poincaré flow and whose periodic points are all hyper-
bolic of saddle type? However, this kind of question must face the problem of
a natural candidate for uniform hyperbolicity. Indeed, the geometric Lorenz at-
tractor [14] is a nonhyperbolic compact invariant set of a C∞ three-dimensional
flow for which the periodic points are all hyperbolic saddle, has no irrational tori,
and, nevertheless, its nonsingular points exhibit a dominated splitting with respect
to the linear Poincaré flow. The notion of singular-hyperbolicity emerges as this
candidate, the geometric Lorenz attractor as well as any robustly transitive attrac-
tor with singularities of a three-dimensional flow enjoy it [20]. It is then natural
to ask if there is a relationship between dominated splittings with respect to the
linear Poincaré flow and singular-hyperbolicity, namely, if for every C2 three-
dimensional flow, every compact invariant set whose nonsingular points exhibit a
dominated splitting with respect to the linear Poincaré flow and whose periodic
points are all hyperbolic saddle splits into a singular-hyperbolic set for the flow, a
singular-hyperbolic set for the reversed flow, and finitely many disjoint normally
hyperbolic irrational tori. In this scenario, Crovisier and Yang announced recently
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in [11] that, for C3 three-dimensional flows, every compact invariant set whose
nonsingular points exhibit a dominated splitting with respect to the linear Poincaré
flow, whose periodic points are all hyperbolic saddle, and whose singularities are
all Lorenz-like in general position has either an irrational torus or a dominated
splitting for the tangent flow.

In this paper we explore the relationship between linear Poincaré flow’s domi-
nated splittings and singular-hyperbolicity for C1 three-dimensional flows. More
precisely, we shall prove that every compact invariant set whose nonsingular
points exhibit a dominated splitting with respect to the linear Poincaré flow,
whose ergodic measures are all hyperbolic saddle, and whose singularities are
all Lorenz-like in general position is singular-hyperbolic. In fact, these proper-
ties characterize singular-hyperbolicity in dimension three. Different characteri-
zations can be found in [2; 3; 4; 5].

Consider a continuous flow φt of a metric space �, a Riemannian vector bundle
V − → � over �, and a one-parameter family of bundle maps At : V − → V − over
φt , that is, A(V −

p ) = Vφt (p) for every p ∈ �. We denote At(z) = At |V −
z

for z ∈ �

and t ∈ R. We say that a subbundle E ⊂ V − is At -invariant if At(p)Ep = Eφt (p)

for any p ∈ � and t ∈ R. In such a case we denote by At |E the restriction to E,
that is, (At |E)(p) = Ap(p)|Ep for every p ∈ � and t ∈ R. The map assigning
the dimension dim(Ep) of Ep to any p ∈ � will be denoted by dim(E). Given
another subbundle F ⊂ V , we write E ⊂ F whenever Ep ⊂ Fp for all p ∈ �.

We say that At is contracting if there are positive constants K , λ such that

‖At(p)‖ ≤ Ke−λt , ∀p ∈ �, t ≥ 0.

On the other hand, we say that At dominates another bundle map Bt : V + →
V + over φt (or that Bt is dominated by At ) if there are positive constants K , λ

satisfying

‖At(p)‖ · ‖B−t (φt (p))‖ ≤ Ke−λt , ∀p ∈ �, t ≥ 0.

In such a case, At is called a dominating direction.
By abuse of language, we call a flow any C1 vector field X with induced flow

Xt of a compact connected manifold M endowed with a Riemannian structure
‖ ·‖. We say that � ⊂ M is invariant if Xt(�) = � for all t ∈R. Unless otherwise
stated, all compact invariant sets will be nontrivial in the sense that they do not
reduce to a finite number of closed orbits. The set of singularities (i.e., zeroes of
X) is denoted by Sing(X). We say that σ ∈ Sing(X) is hyperbolic if the derivative
DX(σ) has no purely imaginary eigenvalues.

For a compact invariant set �, we say that � has a dominated splitting with re-
spect to the tangent flow if there is a continuous splitting T�M = E⊕F into DXt -
invariant subbundles E, F such that DXt |E dominates DXt |F . In such a case, we
say that DXt |F is volume expanding if dim(F ) ≥ 2 and there are K,λ > 0 such
that

|detDXt(p)| ≥ Keλt , ∀p ∈ �,∀t ≥ 0.
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Definition 1.1. A compact invariant set � is singular-hyperbolic if every sin-
gularity in � is hyperbolic and if � has singular-hyperbolic splitting, that is,
a dominated splitting T�M = E ⊕ F with respect to the tangent flow such that
DXt |E is contracting and DXt |F is volume expanding.

Denote by �∗ = �\Sing(X) the set of regular points in �. Define by EX the map
assigning to p ∈ M the subspace of TpM generated by X(p). It turns out to be a
one-dimensional subbundle of T M when restricted to M∗. Define also the normal
subbundle N over M∗ whose fiber Np at p ∈ M∗ is the orthogonal complement
of EX

p in TpM . Denoting by π = πp : TpM → Np the orthogonal projection, we
obtain the linear Poincaré flow Pt : N → N defined by Pt (p) = πXt (p) ◦DXt(p).

