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Seidel Elements and Mirror Transformations
for Toric Stacks

Fenglong You

Abstract. We give a precise relation between the mirror transforma-
tion and the Seidel elements for weak Fano toric Deligne–Mumford
stacks. Our result generalizes the corresponding result for toric vari-
eties proved by González and Iritani [5]. The correction coefficients
that we computed match with the instanton corrections from genus 0
open Gromov–Witten invariants for toric Calabi–Yau orbifolds in [3].

1. Introduction

In [5], González and Iritani gave a precise relation between the mirror map and
the Seidel elements for a smooth projective weak Fano toric variety X. The goal
of this paper is to generalize the main theorem of [5] to a smooth projective weak
Fano toric Deligne–Mumford stack X .

Let X be a smooth projective weak Fano toric Deligne–Mumford stack. The
mirror theorem can be stated as an equality between the I -function and the J -
function via a change of coordinates, called mirror map (or mirror transforma-
tion). We refer to [4] and Section 4.1 of [6] for further discussions.

Let Y be a monotone symplectic manifold. For a loop λ in the group of
Hamiltonian symplectomorphisms on Y , Seidel [10] constructed an invertible el-
ement S(λ) in (small) quantum cohomology counting sections of the associated
Hamiltonian Y -bundle Eλ → P1. The Seidel element S(λ) defines an element in
Aut(QH(Y )) via quantum multiplication, and the map λ �→ S(λ) gives a repre-
sentation of π1(Ham(Y )) on QH(Y ). McDuff and Tolman [9] extended this con-
struction to all symplectic manifolds. The definition of Seidel representation and
Seidel element were extended to symplectic orbifolds by Tseng and Wang [11].

Let D1, . . . ,Dm be the classes in H 2(X) Poincaré dual to the toric divisors.
When the loop λ is a circle action, McDuff and Tolman [9] considered the Seidel
element S̃j associated to an action λj that fixes the toric divisor Dj . Given a
circle action on X (resp. X ), the Seidel element in [5] (resp. [11]) is defined
using the small quantum cohomology ring. In this paper, we need to define it, for
smooth projective Deligne–Mumford stack, with deformed quantum cohomology
to include the bulk deformations. For weak Fano toric Deligne–Mumford stack,
the mirror theorem in [6] shows that the mirror map τ(y) ∈ H

≤2
orb (X ); therefore,

we will only need bulk deformations with τ ∈ H
≤2
orb (X ).
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We consider the Seidel element S̃j associated to the toric divisor Dj and the
Seidel element S̃m+j corresponding to the box element sj . The Seidel element in
Definition 2.3 shows that S = q0S̃ is a pull-back of a coefficient of the J -function
JEj

of the associated orbifiber bundle Ej ; hence, we can use the mirror theorem

for Ej to calculate S̃j when Ej is weak Fano.
We extend the definition of the Batyrev element D̃j to weak Fano toric

Deligne–Mumford stacks via partial derivatives of the mirror map τ(y). As ana-
logues of the Seidel elements in B-model, the Batyrev elements can be explicitly
computed from the I -function of X . The following theorem states that the Seidel
and Batyrev elements only differ by a multiplication of a correction function.

Theorem 1.1. Let X be a smooth projective toric Deligne–Mumford stack with
ρS ∈ cl(CS(X )).

(i) The Seidel element S̃j associated to the toric divisor Dj is given by

S̃j (τ (y)) = exp(−g
(j)

0 (y))D̃j (y),

where τ(y) is the mirror map of X , and the function g
(j)

0 is given explicitly
in (40);

(ii) The Seidel element S̃m+j corresponding to the box element sj is given by

S̃m+j (τ (y)) = exp(−g
(m+j)

0 )y
−DS∨

m+j D̃m+j (y),

where τ(y) is the mirror map of X , and the function g
(m+j)

0 is given explicitly
in (51).

It appears that the correction coefficients in the theorem coincide with the instan-
ton corrections in Theorem 1.4 in [3]. This phenomenon also indicates that the
deformed quantum cohomology ring of the toric Deligne–Mumford stack X is
isomorphic to the Batyrev ring given in [6].

2. Seidel Elements and J -Functions

2.1. Seidel Elements

In this section, we fix our notation and construct the Seidel elements of smooth
projective Deligne–Mumford stacks using τ -deformed quantum cohomology.

Let X be a smooth projective Deligne–Mumford stack equipped with a C×
action.

Definition 2.1. The associated orbifiber bundle of the C×-action is the X -
bundle over P1

E := X × (C2 \ {0})/C× → P1,

where C× acts on C2 \ {0} via the standard diagonal action.

Let φ1, . . . , φN be a basis for the orbifold cohomology ring H ∗
orb(X ) :=

H ∗(IX ;Q) of X , where IX is the inertia stack of X . Let φ1, . . . , φN be the dual
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basis of φ1, . . . , φN with respect to the orbifold Poincaré pairing. Furthermore, let
φ̂1, . . . , φ̂M denote a basis for the orbifold cohomology H ∗

orb(E) := H ∗(IE;Q)

of E . Let φ̂1, . . . , φ̂M be the dual basis of φ̂1, . . . , φ̂M with respect to the orbifold
Poincaré pairing.

We will use X to denote the coarse moduli space of X and use E to denote
the coarse moduli space of E . Then the C× action on X descends to the C×
action on X with E being the associated bundle. Following [8] and [5], there is a
(noncanonical) splitting

H ∗(E;Q) ∼= H ∗(E;Q) ∼= H ∗(X;Q) ⊗ H ∗(P1;Q) ∼= H ∗(X ;Q) ⊗ H ∗(P1;Q).

According to [5], there is a unique C×-fixed component Fmax ⊂ XC×
such that

the normal bundle of Fmax has only negative C×-weights. Let σ0 be the section
associated to a fixed point in Fmax. Following [5], there is a splitting defined by
this maximal section,

H2(E;Z)/tors ∼= H2(E;Z)/tors ∼= Z[σ0] ⊕ (H2(X,Z)/tors)
∼= Z[σ0] ⊕ (H2(X ,Z)/tors). (1)

Let NE(X) ⊂ H2(X;R) denote the Mori cone, that is, the cone generated by
effective curves, and set

NE(X)Z := NE(X) ∩ (H2(X,Z)/tors).

Then, by Lemma 2.2 of [5] we have

NE(E)Z = Z≥0[σ0] + NE(X)Z. (2)

Let H sec
2 (E;Z) be the affine subspace of H2(E,Z)/tors that consists of the

classes that project to the positive generator of H2(P
1;Z). Setting

NE(E)sec
Z := NE(E)Z ∩ H sec

2 (E;Z),

we obtain
NE(E)sec

Z = [σ0] + NE(X)Z. (3)

We choose a nef integral basis {p1, . . . , pr} of H 2(X ;Q); then there are unique
lifts of p1, . . . , pr in H 2(E;Q) that vanish on [σ0]. By abuse of notation, we also
denote these lifts as p1, . . . , pr ; these lifts are also nef. Let p0 be the pullback of
the positive generator of H 2(P1;Z) in H 2(E;Q). Therefore, {p0,p1, . . . , pr} is
an integral basis of H 2(E;Q).

