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Abstract. We characterize F -pure thresholds of polynomials that are
homogeneous under some N-grading and have an isolated singularity
at the origin. Our description places rigid restrictions on these invari-
ants and allows us to produce finite lists of possible values of such
F -pure thresholds; these lists are often minimal, and in specific exam-
ples, may even allow us to exactly determine the value of the F -pure
threshold in question. The result, when combined with other tech-
niques, sheds further light on the relationship between F -pure and
log canonical thresholds in our setting. We compute uniform bounds
for the difference between F -pure and log canonical thresholds es-
tablished by Mustaţă and the fourth author and examine the set of
primes for which the F -pure and log canonical threshold of a poly-
nomial must differ. Moreover, we establish a specific subcase of the
ACC conjecture for F -pure thresholds and provide further supporting
evidence for this conjecture.

1. Introduction

The F -pure threshold, first defined in [TW04, Def. 2.1], is a numerical invari-
ant of singularities in positive characteristic defined via the Frobenius (or p-th
power) endomorphism; though they can be defined more generally, we will only
consider F -pure thresholds of polynomials over fields of prime characteristic and
thus follow the treatment given in [MTW05]. The F -pure threshold of such a
polynomial f , denoted fpt(f ), is always a rational number in (0,1], with smaller
values corresponding to “worse” singularities [BMS08; BMS09; B+09].

The log canonical threshold of a polynomial fQ over Q, denoted lct(fQ), is
also a numerical invariant measuring the singularities of fQ and can be defined
via integrability conditions, or, more generally, via resolution of singularities; like
the F -pure threshold, lct(fQ) is a rational number in (0,1]; see [BL04] for more
on this and on related invariants. The connections between F -pure and log canon-
ical thresholds run deep: Since any a

b
∈ Q determines a well-defined element of
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Fp whenever b is not a multiple of p, we can reduce the coefficients of fQ mod-
ulo p � 0 to obtain a family of prime characteristic models fp over Fp , and
in this setting, the various thresholds are related as follows (see, e.g., [MTW05,
Thms. 3.3 and 3.4]):

fpt(fp) ≤ lct(fQ) for all p � 0 and lim
p→∞ fpt(fp) = lct(fQ). (1.1)

In this article, we will not need to refer to the definition of lct(fQ) via reso-
lutions of singularities and will instead take the limit appearing in (1.1) as our
working definition. We note that the relations in (1.1) are just two of many deep
connections between invariants of characteristic p models defined via the Frobe-
nius endomorphism and invariants of the original characteristic zero object that
are often defined via resolution of singularities. For more in this direction, see,
for example, [Smi97; Har98; Smi00; HW02; HY03; Tak04; MTW05; BMS06;
Sch07; STZ12; BST15].

Motivated by the behavior exhibited when fQ defines an elliptic curve, it is
conjectured that for any polynomial fQ over Q, there exist infinitely many primes
p for which fpt(fp) equals lct(fQ) [MTW05, Conj. 3.6]. This conjecture, along
with other characteristic zero considerations, has fueled interests in understand-
ing various properties of fpt(fp). In particular, arithmetic properties of the de-
nominator of fpt(fp) have recently been investigated, most notably by Schwede
(e.g., see [Sch08, Sect. 5]), who also asked the following Question:1 Assuming
fpt(fp) �= lct(fQ), must the denominator of fpt(fp) be a multiple of p?

In this paper, we study F -pure thresholds of homogeneous2 polynomials with
an isolated singularity at the origin. In the context of F -purity, such polyno-
mials were originally investigated by Fedder (e.g., see [Fed83, Lemma 2.3 and
Thm. 2.5]), and more recently by Bhatt and Singh, who showed that if f is a
(standard-graded) homogeneous polynomial fQ over Q of degree n in n vari-
ables with an isolated singularity at the origin, then fpt(fp) = 1 − A

p
for some

integer 0 ≤ A ≤ n − 2. They also showed that if fQ is (standard-graded) ho-
mogeneous of arbitrary degree with an isolated singularity at the origin such
that fpt(fp) �= lct(fQ), then the denominator of fpt(fp) is a power of p [BS15,
Thm. 1.1 and Prop. 5.4].