Definition 1.2. For a (nonnecessarily compact) invariant set � ⊂ M∗, we say
that � has a dominated splitting with respect to the linear Poincaré flow if there
is a continuous splitting N� = N− ⊕ N+ into Pt -invariant subbundles N−, N+
such that Pt |N− dominates Pt |N+ . The map dim(N−) will be referred to as the
index of splitting.

On the other hand, a Borel probability measure μ of M is nonatomic if it has no
points with positive mass, and supported on H if its support supp(μ) is contained
in H . Given a flow X, we say that μ is invariant if μ(Xt(A)) = μ(A) for every
Borel set A and every t ∈ R, and ergodic if it is invariant and every measurable
invariant set has measure 0 or 1. Classical Oseledets’s theorem asserts that every
invariant measure μ is equipped with a full measure set R and, for each x ∈
R, there are integers 1 ≤ k(x) ≤ dim(M), real numbers χ1(x) < χ2(x) < · · · <

χk(x)(x), and a splitting TxM = Ê1
x ⊕ · · · ⊕ Êk

x depending measurably on x such
that DXt(x)(Ei

x) = Ei
Xt (x)

(∀ ∈ R) and

lim
t→±∞

1

t
log‖DXt(x)ei‖ = χi(x), ∀x ∈ R,∀ei ∈ Êi

x \ {0},∀1 ≤ i ≤ k(x).

The points of R are the regular points, and the numbers χi the Lyapunov expo-
nents of μ. It turns out that one of the Lyapunov exponents is zero corresponding
to the flow direction. When the remaining exponents are nonzero, the measure
will be referred to as a hyperbolic measure of X. If additionally, there are both
positive and negative Lyapunov exponents, then the measure is said to be hyper-
bolic saddle.

By a three-dimensional flow we mean a flow X defined on a three-dimensional
compact manifold.

Definition 1.3. A singularity σ of a three-dimensional flow X is Lorenz-like if
the eigenvalues λ1, λ2, λ3 of DX(σ) are real satisfying λ2 < λ3 < 0 < −λ3 < λ1.

For all such singularities, there are a two-dimensional stable manifold Ws(σ),
a one-dimensional unstable manifold Wu(σ), and a one-dimensional strong stable
manifold Wss(σ ) ⊂ Ws(σ) (cf. [15]).
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Definition 1.4. A Lorenz-like singularity σ is in general position with respect
to some subset � ⊂ M if Wss(σ ) ∩ � = {σ }.
With these definitions we can state our main result.

Theorem 1.5. Let � be a compact invariant set of a three-dimensional flow X

whose singularities are all Lorenz-like in general position. Then, � is singular-
hyperbolic if and only if �∗ has a dominated splitting of index 1 with respect to
the linear Poincaré flow and every ergodic measure supported on � is hyperbolic
saddle.

The basic example where the hypotheses of the theorem are fulfilled is the geo-
metric Lorenz attractors [14]. An obvious consequence is the following:

Corollary 1.6. Let � be a compact invariant set of a three-dimensional flow X

whose singularities are all Lorenz-like in general position. If �∗ has a dominated
splitting of index 1 with respect to the linear Poincaré flow and � does not support
nonatomic ergodic measures, then � is singular-hyperbolic.

An example satisfying the conditions of the corollary is a generic homoclinic loop
associated to a Lorenz-like singularity. It follows from [23] that the Cherry-like
flows considered in [19] also satisfy these conditions.

In light of Theorem 1.5, it is natural to ask if the saddle hypothesis can be
removed from its statement or not. A motivation for this question comes from
Theorem 3.3 in [1], which asserts that a generic ergodic measure of a C1 generic
diffeomorphism is hyperbolic. We can give a partial positive answer for this ques-
tion based on the following standard concepts. Recall that a compact invariant
set � of a flow X is transitive if there is x ∈ � such that ω(x) = �, where
ω(x) = {y ∈ M : y = limn→∞ Xtn(x) for some sequence tn → ∞}. We say that
� is a limit cycle if it is the limit of a sequence of periodic orbits with respect
to the Hausdorff topology in the set of compact subsets of M . We say that � is
nontrivial if it does not reduce to a single orbit of X.

With these definitions we can state the following corollary.

Corollary 1.7. Let � be a nontrivial compact invariant set that is either transi-
tive or a limit cycle of a C1+α three-dimensional flow X. Suppose that the singu-
larities of � are Lorenz-like in general position. Then, � is singular-hyperbolic
if and only if �∗ has a dominated splitting of index 1 with respect to the linear
Poincaré flow and every ergodic measure supported on � is hyperbolic.1

This paper is organized as follows. In Section 2 we recall the extended linear
Poincaré flow [16] allowing us to rule out certain noncompact situations. In Sec-
tion 3 we prove Theorem 1.5 and Corollary 1.7.

1This corollary is also true in the C1 topology by the recent result [17].
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2. Extended Linear Poincaré Flow

In this section we describe a technique from [16] but with different notation. Re-
call that M denotes a compact connected Riemannian manifold. Define

M1 = {L : L is a one-dimensional subspace of TxM for some x ∈ M}.
Then, M1 is a fiber bundle over M with projection β : M1 → M , β(L) = x if and
only if L ⊂ TxM .

Define the pullback bundle T M1 = β∗(T M) of T M under β , that is, the vector
bundle over M1 with fiber TLM1 = {L} × Tβ(L)M at L ∈ M1.

(Do not confound T M1 with the tangent bundle of M1.)
In general we define

T
M1 =
⋃
L∈


TLM1, ∀
 ⊂ M1.