Let q0, q1, . . . , qr be the Novikov variables of E dual to p0,p1, . . . , pr , and
q1, . . . , qr be the Novikov variables of X dual to p1, . . . , pr . We denote the
Novikov ring of X and the Novikov ring of E by

�X := Q[[q1, . . . , qr ]] and �E := Q[[q0, q1, . . . , qr ]],
respectively. For each d ∈ NE(X)Z, we write

qd := q
〈p1,d〉
1 · · ·q〈pr ,d〉

r ∈ �X ,

and for each β ∈ NE(E)Z, we write

qβ := q
〈p0,β〉
0 q

〈p1,β〉
1 · · ·q〈pr ,β〉

r ∈ �E .
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The τ -deformed orbifold quantum product is defined as follows:

α •τ β =
∑

d∈NE(X)Z

∑
l≥0

N∑
k=1

1

l! 〈α,β, τ, . . . , τ,φk〉X0,l+3,dqdφk; (4)

the associated quantum cohomology ring is denoted by

QHτ (X ) := (H(X ) ⊗Q �X ,•τ ).

Notation 2.2. For a smooth projective Deligne–Mumford stack X , we denote
by H

≤2
tw (X ) the complementary subspace of H 2(X ) in H

≤2
orb (X ) supported on the

twisted sectors, that is, we have the decomposition

H
≤2
orb (X ) = H 2(X ) ⊕ H

≤2
tw (X ).

Definition 2.3. The Seidel element of X is the class

S(τ̂ ) :=
∑
α

∑
β∈NE(E)sec

Z

∑
l≥0

1

l! 〈1, τ̂tw, . . . , τ̂tw, ı∗φαψ〉E0,l+2,βφαe〈τ̂0,2,β〉 (5)

in QHτ (X ) ⊗�X �E . Here ı :X → E is the inclusion of a fiber, and

ı∗ : H ∗(IX ;Q) → H ∗+2(IE;Q)

is the Gysin map. Moreover,

e〈τ̂0,2,β〉 = qβ = q
〈p0,β〉
0 · · ·q〈pr ,β〉

r ,

where

τ̂0,2 =
r∑

a=0

pa logqa ∈ H 2(E)

and

τ̂ = τ̂0,2 + τ̂tw ∈ H 2(E) ⊕ H
≤2
tw (E) = H

≤2
orb (E).

The Seidel element can be factorized as

S(τ̂ ) = q0S̃(τ̂ ) with S̃(τ̂ ) ∈ QHτ (X ). (6)

Remark 2.4. The descendant class ψ in equation (5) can be eliminated by the
string equation; hence, our definition of Seidel elements matches with the defini-
tion in [5]

2.2. J-Functions

We will explain the relation between the Seidel element and the J -function of the
associated bundle E .
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Definition 2.5. The J -function of E is the cohomology-valued function

JE (τ̂ , z) = eτ̂0,2/z

(
1 +

∑
α

∑
(β,l)�=(0,0),β∈NE(E)Z

e〈τ̂0,2,β〉

l!

×
〈
1, τ̂tw, . . . , τ̂tw,

φ̂α

z − ψ

〉E
0,l+2,β

φ̂α

)
, (7)

where φ̂α/(z − ψ) = ∑
n≥0 z−1−nφ̂αψn.

Note that when n = 0, we have

(i)
∑

α〈1, τ̂tw, . . . , τ̂tw, φ̂α〉E0,l+2,β φ̂α = 0 for (l, β) �= (1,0);

(ii)
∑

α〈1, τ̂tw, . . . , τ̂tw, φ̂α〉E0,l+2,β φ̂α = τ̂tw for (l, β) = (1,0).

The J -function can be expanded in terms of powers of z−1 as follows:

JE (τ̂ , z) = e
∑r

a=0 pa logqa/z

(
1 + z−1τ̂tw

+ z−2
∞∑

n=0

Fn(q1, . . . , qr ; τ̂ )qn
0 + O(z−3)

)
, (8)

where

Fn(q1, . . . , qr ; τ̂ )

=
M∑

α=1

∑
d∈NE(X)Z

∑
l≥0

1

l! 〈1, τ̂tw, . . . , τ̂tw, φ̂αψ〉E0,l+2,d+nσ0
qdφ̂α. (9)

Proposition 2.6. The Seidel element corresponding to the C× action on X is
given by

S(τ̂ ) = ı∗(F1(q1, . . . , qr ; τ̂ )q0). (10)

Proof. The proof here is identical to the proof given in Proposition 2.5 of [5] for
smooth projective varieties:

Using the duality identity

M∑
α=1

φ̂α ⊗ ı∗φ̂α =
N∑

α=1

ı∗φα ⊗ φα,

we can see that

ı∗F1(q1, . . . , qr ; τ̂ )

=
N∑

α=1

∑
d∈NE(X)Z

∑
l≥0

1

l! 〈1, τ̂tw, . . . , τ̂tw, ı∗φαψ〉E0,l+2,d+σ0
qdφα.

Hence, the conclusion follows, that is,

S(τ̂ ) = ı∗(F1(q1, . . . , qr ; τ̂ )q0). �
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3. Seidel Elements Corresponding to Toric Divisors

3.1. A Review of Toric Deligne–Mumford Stacks

In this section, we define toric Deligne–Mumford stacks following the construc-
tion of [2] and [6].

A toric Deligne–Mumford stack is defined by a stacky fan � = (N,�,β),
where N is a finitely generated Abelian group, � ⊂ NQ = N ⊗Z Q is a rational
simplicial fan, and β : Zm → N is a homomorphism. We assume that β has finite

cokernel and the rank of N is n. The map Zm β−→ N → NQ generates the 1-
skeleton of the fan �. Let bi be the image under β of the standard basis of Zm,
and b̄i be the image of bi under the canonical map N → NQ. Let L ⊂ Zm be the
kernel of β . Then the fan sequence is the following exact sequence:

0 −→ L −→ Zm β−→ N. (11)

Let β∨ : (Z∗)m → L∨ be the Gale dual of β in [2], where L∨ := H 1(Cone(β)∗)
is an extension of L∗ = Hom(L,Z) by a torsion subgroup. The divisor sequence
is the following exact sequence:

0 −→ N∗ β∗
−→ (Z∗)m β∨

−→ L∨. (12)

By applying HomZ(−,C×) to the dual map β∨ we have a homomorphism

α : G → (C×)m, where G := HomZ(L∨,C×),

and we let G act on Cm via this homomorphism.
The collection of anticones A is defined as follows:

A :=
{
I :

∑
i /∈I

R≥0b̄i ∈ �

}
.

Let U denote the open subset of Cm defined by A:

U := Cm \
⋃
I /∈A

CI ,

where
CI = {(z1, . . . , zm) : zi = 0 for i /∈ I }.

Definition 3.1. Following [6], the toric Deligne–Mumford stack X is defined as
the quotient stack

X := [U/G].
Remark 3.2. The toric variety X associated to the fan � is the coarse moduli
space of X ([2]).

Definition 3.3 ([6]). Given a stacky fan � = (N,�,β), we define the set of box
elements Box(�) as follows:

Box(�) =:
{
v ∈ N : v̄ =

∑
k /∈I

ckb̄k for some 0 ≤ ck < 1, I ∈ A
}
.
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We assume that � is complete; then the connected components of the inertia
stack IX are indexed by the elements of Box(�) (see [2]). Moreover, given v ∈
Box(�), the age of the corresponding connected component of IX is defined by
age(v) := ∑

k /∈I ck .
The Picard group Pic(X ) of X can be identified with the character group

Hom(G,C×). Hence,

L∨ = Hom(G,C×) ∼= Pic(X ) ∼= H 2(X ;Z). (13)

We can also use the extended stacky fans introduced by Jiang [7] to define the
toric Deligne–Mumford stacks. Given a stacky fan � = (N,�,β) and a finite set

S = {s1, . . . , sl} ⊂ N� := {c ∈ N : c̄ ∈ |�|},
the S-extended stacky fan is given by (N,�,βS), where βS : Zm+l → N is de-
fined by

βS(ei) =
{

bi, 1 ≤ i ≤ m;
si−m, m + 1 ≤ i ≤ m + l.

(14)

Let LS be the kernel of βS : Zm+l → N. Then we have the following S-extended
fan sequence:

0 −→ LS −→ Zm+l βS

−→ N. (15)

By the Gale duality we have the S-extended divisor sequence

0 −→ N∗ β∗
−→ (Z∗)m+l βS∨

−→ LS∨, (16)

where LS∨ := H 1(Cone(βS)∗).

Assumption 3.4. In the rest of the paper, we assume that the set

{v ∈ Box(�); age(v) ≤ 1} ∪ {b1, . . . , bm}
generates N over Z, and we choose the set

S = {s1, . . . , sl} ⊂ Box(�)

such that the set {b1, . . . , bm, s1, . . . , sl} generates N over Z and age(sj ) ≤ 1 for
1 ≤ j ≤ l.

Let DS
i be the image of the standard basis of (Z∗)m+l under the map βS∨. Then

there is a canonical isomorphism

LS∨ ⊗Q ∼= (L∨ ⊗Q) ⊕
m+l⊕

i=m+1

QDS
i , (17)

which can be constructed as follows [6].
Since � is complete, for m < j ≤ m + l, the box element sj−m is contained in

some cone in �. Namely,

sj−m =
∑
i /∈IS

j

cjibi in N ⊗Q, cji ≥ 0,∃IS
j ∈AS,
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where IS
j is the “anticone” of the cone containing sj−m.

By the S-extended fan sequence (15) tensored with Q, we have the following
short exact sequence:

0 −→ LS ⊗Q−→Qm+l βS

−→ N ⊗Q −→ 0.

Hence, there exists a unique DS∨
j ∈ LS ⊗Q such that

〈DS
i ,DS∨

j 〉 =

⎧⎪⎨
⎪⎩

1, i = j ;
−cji, i /∈ IS

j ;
0, i ∈ IS

j \ {j}.
(18)

These vectors DS∨
j define the decomposition

LS∨ ⊗Q = Ker((DS∨
m+1, . . . ,D

S∨
m+l ) : LS∨ ⊗Q→ Ql ) ⊕

m+l⊕
j=m+1

QDS
j .

We identify the first factor Ker(DS∨
m+1, . . . ,D

S∨
m+l) with L∨ ⊗Q. Via this decom-

position, we can regard H 2(X ,Q) ∼= L∨ ⊗Q as a subspace of LS∨ ⊗Q.
Let Di be the image of DS

i in L∨ ⊗Q under this decomposition. Then

Di = 0 for m + 1 ≤ i ≤ m + l.

Let AS be the collection of S-extended anti-cones, that is,

AS :=
{
IS :

∑
i /∈IS

R≥0βS(ei) ∈ �

}
.

Note that

{s1, . . . , sl} ⊂ IS, ∀IS ∈AS.

By applying HomZ(−,C×) to the S-extended dual map β∨ we have a homo-
morphism

αS : GS → (C×)m+l , where GS := HomZ(LS∨,C×).

We define U to be the open subset of Cm+l defined by AS :

US := Cm+l \
⋃

IS /∈AS

CIS = U × (C×)l,

where

CIS = {(z1, . . . , zm+l ) : zi = 0 for i /∈ IS}.
Let GS act on US via αS . Then we obtain the quotient stack [US/GS]. Jiang [7]
showed that

[US/GS] ∼= [U/G] = X .
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3.2. Mirror Theorem for Toric Stacks

Coates et al. [4] defined the S-extended I -function of a smooth toric Deligne–
Mumford stack X with semiprojective coarse moduli space and proved that this
I -function is a point of Givental’s Lagrangian cone L for the Gromov–Witten
theory of X . In this paper, we only need this theorem for the weak Fano case.
In this case, the mirror theorem will take a particularly simple form, which can
be stated as an equality of I -function and J -function via a change of variables,
called mirror map.

To state the mirror theorem for weak Fano toric Deligne–Mumford stack, we
need the following definitions.

We define the S-extended Kähler cone CS
X as

CS
X :=

⋂
IS∈AS

�i∈ISR>0D
S
i

and the Kähler cone CX as

CX :=
⋂
I∈A

�i∈IR>0Di.

Let pS
1 , . . . , pS

r+l be an integral basis of LS∨, where r = m − n, such that pS
i is in

the closure cl(CS
X ) of the S-extended Kähler cone CS

X for all 1 ≤ i ≤ r + l and

pS
r+1, . . . , p

S
r+l are in

∑m+l
i=m+1 R≥0D

S
i . We denote the image of pS

i in L∨ ⊗ R

by pi ; therefore, p1, . . . , pr are nef, and pr+1, . . . , pr+l are zero. We define the
matrix (mia) by

DS
i =

r+l∑
a=1

miap
S
a , mia ∈ Z.

Then the class Di of toric divisor is given by

Di =
r∑

a=1

miapa.

Definition 3.5 ([6], Sect. 3.1.4). A toric Deligne–Mumford stack X is called
weak Fano if the first Chern class ρ satisfies

ρ = c1(TX ) =
m∑

i=1

Di ∈ cl(CX ),

where CX is the Kähler cone of X .

We will need a slightly stronger condition:

ρS := DS
1 + · · · + DS

m+l ∈ cl(CS
X ),

where CS
X is the S-extended Kähler cone. By Lemma 3.3 of [6] we can see that

ρS ∈ cl(CS
X ) implies ρ ∈ cl(CX ). Moreover, under Assumption 3.4, we have

ρS ∈ cl(CS
X ) if and only if ρ ∈ cl(CX ).
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For a real number r , let �r�, �r�, and {r} be the ceiling, floor, and fractional
part of r , respectively.

Definition 3.6. We define two subsets K and Keff of LS ⊗Q as follows:

K := {d ∈ LS ⊗Q; {i ∈ {1, . . . ,m + l}; 〈DS
i , d〉 ∈ Z} ∈ AS},

Keff := {d ∈ LS ⊗Q; {i ∈ {1, . . . ,m + l}; 〈DS
i , d〉 ∈ Z≥0} ∈ AS}.

Remark 3.7. We use KEj
and Keff,Ej

to denote the corresponding sets for the
associated bundle Ej and use KX and Keff,X to denote the corresponding sets
for X .

Definition 3.8 ([6], Sect. 3.1.3). The reduction function v is defined as follows:

v : K−→ Box(�),

d �−→
m∑

i=1

�〈DS
i , d〉�bi +

l∑
j=1

�〈DS
m+j , d〉�sj .

By the S-extended fan exact sequence we have

m∑
i=1

〈DS
i , d〉bi +

l∑
j=1

〈DS
m+j , d〉sj = 0 ∈ N ⊗Q.

Moreover, by the definition of K we have

〈DS
m+j , d〉 ∈ Z for all d ∈K and 1 ≤ j ≤ l.

Hence,

v(d) =
m∑

i=1

{−〈DS
i , d〉}bi +

l∑
j=1

{−〈DS
m+j , d〉}sj =

m∑
i=1

{−〈DS
i , d〉}bi.