The Riemannian metric 〈·, ·〉 of M induces one in T M1 defined by

〈(L, v), (L,w)〉 = 〈v,w〉, ∀(L, v), (L,w) ∈ TLM1.

We also have the subbundle EX1
of T M1 with fiber

EX1

L = {L} × L

and the normal bundle N1 = (EX1
)⊥ with fiber

N1
L = {L} × L⊥.

Denote by π1 : T M1 → N1 the corresponding orthogonal projection.
Every flow X induces a flow X1 in M1 defined by

X1
t (L) = DXt(β(L))L, ∀L ∈ M1.

We also define the “derivative” DX1
t : T M1 → T M1 of X1

t with respect to the
vector bundle T M1,

DX1
t (L)(L,v) = (X1

t (L),DXt(β(L))v), ∀L ∈ M1, (L, v) ∈ TLM1.

We say that � ⊂ M1 is an invariant set of X1 if X1
t (�) = � for any t ∈ R.

Define the linear Poincaré1 flow P 1
t : N1 → N1 by

P 1
t (L, v) = π1

X1
t (L)

(DX1
t (L)(L,v)), ∀L ∈ M1, (L, v) ∈ N1

L.

Given � ⊂ M satisfying �∗ = � (i.e., without singularities), we define

�1 = {EX
x : x ∈ �}.

If � is invariant for X, then so does �1 for X1 (this follows because EX is a DXt -
invariant subbundle of TM∗M). For general sets � (i.e., with singularities), we
define

�1 = Cl((�∗)1).

Equivalently,

�1 =
{
L ∈ M1 : L = lim

n→∞EX
xn

for some sequence xn ∈ �∗}.
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It follows that �1 is compact (resp. X1-invariant) if and only if � is compact
(resp. X-invariant).

Let � ⊂ M1 be an invariant set of the induced flow X1. We say that �

has a dominated splitting with respect to X1 if there is a continuous splitting
T�M1 = E1 ⊕F 1 into DX1

t -invariant subbundles E1, F 1 such that DX1
t |E1 dom-

inates DXt |F 1 . We also say that � has a dominated splitting with respect to the
linear Poincaré1 flow if there is a continuous splitting N1

� = N−,1 ⊕ N+,1 into
P 1

t -invariant subbundles N−,1, N+,1 such that P 1
t |N−,1 dominates P 1

t |N+,1 .
Clearly, if � is a compact invariant set of X, then β(�1) ⊂ �. Therefore,

every dominated splitting T�M = E ⊕ F with respect to X induces a dominated
splitting T�1M1 = E1 ⊕ F 1 with respect to X1 defined by

E1
L = {L} × Eβ(L) and F 1

L = {L} × Fβ(L) for L ∈ �1.

Similarly, if N�∗ = N− ⊕ N+ is a dominated splitting with respect to the linear
Poincaré flow, then there is an induced dominated splitting N1

(�∗)1 = N−,1 ⊕N+,1

with respect to the linear Poincaré1 flow defined by

N
−,1
L = {L} × N−

β(L) and N
+,1
L = {L} × N+

β(L) for L ∈ (�∗)1.

Passing this last splitting to the closure Cl((�∗)1) = �1, we obtain a domi-
nated splitting (still denoted by) N1

�1 = N−,1 ⊕ N+,1 with respect to the linear

Poincaré1 flow.
We will need two lemmas.

Lemma 2.1. Let � a compact invariant set of a flow X having a dominated split-
ting N�∗ = N− ⊕ N+ with respect to the linear Poincaré flow. Then, Pt |N− dom-
inates DXt |EX if and only if P 1

t |N−,1 dominates DX1
t |EX1 .

Proof. We only prove the direct implication since the converse one is obvious.
Suppose that Pt |N− dominates DXt |EX . Then fix T > 0 such that

‖PT (p)|N−
p
‖ · ‖DX−T (XT (p))|EX

XT p)
‖ ≤ 1

2
, ∀p ∈ �∗.

Now take L ∈ �1. Then, there is a sequence pn ∈ �∗ such that L = limn→∞ Ln,
where Ln = EX

pn
. Since pn ∈ �∗, we have that ‖P 1

T (Ln)|N−,1
Ln

‖ = ‖PT (pn)|N−
pn

‖
and ‖DX1−T (X1

T (Ln))|
EX1

X1
T

(Ln)

‖ = ‖DX−T (XT (pn))|EX
XT (pn)

‖ so

‖P 1
T (Ln)|N−,1

Ln

‖ · ‖DX1−T (X1
T (Ln))|

EX1

X1
T

(Ln)

‖ ≤ 1

2
, ∀n ∈N.

Since L is arbitrary and T fixed, we can take the limit in the last inequality to
obtain

‖P 1
T (L)|

N
−,1
L

‖ · ‖DX1−T (X1
T (L))|

EX1

X1
T

(L)

‖ ≤ 1

2
, ∀L ∈ �1.

But �1 is compact since � is. So, the previous inequality implies the result. �
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The proof of the following lemma is similar to that of Proposition 1.1 in [12].
It can be also obtained from Lemmas 5.5 and 5.6 in [16] as in the proof of
Lemma 2.12 in [13].