The corresponding inertia component Xv(d) is given by

Xv(d) := {[z1, . . . , zm+l] ∈X | zi = 0 if 〈DS
i , d〉 /∈ Z},

and the unit class of H ∗(Xv(d)) is denoted by 1v(d).
By abuse of notation, we use Di to denote the divisor {zi = 0} ⊂ X and the

cohomology class in H 2(X ;Z) ∼= L∨ for 1 ≤ i ≤ m.
We consider the C×-action fixing a toric divisor Dj , 1 ≤ j ≤ m; the action of

C× on Cm is given by

(z1, . . . , zm) �→ (z1, . . . , t
−1zj , . . . , zm), t ∈ C×.

We can extend this to the diagonal C×-action on U × (C2 \ {0}) by

(z1, . . . , zm,u, v) �→ (z1, . . . , t
−1zj , . . . , zm, tu, tv), t ∈C×.

The associated bundle Ej of the C×-action on X is given by

Ej = U × (C2 \ {0})/G ×C×.
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We can also use the S-extended stacky fan of X to define Ej :

Ej = US × (C2 \ {0})/GS ×C×.

Therefore, Ej is also a toric Deligne–Mumford stack. We can identify H 2(Ej ;Z)

with the lattice of the characters of G ×C×:

H 2(Ej ;Z) ∼= L∨ ⊕Z ∼= H 2(X ;Z) ⊕Z. (19)

Moreover, we have the divisor sequence

0 → N∗ ⊕Z → (Z∗)m+2 → L∨ ⊕Z

and the S-extended divisor sequence

0 → N∗ ⊕Z → (Z∗)m+l+2 → LS∨ ⊕Z.

Let D̂S
i be the image of the standard basis of (Z∗)m+l+2 in LS∨ ⊕Z. Then

D̂S
i = (DS

i ,0), for i �= j ;
D̂S

j = (DS
j ,−1); D̂S

m+l+1 = D̂S
m+l+2 = (0,1); (20)

and

D̂i = (Di,0), for i �= j ;
D̂j = (Dj ,−1); D̂m+1 = D̂m+2 = (0,1). (21)

The fan �j of Ej is a rational simplicial fan contained in NQ ⊕Q. The 1-skeleton
is given by

b̂i = (bi,0), for 1 ≤ i ≤ m;
b̂m+1 = (0,1); b̂m+2 = (bj ,−1). (22)

We set

pS
0 := D̂S

m+l+1 = D̂S
m+l+2 ∈ LS∨ ⊕Z;

p0 := D̂m+1 = D̂m+2 ∈ H 2(Ej ;Q).

Then a nef integral basis {p1, . . . , pr} of H 2(X ;Q) can be lifted to a nef integral
basis {p0,p1, . . . , pr} of H 2(Ej ;Q) under the splitting (19) (this gives the same
splitting as the one in Section 2.1). Recall that {pS

1 , . . . , pS
r+l} is an integral basis

of LS∨ such that pi is the image of pS
i in L∨ ⊗R. Moreover, pS

0 ,pS
1 , . . . , pS

r+l is
an integral basis of LS∨ ⊕ Z, and p0 is the image of pS

0 in (L∨ ⊕ Z) ⊗ R. Note
that pr+1, . . . , pr+l are all zero. We have

CS
Ej

= CS
X +R>0p

S
0 , ρS

Ej
= ρS

X + pS
0 .

The following result is straightforward.

Lemma 3.9. If ρS
X ∈ cl(CS

X ), then ρS
Ej

∈ cl(CS
Ej

) for 1 ≤ j ≤ m.
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Definition 3.10. The I -function of X is the H ∗
orb(X )-valued function

IX (y, z) = e
∑r

i=1 pi logyi/z

×
∑

d∈Keff,X

m+l∏
i=1

(∏∞
k=�〈DS

i ,d〉�(Di + (〈DS
i , d〉 − k)z)∏∞

k=0(Di + (〈DS
i , d〉 − k)z)

)
yd1v(d), (23)

where yd = y
〈pS

1 ,d〉
1 · · ·y〈pS

r+l ,d〉
r+l . Similarly, the I -function of E is the H ∗

orb(E)-
valued function

IEj
(y, z)

= e
∑r

i=0 pi logyi/z

×
∑

β∈Keff,Ej

m+l+2∏
i=1

(∏∞
k=�〈D̂S

i ,β〉�(D̂i + (〈D̂S
i , β〉 − k)z)∏∞

k=0(D̂i + (〈D̂S
i , β〉 − k)z)

)
yβ1v(β), (24)

where yβ = y
〈pS

0 ,β,〉
0 y

〈pS
1 ,β〉

1 · · ·y〈pS
r+l ,β〉

r+l .

Following Section 4.1 of [6], the I -functions of X and Ej can be rewritten in the
forms

IX (y, z) = e
∑r

i=1 pi logyi/z

×
∑

d∈KX

m+l∏
i=1

(∏∞
k=�〈DS

i ,d〉�(Di + (〈DS
i , d〉 − k)z)∏∞

k=0(Di + (〈DS
i , d〉 − k)z)

)
yd1v(d) (25)

and

IEj
(y, z) = e

∑r
i=0 pi logyi/z

×
∑

β∈KEj

m+l+2∏
i=1

(∏∞
k=�〈D̂S

i ,β〉�(D̂i + (〈D̂S
i , β〉 − k)z)∏∞

k=0(D̂i + (〈D̂S
i , β〉 − k)z)

)
yβ1v(β), (26)

respectively, because the summand with d ∈ K \Keff vanishes. We refer to [6] for
more details.

Theorem 3.11 ([4], Thm. 31). Assume that ρS ∈ cl(CS
X ). Then the I -function

and the J -function satisfy the following relation:

IX (y, z) = JX (τ (y), z), (27)

where

τ(y) = τ0,2(y) + τtw(y)

=
r∑

i=1

(logyi)pi +
m+l∑

j=m+1

y
DS∨

j Dj + h.o.t. ∈ H
≤2
orb (X ), (28)

with

τ0,2(y) ∈ H 2(X ), τtw(y) ∈ H
≤2
tw (X ),
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Dj =
∏
i /∈IS

j

D
�cji�
i 1v(DS∨

j ) ∈ H ∗
orb(X ),

where h.o.t. (higher-order term) is a fractional power series in y1, . . . , yr+l . Note
that under Assumption 3.4, we have Dj = 1sj for m + 1 ≤ j ≤ m + l. Further-

more, τ(y) is called the mirror map and takes values in H
≤2
orb (X ).

Remark 3.12. We only stated a particular case of [4, Thm. 31] when X is weak
Fano. See [6, Sect. 4.1] for more details.

For τ0,2(y) = ∑r
a=1 pa logqa ∈ H 2(X ), we have

logqi = logyi + gi(y1, . . . , yr+l), for i = 1, . . . , r,

where gi is a (fractional) power series in y1, . . . , yr+l , which is homogeneous of
degree zero with respect to the degree degyd = 2〈ρS

X , d〉.
By Lemma 3.9, under the assumption of Theorem 3.11, we can also apply the

mirror theorem to the associated bundle Ej ; hence, we have

IEj
(y, z) = JEj

(τ (j)(y), z),

where

τ (j)(y) = τ
(j)

0,2 + τ
(j)
tw (y) ∈ H 2(Ej ) ⊕ H

≤2
tw (Ej ) = H

≤2
orb (Ej ).