Lemma 2.2. Let � be a compact invariant set of a flow X. If �∗ has a dominated
splitting N�∗ = N−⊕N+ with respect to the linear Poincaré flow such that Pt |N−
dominates DXt |EX , then Cl(�∗) has a dominated splitting TCl(�∗)M = E ⊕ F

with respect to the tangent flow such that dim(E) = dim(N−) and EX ⊂ F . In
particular, DXt |E is contracting.

Proof. Let N1
�1 = N−,1 ⊕ N+,1 be the induced dominated splitting with respect

to the linear Poincaré1 flow. For all T > 0, we have the commutative diagram

0 EX1

DX1
T

N−,1 ⊕ EX1 π

DX1
T

N−,1

P 1
T

0

0 EX1
N−,1 ⊕ EX1 π

N−,1 0

�1 �1 �1

of short exact sequences of Riemannian vector bundles over the homeomorphism
X1

T : �1 → �1 with compact base �1. By Lemma 2.1 we have that P 1
t |N−,1 dom-

inates DX1
t |EX1 . Then there is T > 0 such that ‖P 1

T (L)|
N

−,1
L

‖ < ‖DX1
T (L)|

EX1
L

‖
for all L ∈ �1. By Lemma 2.18 in [15] this supplies a unique DXT -invariant
complement E1 ⊂ N−,1 ⊕ EX1

of EX1
. It follows from this uniqueness that E1

is DXt -invariant. This results in a DX1
t -invariant splitting T�1M1 = E1 ⊕ F 1

where F 1 = N+,1 ⊕ EX1
. Clearly, dim(E1) = dim(N−,1) and EX1 ⊂ F 1. As in

claims 2 and 3 of [16, p. 266], we obtain that this splitting is in fact dominated
for X1.

Finally, we have by definition that EX
p ∈ �1 for every p ∈ �∗. Then, there are

subbundles E and F of T�∗M satisfying

E1
EX

p
= {EX

p } × Ep and F 1
EX

p
= {EX

p } × Fp for every p ∈ �∗.

Since dim(E1) = dim(N−,1) and EX1 ⊂ F 1, we have respectively that dim(E) =
dim(N−) and EX ⊂ F in �∗. Moreover, T�∗M = E ⊕ F is dominated with re-
spect to X since T�1M1 = E1 ⊕ F 1 does with respect to X1. Then, we can pass
T�∗M = E ⊕F to the closure in the standard way to obtain the desired dominated
splitting TCl(�∗)M = E ⊕ F with respect to the tangent flow. Since EX ⊂ F , we
have that DXt |E is contracting (see Lemma 3.2 in [2]). �

Notice that the dominated splitting with respect to the tangent flow just obtained
may not exist in the whole �.
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3. Proof of Theorem 1.5 and Corollary 1.7

We break the proof of Theorem 1.5 into a sequence of lemmas.

Lemma 3.1. Let σ be a Lorenz-like singularity of a three-dimensional flow X. If
P s

t denotes the linear Poincaré flow of X|Ws(σ), then

lim
t→∞‖P s

t (p)‖ = 0 and lim
t→∞

‖P s
t (p)‖

‖DXt(p)|EX
p
‖ = 0, ∀p ∈ Ws(σ) \ Wss(σ ).

Proof. For simplicity, we assume that X|Ws(σ) is given by the linear system{
ẏ = λ2y,

ż = λ3z,
λ2 < λ3 < 0,

where σ is the origin (0,0).
Now, take p = (y, z) ∈ Ws(σ) \ Wss(σ ); thus, z �= 0.
For any t ∈ R, we have Xt(p) = (yeλ2t , zeλ3t ) and also

DXt(p) · (a, b) = (yaeλ2t , zbeλ3t )

for any (a, b) ∈ TpWs(σ ). Hence, X(Xt(p)) = (λ2yeλ2t , λ3ze
λ3t ), and then

NXt(p) ∩ TpM is the straightline through (yeλ2t , zeλ3t ) parallel to (−λ3ze
λ3t ,

λ2yeλ2t ).
On the other hand, the angle θ between DXt(p) · (a, b) and (−λ3ze

λ3t ,

λ2yeλ2t ) is given by

cos θ = 〈DXt(p) · (a, b), (−λ3ze
λ3t , λ2yeλ2t )〉

‖DXt(p) · (a, b)‖ · ‖(−λ3zeλ3t , λ2yeλ2t )‖ .

From this and by taking (a, b) unitary we obtain

‖P s
t (p)‖ = ‖P s

t (p) · (a, b)‖
= | cos θ | · ‖DXt(p) · (a, b)‖
= |〈(yaeλ2t , zbeλ3t ), (−λ3ze

λ3t , λ2yeλ2t )〉|
‖(−λ3zeλ3t , λ2yeλ2t )‖

= Ke(λ2+λ3)t√
λ2

3e
2λ3t z2 + λ2

2e
2λ2t y2

,

where K depends on p, a, b only.
Then,

lim
t→∞‖P s

t (p)‖ = lim
t→∞

Ke(λ2+λ3)t√
λ2

3e
2λ3t z2 + λ2

2e
2λ2t y2

= lim
t→∞

Keλ2t√
λ2

3z
2 + λ2

2e
2(λ2−λ3)t y2

= 0.
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Yet,

‖DXt(p)|EX
p
‖ = ‖X(Xt(p))‖

‖X(p)‖ = ‖(λ2yeλ2t , λ3ze
λ3t )‖

‖(λ2y,λ3z)‖

=
√

λ2
3e

2λ3t z2 + λ2
2e

2λ2t y2√
λ2

2y
2 + λ2

3z
2

,

and so

lim
t→∞

‖P s
t (p)‖

‖DXt(p)|EX
p
‖ = K lim

t→∞

√
λ2

3z
2 + λ2

2y
2e(λ2−λ3)t

λ2
3z

2 + λ2
2e

2(λ2−λ3)t y2
= 0.