For τ
(j)

0,2 (y) = ∑r
a=0 pa logqa ∈ H 2(Ej ), therefore,

logqi = logyi + g
(j)
i (y0, . . . , yr+l) for i = 0, . . . , r,

where g
(j)
i is a (fractional) power series in y0, y1, . . . , yr+l , which is homoge-

neous of degree zero with respect to the degree degyβ = 2〈ρS
Ej

, β〉.

3.3. Seidel Elements and Mirror Maps

Proposition 3.13. The function g
(j)
i does not depend on y0, and we have

g
(j)
i (y0, . . . , yr+l) = gi(y1, . . . , yr+l) for i = 1, . . . , r.

Proof. The functions gi are the coefficients of z−1pi in the expansion of IX :

IX (y, z) = e
∑r

i=1 pi logyi/z

(
1 + z−1

( r∑
i=1

gi(y)pi + τtw

)
+ O(z−2)

)
.

The functions g
(j)
i are the coefficients of z−1pi in the expansion of IEj

:

IEj
(y, z) = e

∑r
i=0 pi logyi/z

(
1 + z−1

( r∑
i=0

g
(j)
i (y)pi + τ

(j)
tw

)
+ O(z−2)

)
.

Following the proof of Lemma 3.5 of [5], we obtain the conclusion of this propo-
sition. �
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We will prove that τ
(j)
tw (y) is also independent from y0. To begin with, the follow-

ing lemma implies that τ
(j)
tw (y) is an (integer) power series in y0.

Lemma 3.14. For any β ∈ KEj
, we have 〈pS

0 , β〉 ∈ Z. Furthermore, for any

β ∈Keff,Ej
, we have 〈pS

0 , β〉 ∈ Z≥0.

Proof. Any cone σ ∈ �j containing both b̂m+1 and b̂m+2 should also contain b̂j ,
but this is impossible since the fan �j is simplicial and b̂m+1, b̂m+2, and b̂j lie
in the same plane. Hence, by the definition of KEj

(resp. Keff,Ej
) at least one of

〈D̂S
m+1, β〉 and 〈D̂S

m+2, β〉 has to be integer (resp. nonnegative integer) for any
β ∈KEj

(resp. β ∈Keff,Ej
). On the other hand, we have

〈pS
0 , β〉 = 〈D̂S

m+1, β〉 = 〈D̂S
m+2, β〉.

Therefore, we must have 〈pS
0 , β〉 ∈ Z (resp. 〈pS

0 , β〉 ∈ Z≥0). �

As a direct consequence of the lemma, τ
(j)
tw (y) can only contain nonnegative in-

teger powers of y0.

Proposition 3.15. Let τ
(j)
tw (y) = ∑∞

n=0 P
(j)
n (y)yn

0 , where P
(j)
n (y) is a (frac-

tional) power series in y1, . . . , yn. Then

P
(j)
n (y) = 0 for n ≥ 1,

that is, τ
(j)
tw (y) is independent from y0. Moreover, we have

ı∗τ (j)
tw (y) = τtw(y).

Proof. Recall that τ
(j)
tw (y) is the coefficient of z−1 in

e−∑r
i=0 pi logyi/zIEj

(y, z)

=
∑

β∈Keff,Ej

m+l+2∏
i=1

(∏∞
k=�〈D̂S

i ,β〉�(D̂i + (〈D̂S
i , β〉 − k)z)∏∞

k=0(D̂i + (〈D̂S
i , β〉 − k)z)

)
yβ1v(β), (29)

valued in H
≤2
tw (Ej ). Hence, we only need to consider terms with v(β) �= 0. On the

other hand, by Lemma 3.14 we have

〈pS
0 , β〉 = 〈D̂S

m+1, β〉 = 〈D̂S
m+2, β〉 ∈ Z for β ∈KEj

.

Hence, we obtain

v(β) =
m+2∑
i=1

{−〈D̂S
i , β〉}b̂i =

( m∑
i=1

{−〈DS
i , d〉}bi,0

)
= (v(d),0) ∈ N ⊕Z,

where d is the natural projection of β onto Keff,X . Therefore, v(β) �= 0 is equiv-
alent to v(d) �= 0.
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It remains to examine the product factor:

m+l+2∏
i=1

(∏∞
k=�〈D̂S

i ,β〉�(D̂i + (〈D̂S
i , β〉 − k)z)∏∞

k=0(D̂i + (〈D̂S
i , β〉 − k)z)

)

=
∏

i:〈D̂S
i ,β〉<0

∏
〈D̂S

i ,β〉≤k<0(D̂i + (〈D̂S
i , β〉 − k)z)∏

i:〈D̂S
i ,β〉>0

∏
0≤k<〈D̂S

i ,β〉(D̂i + (〈D̂S
i , β〉 − k)z)

= Cβz−(
∑m+l+2

i=1 �〈D̂S
i ,β〉�+#{i:〈D̂S

i ,β〉∈Z<0}) ∏
i:〈D̂S

i ,β〉∈Z<0

D̂i + h.o.t., (30)

where

Cβ =
∏

i:〈D̂S
i ,β〉<0

∏
〈D̂S

i ,β〉<k<0

(〈D̂S
i , β〉 − k)

×
∏

i:〈D̂S
i ,β〉>0

∏
0≤k<〈D̂S

i ,β〉
(〈D̂S

i , β〉 − k)−1. (31)

By assumption we need to have

m+l+2∑
i=1

�〈D̂S
i , β〉� ≥

m+l+2∑
i=1

〈D̂S
i , β〉 ≥ 0.

The equality holds if and only if

〈D̂S
i , β〉 ∈ Z for all 1 ≤ i ≤ m + l + 2 and

m+l+2∑
i=1

〈D̂S
i , β〉 = 0.

However, this would imply v(β) = 0, and hence we cannot have∑m+l+2
i=1 �〈D̂S

i , β〉� = 0. Therefore, expansion (30) would contribute to P
(j)
n only

when
m+l+2∑

i=1

�〈D̂S
i , β〉� = 1 and #{i : 〈D̂S

i , β〉 ∈ Z<0} = 0.

In this case, if 〈pS
0 , β〉 ≥ 1, then

m+l+2∑
i=1

�〈D̂S
i , β〉� ≥

m+l∑
i=1

�〈DS
i , d〉� + 1,

and, therefore, we have

0 ≥
m+l∑
i=1

�〈DS
i , d〉� ≥

m+l∑
i=1

〈DS
i , d〉 = 0.