�

The proof of the following lemma is similar to that of Lemma 2.1.

Lemma 3.2. Let � a compact invariant set of a flow X, and N− be a Pt -invariant
subbundle of N�∗ . Then, Pt |N− is contracting if and only if there is T > 0 such
that ∀p ∈ �∗, ∃0 ≤ t ≤ T satisfying

‖Pt(p)|N−
p
‖ <

1

2
.

Likewise, Pt |N− dominates DXt |EX if and only if there is T > 0 such that ∀p ∈
�∗, ∃0 ≤ t ≤ T satisfying

‖Pt(p)|N−
p
‖

‖DXt(p)|EX
p
‖ <

1

2
.

By this lemma, if Pt |N− is not contracting, then there is a sequence pn ∈ �∗
satisfying

‖Pt (pn)|N−
pn

‖ ≥ 1

2
, ∀0 ≤ t ≤ n,∀n ∈ N. (3.1)

Likewise, if Pt |N− does not dominate DXt |EX , then there is a sequence pn ∈
�∗ satisfying

‖Pt (pn)|N−
pn

‖
‖DXt(pn)|EX

pn
‖ ≥ 1

2
, ∀0 ≤ t ≤ n,∀n ∈ N. (3.2)

Now we prove under additional conditions that any sequence pn satisfying
(3.1) or (3.2) cannot accumulate on the stable manifold of any singularity. More
precisely, we have the following result.

Lemma 3.3. Let � be a compact invariant set of a three-dimensional flow X.
Suppose that �∗ has a dominated splitting N�∗ = N− ⊕ N+ with respect to the
linear Poincaré flow such that dim(N−) = 1 and that every singularity in � is
Lorenz-like in general position. If pn ∈ �∗ is a sequence satisfying (3.1) or (3.2),
then p /∈ Ws(σ) for every singularity σ ∈ � and every accumulation point p

of pn.
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Proof. We just consider the case where pn satisfies (3.2) since the proof for (3.1)
is similar.

Without loss of generality we can assume that pn → p. First, we prove that
p ∈ �∗. Otherwise, p = σ for some σ ∈ Sing(X). Still without loss of generality,
we can assume that EX

pn
→ L for some L ∈ β−1(σ ) ∩ �1.

On the one hand, since σ is Lorenz-like, there is a dominated splitting Tσ M =
Ess ⊕ Ecu with respect to the flow, where Ess is generated by the eigenvector
associated to the eigenvalue λ2, and Ecu is generated by the corresponding eigen-
vectors of {λ1, λ3}. Since σ is in general position, we can prove as in Lemma 4.4
in [16] that L ⊂ Ecu.

On the other hand, there is a dominated splitting N1
�1 = N−,1 ⊕ N+,1 with

respect to the linear Poincaré1 flow induced by N� = N− ⊕ N+. Since pn ∈ �∗
for n ∈N, (3.2) implies for Ln = EX

pn
that

‖P 1
t (Ln)|N−,1

Ln

‖
‖DX1

t (Ln)|
EX1

Ln

‖ =
‖Pt (pn)|N−

pn
‖

‖DXt(pn)|EX
pn

‖ ≥ 1

2
, ∀0 ≤ t ≤ n,∀n ∈ N.

Fixing t ≥ 0 and taking n → ∞ in this expression, we obtain

‖P 1
t (L)|

N
−,1
L

‖
‖DX1

t (L)|L‖ ≥ 1

2
, ∀t ≥ 0. (3.3)

Nevertheless, ‖P 1
t (L)|N−,1‖ = ‖DXt(σ )|Ess

σ
‖ and L ⊂ Ec

σ (cf. Lemma 4.2 in
[16]), and thus

lim
t→∞

‖P 1
t (L)|

N
−,1
L

‖
‖DX1

t (L)|L‖ = lim
t→∞

‖DXt(σ )|Ess
σ

‖
‖DXt(σ )|L‖ = 0,

contradicting (3.3). We conclude that p /∈ Sing(X), and hence p ∈ �∗.
Now suppose by contradiction that p ∈ Ws(σ) for some σ ∈ Sing(X).
Since p ∈ �∗, we can fix t ≥ 0 and take n → ∞ in (3.2) to obtain

‖Pt (p)|N−
p
‖

‖DXt(p)|EX
p
‖ ≥ 1

2
, ∀t ≥ 0.

Since dim(N−) = 1, Proposition 2.2 in [12] implies N−
p = Np ∩ TpWs(σ ), so

that Pt (p)|N−
p

= P s
t (p). Moreover, p ∈ �∗ ⊂ �, and σ is in general position, so

that p /∈ Wss(σ ). Since σ is Lorenz-like, Lemma 3.1 implies

lim
t→∞

‖Pt (p)|N−
p
‖

‖DXt(p)|EX
p
‖ = lim

t→∞
‖P s

t (p)‖
‖DXt(p)|EX

p
‖ = 0,

contradicting the previous inequality. This concludes the proof. �
We use Lemma 3.3 to prove the following:

Lemma 3.4. Let � be a compact invariant set of a three-dimensional flow X.
Suppose that �∗ has a dominated splitting N�∗ = N− ⊕ N+ with respect to the
linear Poincaré flow such that dim(N−) = 1 and that every singularity in � is
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Lorenz-like in general position. If Pt |N− is contracting, then Pt |N− dominates
DXt |EX .