This implies that when 〈pS
0 , β〉 ≥ 1, we must have

〈DS
i , d〉 ∈ Z for 1 ≤ i ≤ m + l.
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It is a contradiction since τ
(j)
tw (y) ∈ H

≤2
tw (Ej ) implies v(β) �= 0, equivalently,

v(d) �= 0. Hence,

P
(j)
n = 0 for all n > 0,

and τ
(j)
tw (y) is independent from y0. Moreover, by the expression of I -functions

and the identity
ı∗IEj

|y0=0 = IX

we have ı∗τ (j)
tw (y) = τtw(y). �

Since S̃j (τ
(j)(y)) does not depend on y0 or q0, we use the following notation for

the Seidel element:
S̃j (τ (y)) := S̃j (τ

(j)(y)). (32)

3.4. Seidel Elements in Terms of I -Functions

We can rewrite the I -function of the associated bundle Ej as follows:

e
∑r

i=0 pi logyi/z

(
1 + z−1

( r∑
i=0

g
(j)
i (y)pi + τ

(j)
tw (y)

)

+ z−2
( 2∑

n=0

G
(j)
n (y)yn

0

)
+ O(z−3)

)
. (33)

Then, logqi = logyi + g
(j)
i (y) implies

IEj
(y, z) = e

∑r
i=0 pi logqi/z

(
1 + z−1τ

(j)
tw (y)

+ z−2
( 2∑

n=0

G
(j)
n (y)yn

0

)
+ O(z−3)

)
, (34)

where G
(j)
n (y) is a (fractional) power series in y1, . . . , yr+l taking values in

H ∗
orb(Ej ).
By Proposition 2.6 the Seidel element S̃j (τ

(j)(y)) is the coefficient of q0/z
2

in

exp

(
−

r∑
i=0

pi logqi/z

)
JEj

(τ (j)(y), z);

hence, JEj
(τ (j)(y), z) = IEj

(y, z) and logq0 = logy0 +g
(j)

0 (y) imply the follow-
ing result.

Theorem 3.16. The Seidel element Sj associated to the toric divisor Dj is given
by

Sj (τ
(j)(y)) = ı∗(G(j)

1 (y)y0). (35)

Furthermore, we have

S̃j (τ (y)) = S̃j (τ
(j)(y)) = exp(−g

j

0 (y))ı∗(G(j)

1 (y)). (36)
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3.5. Computation of g
(j)

0

The computation is essentially the same as the proof of Lemma 3.16 of [5]. Con-
sider the product factors in IEj

:

m+l+2∏
i=1

(∏∞
k=�〈D̂S

i ,β〉�(D̂i + (〈D̂S
i , β〉 − k)z)∏∞

k=0(D̂i + (〈D̂S
i , β〉 − k)z)

)
yβ1v(β).

These factors contribute to g
(j)
i if

v(β) =
m+l+2∑

i=1

{−〈D̂S
i , β〉}b̂i = 0.

Then, by the definition of Keff we must have

〈D̂S
i , β〉 ∈ Z for all 1 ≤ i ≤ m + l + 2.

In this case, the product factors can be rewritten as

m+l+2∏
i=1

(∏∞
k=�〈D̂S

i ,β〉�(D̂i + (〈D̂S
i , β〉 − k)z)∏∞

k=0(D̂i + (〈D̂S
i , β〉 − k)z)

)
yβ1v(β)

=
m+l+2∏

i=1

∏0
k=−∞(D̂i + kz)∏〈D̂S

i ,β〉
k=−∞(D̂i + kz)

yβ

=
(

Cβz−∑m+l+2
i=1 〈D̂S

i ,β〉−#{i:〈D̂S
i ,β〉<0} ∏

i:〈D̂S
i ,β〉<0

D̂i + h.o.t.

)
yβ, (37)

where h.o.t. stands for higher-order terms in z−1, and

Cβ =
∏

i:〈D̂S
i ,β〉<0

(−1)−〈D̂S
i ,β〉−1(−〈D̂S

i , β〉 − 1)!
∏

i:〈D̂S
i ,β〉≥0

(〈D̂S
i , β〉!)−1. (38)

They contribute to the z−1 term if

m+l+2∑
i=1

〈D̂S
i , β〉 + #{i : 〈D̂S

i , β〉 < 0} ≤ 1.

Since by assumption ρS
X ∈ cl(CS

X ), we have ρS
Ej

∈ cl(CS
Ej

). So there are the fol-
lowing three cases:

•
{∑m+l+2

i=1 〈D̂S
i , β〉 = 0,

#{i : 〈D̂S
i , β〉 ∈ Z<0} = 0;

•
{∑m+l+2

i=1 〈D̂S
i , β〉 = 1,

#{i : 〈D̂S
i , β〉 ∈ Z<0} = 0;

•
{∑m+l+2

i=1 〈D̂S
i , β〉� = 0,

#{i : 〈D̂S
i , β〉 ∈ Z<0} = 1.
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In the first case, we have 〈D̂S
i , β〉 = 0 for all i, and hence β = 0; the second

case cannot happen, since β has to satisfy 〈D̂S
i , β〉 = 0 except for one i, and this

implies β = 0. Therefore, the coefficient of z−1 is from the third case, where

m+l+2∑
i=1

〈D̂S
i , β〉 = 0 and #{i : 〈D̂S

i , β〉 < 0} = 1. (39)

By the assumption ρS
X ∈ cl(CS

X ) we must have
∑m+l

i=1 〈DS
i , d〉 = 0 and

〈pS
0 , β〉 = 0. Moreover, 〈DS

i , d〉 < 0 for exactly one i in {1, . . . ,m}. (Note that
〈DS

i , d〉 ≥ 0 for i ∈ {m + 1, . . . ,m + l}.)
Now g

(j)

0 is the coefficient corresponding to p0, and D̂j = 〈Dj,−1〉 =
Dj − p0 is the only one, among D̂1, . . . , D̂m, which contains p0. By expression
(37) we must have 〈DS

j , d〉 < 0 and 〈DS
i , d〉 ≥ 0 for i �= j . Hence, we have

Lemma 3.17. The coefficient g
(j)

0 is given by

g
j

0 (y1, . . . , yr+l) =
∑

〈DS
i ,d〉∈Z,1≤i≤m+l

〈ρS
X ,d〉=0

〈DS
j ,d〉<0

〈DS
i ,d〉≥0,∀i �=j

(−1)
−〈DS

j ,d〉
(−〈DS

j , d〉 − 1)!∏
i �=j 〈DS

i , d〉! yd . (40)

4. Batyrev Elements

In this section, we extend the definition of Batyrev elements in [5] to toric
Deligne–Mumford stacks and explore their relationships with Seidel elements.
Batyrev elements satisfy the multiplicative and linear Batyrev relations as in
Batyrev’s presentation of quantum cohomology ring for toric manifolds in [1].

4.1. Batyrev Elements

Following [6], consider the mirror coordinates y1, . . . , yr+l of the toric Deligne–
Mumford stacks X with ρS

X ∈ cl(CS
X ). Set C[y±] = C[y±

1 , . . . , y±
r+l].

Definition 4.1 ([6]). The Batyrev ring B(X ) of X is a C[y±]-algebra generated
by the variables λ1, . . . , λr+l with the following two Batyrev relations:

(multiplicative): yd
∏

i:〈DS
i ,d〉<0

ω
−〈DS

i ,d〉
i =

∏
i:〈DS

i ,d〉>0

ω
〈DS

i ,d〉
i , d ∈ LS;

(linear): ωi =
r+l∑
a=1

maiλa,

(41)

where ωi is invertible in B(X ).
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Definition 4.2. Let Q〈〈y1, . . . , yr+l〉〉 be the field of fractional power series of
y1, . . . , yr+l . We define the element p̃S

i ∈ H
≤2
orb (X ) ⊗Q〈〈y1, . . . , yr+l〉〉 as

p̃S
i = ∂τ(y)

∂ logyi

, i = 1, . . . , r + l.

Recall that

DS
j =

r+l∑
i=1

mijp
S
i , for 1 ≤ j ≤ m + l,

Then, the Batyrev element associated to DS
j is defined by

D̃S
j =

r+l∑
i=1

mij p̃
S
i for 1 ≤ j ≤ m + l.

Proposition 4.3. The Batyrev elements D̃S
1 , . . . , D̃S

m+l satisfy the multiplicative

and linear Batyrev relations for ωj = D̃S
j .