Proof. Suppose by contradiction that Pt |N− does not dominate DXt |EX . Then,
by Lemma 3.2, there is a sequence pn ∈ �∗ satisfying (3.2). Since � is compact,
we can assume that pn → p for some p ∈ �.

By Lemma 3.3 we have p /∈ Ws(σ) for every singularity σ ∈ �. How-
ever, Pt |N− is contracting, so (3.2) implies that there are K,λ > 0 such that
‖DXt(pn)|EX

pn
‖ ≤ 2Ke−λt , ∀0 ≤ t ≤ n,∀n ∈ N. Fixing t ≥ 0 and taking n → ∞,

we obtain ‖DXt(p)|EX
p
‖ ≤ 2Ke−λt , ∀t ≥ 0. This easily implies p ∈ Ws(σ) for

some singularity σ ∈ �, a contradiction. �

The following lemma resembles Lemma I.5 in [18].

Lemma 3.5. Let � be a compact invariant set of a three-dimensional flow X.
Suppose that �∗ has a dominated splitting N�∗ = N− ⊕ N+ with respect to the
linear Poincaré flow such that dim(N−) = 1 and that every singularity in � is
Lorenz-like in general position. If there is T > 0 such that∫

log‖PT |N−‖dμ < 0 (3.4)

for every ergodic measure μ supported on �, then Pt |N− is contracting.

Proof. By hypothesis each singularity σ ∈ � is Lorenz-like and so with real
eigenvalues λ1, λ2, λ3 satisfying λ2 < λ3 < 0 < −λ3 < λ1. Denote by Ess

σ and
Ec

σ the eigenspaces associated to the sets of eigenvalues {λ2} and {λ1, λ3}, respec-
tively. By changing the metric if necessary we can assume that Tσ M = Ess

σ ⊕ Ec
σ

is orthogonal. Then, since every singularity is in general position, we can extend
the map ‖PT |N−‖ continuously to � by assigning the value ‖DXT (σ)|Ess

σ
‖ at

each singularity σ ∈ �.
Now suppose by contradiction that Pt |N− is not contracting. Then, Lemma 3.2

furnishes a sequence pn ∈ �∗ satisfying (3.1). Since � is compact, we can assume
that pn converges to some point p, which by Lemma 3.3 belongs to �∗. Fixing
t ≥ 0 and taking n → ∞ in (3.1), we obtain

‖Pt (p)|N−
p
‖ ≥ 1

2
, ∀t ≥ 0. (3.5)

Let δz be the Dirac measure supported on {z}. Define the sequence of Borel
probability measures μn = 1

n

∫ n

0 δXt (p) dt for n ∈ N. We can assume that μn con-
verges, with respect to the weak-* topology, to a Borel probability measure μ∞.
It is clear that μ∞ is invariant and supported on �. On the other hand, the chain
rule

PT +t (x)|N−
x

= (PT (Xt (x))|N−
Xt (x)

) ◦ (Pt (x)|N−
x
), ∀(x, t) ∈ �∗ × [0,∞[,

together with dim(N−) = 1, implies

log‖PT (Xt (x))|N−
Xt (x)

‖ = log‖PT +t (x)|N−
x
‖ − log‖Pt (x)|N−

x
‖
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∀(x, t) ∈ �∗ × [0,∞[. Since μn → μ∞, taking x = p, we get∫
log‖PT |N−‖dμ∞

= lim
n→∞

1

n

∫ n

0
log‖PT (Xt (p))|N−

Xt (p)
‖dt

= lim
n→∞

1

n

(∫ n

0
log‖PT +t (p)|N−

p
‖dt −

∫ n

0
log‖Pt(p)|N−

p
‖dt

)

= lim
n→∞

1

n

(∫ n+T

T

log‖Pt (p)|N−
p
‖dt −

∫ n

0
log‖Pt(p)|N−

p
‖dt

)

= lim
n→∞

1

n

(∫ n+T

n

log‖Pt (p)|N−
p
‖dt −

∫ T

0
log‖Pt(p)|N−

p
‖dt

)

= lim
n→∞

1

n

∫ n+T

n

log‖Pt(p)|N−
p
‖dt, (3.6)

so (3.5) implies∫
log‖PT |N−‖dμ∞ ≥ − lim

n→∞
1

n

∫ n+T

n

log 2 dt = − lim
n→∞

T log 2

n
= 0.

Therefore, an ergodic component μ in the ergodic decomposition of μ∞ (cf.
p. 113 in [21]) must satisfy ∫

log‖PT |N−‖dμ ≥ 0.

This contradicts (3.4) and completes the proof. �

Now we apply Lemma 3.5 to prove the following:

Lemma 3.6. Let � be a compact invariant set of a three-dimensional flow X. Sup-
pose that �∗ has a dominated splitting N�∗ = N− ⊕N+ with respect to the linear
Poincaré flow such that dim(N−) = 1 and that every singularity in � is Lorenz-
like in general position. If every ergodic measure supported on � is hyperbolic
saddle, then Pt |N− is contracting. In particular, Pt |N− dominates DXt |EX .