Proof. We consider the differential operator Pd ∈C[z, y±, zy(∂/∂y)] for d ∈ LS ,
introduced by Iritani in [6], Section 4.2:

Pd := yd
∏

i:〈DS
i ,d〉<0

−〈DS
i ,d〉−1∏
k=0

(Di − kz) −
∏

i:〈DS
i ,d〉>0

〈DS
i ,d〉−1∏
k=0

(Di − kz), (42)

where Di := ∑r+l
j=1 mij zyj ∂/∂yj .

By [6, Lemma 4.6], we have

PdI (y, z) = 0, d ∈ LS.

Hence,

0 = Pd(z, y, zy∂/∂y)I (y, z) = Pd(z, y, zy∂/∂y)J (τ(y), z).

This implies that
Pd(z, y, zτ ∗∇)1 = 0,

where τ ∗∇i := ∇τ∗(yi (∂/∂yi )). Since

τ(y) =
r∑

i=1

pi logyi + τtw(y)

and

∇τ∗(yi (∂/∂yi )) = τ∗(yi(∂/∂yi)) + 1

z
yi

∂τ (y)

∂yi

◦τ ,

by setting z = 0 we proved that the Batyrev elements satisfy the multiplicative
relation.

It is straightforward from the definition that the Batyrev elements satisfy the
linear relation. �
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Consider the I -function for the bundle Ej associated to the toric divisor DS
j for

1 ≤ j ≤ m:

IEj
(y, z) = e

∑r
i=0 pi logyi/z

×
∑

β∈KEj

m+l+2∏
i=1

(∏∞
k=�〈D̂S

i ,β〉�(D̂i + (〈D̂S
i , β〉 − k)z)∏∞

k=0(D̂i + (〈D̂S
i , β〉 − k)z)

)
yβ1v(β),

where yβ = y
〈pS

0 ,β,〉
0 y

〈pS
1 ,β〉

1 · · ·y〈pS
r+l ,β〉

r+l . The following lemma is a generalization
of Lemma 3.11 in [5].

Lemma 4.4. The I -function IEj
of the bundle Ej , associated to the toric divisor

DS
j , satisfies the following partial differential equation:

z
∂

∂y0

(
y0

∂

∂y0

)
IEj

=
( r+l∑

i=1

mij

(
yi

∂

∂yi

)
− y0

∂

∂y0

)
IEj

. (43)

Proof. It follows from applying the operator Pβ defined in equation (42) to the
bundle Ej with β = [σ0]. �

Using the expansion of IEj
, we have

IEj
(y, z) = e

∑r
i=0 pi logyi/z

(
1 + z−1

( r∑
i=0

g
(j)
i (y)pi + τ

(j)
tw

)

+ z−2
( 2∑

n=0

G
(j)
n (y)yn

0

)
+ O(z−3)

)
,

where G
(j)
n is a (fractional) power series in y1, . . . , yr+l taking values in H ∗

orb(Ej ).
Therefore, we obtain

y0
∂

∂y0
IEj

= p0

z
e
∑r

i=0 pi logyi/z

(
1 + z−1

( r∑
i=0

g
(j)
i (y)pi + τ

(j)
tw

)

+ z−2
( 2∑

n=0

G
(j)
n (y)yn

0

)
+ O(z−3)

)

+ e
∑r

i=0 pi logyi/z

(
z−2

( 2∑
n=1

G
(j)
n (y)nyn

0

)
+ O(z−3)

)
.

Therefore, the left-hand side of equation (43) is

z
∂

∂y0

(
y0

∂

∂y0

)
IEj

= ∂

∂y0

(
p0e

∑r
i=0 pi logyi/z

(
1 + z−1

( r∑
i=0

g
(j)
i (y)pi + τ

(j)
tw

)
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+ z−2
( 2∑

n=0

G
(j)
n (y)yn

0

)
+ O(z−3)

))

+ ∂

∂y0

(
e
∑r

i=0 pi logyi/z

(
z−1

( 2∑
n=1

G
(j)
n (y)nyn

0

)
+ O(z−2)

))

= p0e
∑r

i=0 pi logyi/z(O(z−2))

+ p0

y0z
e
∑r

i=0 pi logyi/z

(
z−1

( 2∑
n=1

G
(j)
n (y)nyn

0

)
+ O(z−2)

)

+ e
∑r

i=0 pi logyi/z

(
z−1

( 2∑
n=1

G
(j)
n n2yn−1

0 + O(z−2)

))

= e
∑r

i=0 pi logyi/z

(
z−1

( 2∑
n=1

G
(j)
n n2yn−1

0

)
+ O(z−2)

)
.

On the other hand, the pull-back of the right-hand side of equation (43) by ı∗ is

ı∗
( r+l∑

i=1

mij

(
yi

∂

∂yi

)
− y0

∂

∂y0

)
IEj

=
( r+l∑

i=1

mij

(
yi

∂

∂yi

)
− y0

∂

∂y0

)
ı∗IEj

=
( r+l∑

i=1

mij

(
yi

∂

∂yi

))
(IX + O(y0))

= z−1
( r+l∑

i=1

mij

(
yi

∂

∂yi

)
τ(y)

)
+ O(z−2) + O(y0).

Hence, we conclude the following lemma.

Lemma 4.5. The Batyrev element D̃j (y) is given by

D̃j (y) = ı∗G(j)

1 (y) for 1 ≤ j ≤ m + l. (44)

Hence, the following theorem is a direct consequence of the last lemma and The-
orem 3.16.

Theorem 4.6. The Seidel element S̃j corresponding to the toric divisor Dj is
given by

S̃j (τ (y)) = exp(−g
j

0 (y))D̃j (y). (45)
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4.2. The Computation of D̃j

Using the expansion( r+l∑
i=1

mij

(
yi

∂

∂yi

))
IX = e

∑r
i=1 pi logyi/z(z−1D̃j + O(z−2)),

we see that D̃j is the coefficient of z−1 in the expansion of

e−∑r
i=1 pi logyi/z

( r+l∑
i=1

mij

(
yi

∂

∂yi

))
IX .

By direct computation we get( r+l∑
i=1

mij

(
yi

∂

∂yi

))
IX

= e
∑r

i=1 pi logyi/z
∑

d∈Keff,X

m+l∏
i=1

(∏∞
k=�〈DS

i ,d〉�(Di + (〈DS
i , d〉 − k)z)∏∞

k=0(Di + (〈DS
i , d〉 − k)z)

)

×
(

Dj

z
+ 〈DS

j , d〉
)

yd1v(d).

Hence, to compute the Batyrev element D̃j , it remains to examine the expansion
of the product factor∏∞

k=�〈DS
i ,d〉�(Di + (〈DS

i , d〉 − k)z)∏∞
k=0(Di + (〈DS

i , d〉 − k)z)

= Cdz−(
∑m+l

i=1 �〈DS
i ,d〉�+#{i:〈DS

i ,d〉∈Z<0}) ∏
i:〈DS

i ,d〉∈Z<0

Di + h.o.t.,

where

Cd =
∏

i:〈DS
i ,d〉<0

∏
〈DS

i ,d〉<k<0

(〈DS
i , d〉 − k)

×
∏

i:〈DS
i ,d〉>0

∏
0≤k<〈DS

i ,d〉
(〈DS

i , d〉 − k)−1, (46)

The summand indexed by d ∈ Keff,X contributes to the coefficient of z−1 if
and only if

m+l∑
i=1

�〈DS
i , d〉� + #{i : 〈DS

i , d〉 ∈ Z<0} ≤ 1.

This happens only in the following three cases:

• ∑m+l
i=1 �〈DS

i , d〉� + #{i : 〈DS
i , d〉 ∈ Z<0} = 0;

•
{∑m+l

i=1 �〈DS
i , d〉� = 0,

#{i : 〈DS
i , d〉 ∈ Z<0} = 1;
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•
{∑m+l

i=1 �〈DS
i , d〉� = 1,

#{i : 〈DS
i , d〉 ∈ Z<0} = 0.

The first case happens if and only if d = 0. If the second case happens, then
m+l∑
i=1

�〈DS
i , d〉� =

m+l∑
i=1

〈DS
i , d〉 = 〈ρS

X , d〉 = 0.

In particular,
〈DS

i , d〉 ∈ Z, 1 ≤ i ≤ m + l.

Hence, we obtain the following lemma.

Lemma 4.7. For 1 ≤ j ≤ m + l, the Batyrev element D̃j is given by

D̃j = Dj +
m∑

i=1

Di

∑
〈ρS

X ,d〉=0

〈DS
i ,d〉∈Z<0

〈DS
k ,d〉∈Z≥0,∀k �=i

Cd〈DS
j , d〉yd

+
∑

∑m+l
i=1 �〈DS

i ,d〉�=1

〈DS
i ,d〉/∈Z<0,∀i

Cd〈DS
j , d〉yd1v(d), (47)

where Cd is given by equation (46).

5. Seidel Elements Corresponding to Box Elements

Consider the box element sj ∈ Box(�) such that

s̄j =
m∑

i=1

cji b̄i ∈ NQ for some 0 ≤ cji < 1.

Note that cji = 0 for i ∈ IS
j . We define a C×-action on US × (C2 \ {0}) by

(z1, . . . , zm+l , u, v) �→ (z1, . . . , t
−1zm+j , . . . , zm+l , tu, tv), t ∈ C×.

Hence, we have the associated bundle

Em+j = US × (C2 \ {0})/GS ×C×

over CP1 with fiber X .
We can identify H 2(Em+j ;Q) with H 2(X ;Q) ⊕ Q using the section [σ0].

Note that this splitting given by the section [σ0] of Em+j does not give a splitting
of Pic(Em+j ) over Z since the intersection numbers of [σ0] with line bundles on
Em+j are fractional.

The fan of Em+j is contained in NQ ⊕Q. The 1-skeleton is given by

b̂i = (bi,0), for 1 ≤ i ≤ m; b̂m+1 = (0,1); b̂m+2 = (sj ,−1). (48)

Then

D̂S
i = (DS

i ,−cji), for 1 ≤ i ≤ m;
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D̂S
m+i = (DS

m+i ,0) for 1 ≤ i ≤ l;
D̂S

m+l+1 = D̂S
m+l+2 = (0,1).

The Seidel element is defined as in equation (5). Moreover, we define {p0,p1,

. . . , pr} and {pS
0 ,pS

1 , . . . , pS
r+l} in the same way as in Section 3.2.

As in the toric divisor case, we have the following expansion of the I -function:

IEm+j
(y, z) = e

∑r
i=0 pi logyi/z

(
1 + z−1

( r∑
i=0

g
(m+j)
i (y)pi + τ

(m+j)
tw (y)

)

+ z−2
( 2∑

n=0

G
(m+j)
n (y)yn

0

)
+ O(z−3)

)
, (49)

and using the same argument as in Lemmas 3.13 and 3.15, we can show that
g

(m+j)
i (y) and τ

(m+j)
tw (y) are independent from y0 for 1 ≤ i ≤ r and 1 ≤ j ≤ l .

Moreover, for each j ∈ {1, . . . , l}, we have

g
(m+j)
i (y0, . . . , yr+l) = gi(y1, . . . , yr+l) for i = 1, . . . , r

and
ı∗τ (m+j)

tw (y) = τtw(y).

We also obtain the following theorem.

Theorem 5.1. The Seidel element S̃m+j associated to the box element sj is given
by

S̃m+j (τ (y)) := S̃m+j (τ
(m+j)(y)) = exp(−g

(m+j)

0 (y))ı∗(G(m+j)

1 (y)). (50)

Using the same computation as in the toric divisor case, we can compute the
correction coefficient g

(m+j)

0 .

Lemma 5.2. The function g
(m+j)

0 is given by

g
(m+j)

0 (y1, . . . , yr+l)

=
∑

1≤k≤m,k/∈IS
j

∑
〈DS

i ,d〉∈Z,1≤i≤m+l

〈ρS
X ,d〉=0

〈DS
k ,d〉<0

〈DS
i ,d〉≥0,∀i �=k

cjk

(−1)−〈DS
k ,d〉(−〈DS

k , d〉 − 1)!∏
i �=k〈DS

i , d〉! yd, (51)

where IS
j is the “anticone” of the cone containing sj .

Proof. The argument is almost the same as the argument in Section 3.5. The only
change we need to make is the paragraph before Lemma 3.17:

In this case, g
(m+j)

0 is the coefficient corresponding to p0, and elements in

{D̂1, . . . , D̂m} that contain p0 are precisely the following elements:

D̂k = 〈Dk,−cjk〉 = Dk − cjkp0 for 1 ≤ k ≤ m and k /∈ IS
j .
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Therefore, by expressions (37) and (39) we must have 〈DS
k , d〉 < 0 for exactly

one k in {k ∈ Z | 1 ≤ k ≤ m and k /∈ IS
j }. �

Moreover, by mimicking the computation in Lemma 4.4 we have the following:

Lemma 5.3. The I -function of Em+j satisfies the following differential equation:

z
∂

∂y0

(
y0

∂

∂y0

)
IEj

= y
−DS∨

m+j

( r+l∑
i=1

mij

(
yi

∂

∂yi

)
− y0

∂

∂y0

)
IEj

, (52)

where DS∨
m+j ∈ LS ⊗Q is defined by (18).

Proof. The proof is almost identical to the proof of Lemma 4.4, except, this time,
we need to choose β = [σ0] − DS∨

m+j . Then everything else follows. �

Using the lemmas and following the argument in the toric divisor case, we con-
clude:

Theorem 5.4. The Seidel element S̃m+j corresponding to the box element sj with

s̄j =
m∑

i=1

cji b̄i for some 0 ≤ cji < 1

is given by

S̃m+j (τ
(m+j)(y)) = exp(−g

(m+j)

0 )y
−DS∨

m+j D̃m+j (y), (53)

where D̃m+j (y) is the corresponding Batyrev element. Moreover,

D̃m+j =
m∑

i=1

Di

∑
〈ρS

X ,d〉=0

〈DS
i ,d〉∈Z<0

〈DS
k ,d〉∈Z≥0,∀k �=i

Cd〈DS
m+j , d〉yd

+
∑

∑m+l
i=1 �〈DS

i ,d〉�=1

〈DS
i ,d〉/∈Z<0,∀i

Cd〈DS
m+j , d〉yd1v(d), (54)

and

Cd =
∏

i:〈DS
i ,d〉<0

∏
〈DS

i ,d〉<k<0

(〈DS
i , d〉 − k)

×
∏

i:〈DS
i ,d〉>0

∏
0≤k<〈DS

i ,d〉
(〈DS

i , d〉 − k)−1. (55)
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