Proof. To prove that Pt |N− is contracting, by Lemma 3.5 we only need to find
T > 0 satisfying (3.4) for every ergodic measure μ supported on �.

Just take T > 0 large enough satisfying

‖DXT (σ)|Ess
σ

‖ < 1 for every singularity σ ∈ �. (3.7)

Now suppose by contradiction that, for such a T , there is an ergodic measure μ

that does not satisfy (3.4), that is,∫
log‖PT |N−‖dμ ≥ 0.
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Clearly, μ is nonatomic since, otherwise, μ = δσ for some singularity σ ∈ � and
then

log‖DXT (σ)|Ess
σ

‖ =
∫

log‖PT |N−‖dμ ≥ 0,

contradicting (3.7). From this we conclude that μ(Sing(X)) = 0. But we also have
that μ is hyperbolic saddle by hypothesis. Then, we can apply linear Poincaré
flow’s version of Oseledets’s theorem (cf. Thm. 2.1 in [7] and Thm. 2.2 in [8]) to
conclude that for the two Lyapunov exponents χ1 < 0 < χ2, there corresponds an
Oseledets splitting NR = N̂1 ⊕ N̂2 of index 1 over the full measure set of regular
points R such that

lim
t→±∞

1

t
log‖Pt(x)ni‖ = χi, ∀x ∈ R,∀ni ∈ N̂ i

x \ {0},∀1 ≤ i ≤ 2.

Birkhoff’s theorem implies

lim
L→∞

1

L

∫ L

0
log‖PT (Xt (x))|N−

Xt (x)
‖dt =

∫
log‖PT |N−‖dμ for μ-a.e. x,

and the chain rule as in (3.6) implies

lim
L→∞

1

L

∫ L+T

L

log‖Pt (x)|N−
x
‖dt = lim

L→∞
1

L

∫ L

0
log‖PT (Xt (x))|N−

Xt (x)
‖dt.

Then, we can select x ∈ �∗ ∩ R satisfying

lim
L→∞

1

L

∫ L+T

L

log‖Pt(x)|N−
x
‖dt ≥ 0. (3.8)

On the other hand, x ∈ R and dim(N̂1) = dim(N̂2) = 1, so we have

lim
t→±∞

1

t
log‖Pt(x)|

N̂ i ‖ = χi for i = 1,2.

These limits implies that the splitting Nx = N̂1
x ⊕ N̂2

x is predominated in the sense
of Definition 2.1 in [16]. Since predominated splittings of prescribed index are
unique (cf. Lemma 2.3 in [16]) and Nx = N−

x ⊕ N+
x is dominated (hence, pre-

dominated), we conclude that N−
x ⊕ N+

x = N̂1
x ⊕ N̂2

x . In particular,

lim
t→±∞

1

t
log‖Pt(x)|N−

x
‖ = χ1. (3.9)

Now by (3.8) for a fixed ε > 0, there is Lε > 0 such that

1

L

∫ L+T

L

log‖Pt(x)|N−
x
‖dt ≥ −ε, ∀L ≥ Lε.

From this we obtain arbitrarily large values of t satisfying

1

t
log‖Pt(x)|N−

x
‖ ≥ − ε

T
.

Then, (3.9) yields χ1 ≥ − ε
T

. Since ε is arbitrary, we conclude that χ1 ≥ 0, contra-
dicting χ1 < 0. Therefore, Pt |N− is contracting, and so Pt |N− dominates DXt |EX

by Lemma 3.4. This ends the proof. �
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Proof of Theorem 1.5. Consider a three-dimensional flow X and a compact in-
variant set � of X. If � is singular-hyperbolic, then �∗ has a dominated splitting
N�∗ = N− ⊕N+ with respect to the linear Poincaré flow such that dim(N−) = 1
(by Lemma 2.3 in [9]). Moreover, every singularity in � is Lorenz-like in general
position [20]. It remains to prove that every nonatomic ergodic measure supported
on � is hyperbolic saddle.

It is clear that such a measure μ (say) has a negative Lyapunov exponent χ1

corresponding to the contracting direction E of the singular-hyperbolic splitting
E ⊕F . To compute the other exponent χ2, we choose a regular point x ∈ �∗ of μ.
Since EX ⊂ F by Lemma 3.2 in [2], we have

|detDXt(x)|Fx | = ‖Pt (x)|N+
x
‖ · ‖DXt(x)|EX

x
‖,

and so

χ2 = lim
t→∞

1

t
log‖Pt (x)|N+

x
‖

= lim
t→∞

1

t
(log |detDXt(x)|Fx | − log‖DXt(x)|EX

x
‖).

But M is compact, so there is L > 0 such that ‖X(y)‖ < L for all y ∈ M , and
thus

lim
t→∞

1

t
log‖DXt(x)|EX

x
‖ = lim

t→∞
1

t
(log‖X(Xt(x))‖ − log‖X(x)‖)

≤ lim
t→∞

1

t
logL = 0.

Moreover, DXt |F is volume expanding, so there are positive numbers K , λ such
that |detDXt(x)|Fx | ≥ Keλt , ∀t ≥ 0, and thus

lim
t→∞

1

t
log |detDXt(x)|Fx | ≥ λ,

so that χ2 ≥ λ > 0, and hence μ is hyperbolic saddle.
Conversely, suppose that �∗ has a dominated splitting N�∗ = N− ⊕ N+ with

respect to the linear Poincaré flow such that dim(N−) = 1, every singularity in
� is Lorenz-like in general position, and every ergodic measure supported on
� is hyperbolic saddle. By Lemma 3.6 we obtain that Pt |N− dominates Pt |N+ .
Then, by Lemma 2.2, Cl(�∗) has a dominated splitting TCl(�∗)M = E ⊕ F with
respect to the tangent flow such that dim(E) = 1 (thus, dim(F ) = 2), EX ⊂ F ,
and DXt |E is contracting.

It remains to prove that DXt |F is volume expanding. The proof is similar to
that of Lemma 3.6. We give the details for completeness.

First, we notice that the proof of Lemma 2.2 implies F = N+ ⊕ EX over �∗.
From this we get

|detDXt(x)|Fx | = ‖Pt (x)|N+
x
‖ · ‖DXt(x)|EX

x
‖, ∀x ∈ �∗, t ≥ 0. (3.10)
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Next we observe that, as in Lemma 3.5, in order to prove that DXt |F is volume
expanding, it suffices to find T > 0 such that∫

log |detDXT |F |dμ > 0 (3.11)

for every ergodic measure μ supported on �.
To find such a T , we first observe that Fσ = Ecu

σ at each singularity σ in �,
and so, there is T > 0 such that

|detDXT (σ)|Ecu
σ

| > 1 for every singularity σ ∈ �. (3.12)

Afterward, we suppose by contradiction that, for such a T , there is an ergodic
measure μ supported on � that does not satisfy (3.11), that is,∫

log |detDXT |F |dμ ≤ 0.

We have that μ is nonatomic because of (3.12) and then μ(Sing(X)) = 0 by
ergodicity. But we also have that μ is hyperbolic saddle by hypothesis. Since
μ(Sing(X)) = 0, we have as before that for the two Lyapunov exponents χ1 <

0 < χ2, there corresponds an Oseledets splitting NR = N̂1 ⊕ N̂2 of index 1 over
the full measure set of regular points R such that

lim
t→±∞

1

t
log‖Pt(x)ni‖ = χi, ∀x ∈ R,∀ni ∈ N̂ i

x \ {0},∀1 ≤ i ≤ 2.

Again, Birkhoff’s theorem implies

lim
L→∞

1

L

∫ L

0
log |detDXT (Xt (x))|FXt (x)

|dt =
∫

log |detDXT |F |dμ

for μ-a.e. x, and the chain rule as in (3.6) implies

lim
L→∞

1

L

∫ L+T

L

log |detDXt(x)|Fx |dt

= lim
L→∞

1

L

∫ L

0
log |detDXT (Xt (x))|FXt (x)

|dt,

so there exists x ∈ �∗ ∩ R satisfying

lim
L→∞

1

L

∫ L+T

L

log |detDXt(x)|Fx |dt ≤ 0. (3.13)

Arguing as before, we have N−
x ⊕ N+

x = N̂1
x ⊕ N̂2

x , so

lim
t→∞

1

t
log‖Pt(x)|N+

x
‖ = χ2. (3.14)

Finally, (3.13) for a fixed ε > 0 provides Lε > 0 such that

1

L

∫ L+T

L

log |detDXt(x)|Fx | ≤ ε, ∀L ≥ Lε,

yielding a sequence tn → ∞ satisfying

1

tn
|detDXtn(x)|Fx | ≤

ε

T
.
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Then, (3.10) and (3.14) imply

χ2 = lim
n→∞

1

tn
log‖Ptn(x)|N+

x
‖ = lim

n→∞
1

tn
log |detDXtn(x)|Fx | ≤

ε

T
.

Since ε is arbitrary, we get χ2 ≤ 0, contradicting χ2 > 0. This ends the proof. �

Proof of Corollary 1.7. Let � be a nontrivial compact invariant set that is either
transitive or a limit cycle of a C1+α three-dimensional flow X. Suppose that the
singularities of � are Lorenz-like in general position. By Theorem 1.5, if � is
hyperbolic, then �∗ has a dominated splitting of index 1 with respect to the linear
Poincaré flow, and every ergodic measure supported on � is hyperbolic.

Conversely, suppose that �∗ has a dominated splitting of index 1 with respect
to the linear Poincaré flow and that every ergodic measure supported on � is
hyperbolic.

Suppose that � supports an ergodic measure μ that is not saddle-type. Since
every singularity is Lorenz-like (hence, hyperbolic of saddle type), we have that
μ cannot be supported on a singularity. Then, there are points in the support of μ

where X does not vanishes. On the other hand, the two Lyapunov exponents of
μ are either negative or positive. Since X is C1+α , we can apply Theorem 3.1 in
[10] to conclude that μ is supported on an attracting or a repelling periodic orbit.
In particular, � has an attracting or a repelling periodic orbit. Since � is transitive
or a limit cycle, we conclude that � reduces to a single orbit, contradicting that
� is nontrivial. This contradiction shows that every ergodic measure supported
on � is hyperbolic saddle. Hence, � is singular-hyperbolic by Theorem 1.5. This
completes the proof. �
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