1.1. Main Results

Our main result, Theorem 3.5, characterizes F -pure thresholds of (not necessarily
standard-graded) homogeneous polynomials with an isolated singularity at the
origin. Our description places rigid restrictions on these invariants and allows us
to produce finite lists of possible values of such F -pure thresholds; these lists are
often minimal and, in specific examples, may even allow us to exactly determine
the value of the F -pure threshold in question. For examples of these phenomena,
see Examples 4.7, 4.8, and 4.10. In establishing our main result, our techniques

1This question, and others, may be found at the following site: 〈https://sites.google.com/site/
computingfinvariantsworkshop/open-questions〉.

2We emphasize that we allow for possibly non-standard N-gradings, where 0 ∈ N by convention.

https://sites.google.com/site/computingfinvariantsworkshop/open-questions
https://sites.google.com/site/computingfinvariantsworkshop/open-questions
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involve extending methods used in [BS15] for finding lower bounds for F -pure
thresholds to our broader setting. In doing so, we are forced to execute a technical
study of F -pure thresholds through the framework of their base p expansions. To
illustrate some features of our main result, we state a modified version in the two-
variable case (for the slightly refined version, see Theorem 4.5; for the general
result, see Theorem 3.5):

Theorem A (cf. Theorems 4.5 and 3.5). Suppose that fQ ∈ Q[x, y] is homo-
geneous under some N-grading and has an isolated singularity at the origin. If
p � degf and fpt(fp) �= lct(fQ), then for some positive integer L not exceeding
the order of p modulo degf ,

fpt(f ) = 
pL · lct(fQ)� − 1

pL
.

Although the situation in the higher-dimensional setting is more subtle, several
interesting features of Theorem A persist. For example, in higher dimensions, we
still have that the denominator of fpt(fp) must be a power of p when it differs
from lct(fQ), and, further, we are able to give an upper bound for this power of
p (at least, for p � 0). Note that this provides a positive answer to the question
of Schwede discussed earlier. We refer the reader to Theorem 3.5 for a detailed
description of F -pure thresholds in polynomial rings with arbitrarily many vari-
ables.

1.2. Further Results

Here, we summarize results describing how much F -pure and log canonical
thresholds may differ and how often (e.g., for what primes) these invariants dis-
agree.

The first such result concerns a theorem on uniform bounds for the difference
between log canonical and F -pure thresholds proven by Mustaţă and the fourth
author [MZ13, Cors. 3.5 and 4.5]. For homogeneous polynomials with an isolated
singularity at the origin, we explicitly find an optimal choice of bounds, giving a
new proof of the result in this setting.

Theorem B (cf. Theorem 6.2). Suppose that fQ ∈Q[x1, . . . , xn] is homogeneous
under some N-grading and has an isolated singularity at the origin, write the ra-
tional number lct(fQ) = a

b
in lowest terms, and let φ denote Euler’s phi function.

Then, if p � 0, either fpt(fp) = lct(fQ), or

1

b · pφ(b)
≤ lct(fQ) − fpt(fp) ≤ n − 1

p
.

For slightly more precise bounds, we refer the reader to Theorem 6.2.

Our next result, Proposition 6.7, concerns the set of primes for which the F -pure
and log canonical threshold disagree and stands out from the preceding ones in
that it applies to general polynomials, requiring neither the homogeneous nor the
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isolated singularity assumption. In this proposition, we give a simple criterion
on the prime characteristic p such that, when satisfied, guarantees that the F -
pure and log canonical threshold must differ; as we might expect, this condition
depends on arithmetic properties of log canonical threshold. As an application of
Proposition 6.7 and Theorem 3.5, we also construct a large class of polynomials
over Q for which the density of the set of primes for which the F -pure and log
canonical thresholds differ is larger than any prescribed bound between zero and
one; we refer the reader to Example 6.8 for more details.

1.3. Results Related to the ACC Conjecture for F -pure Thresholds

Motivated by results in characteristic zero, it was conjectured in [BMS09, Conjec-
ture 4.4] that the set of all F -pure thresholds of polynomials in a (fixed) polyno-
mial ring satisfies the ascending chain condition (ACC), i.e., contains no strictly
increasing sequences. In Proposition 7.3, we prove that a certain subset of F -pure
thresholds satisfies ACC, relying on the description of F -pure thresholds from
Theorem 3.5. Finally, as detailed in [BMS09, Remark 4.5],3 the ACC conjecture
for F -pure thresholds predicts that fpt(f ) ≤ fpt(f + h) whenever h is contained
in a large enough power of m. In Proposition 7.4, we verify that this is indeed
the case for homogeneous polynomials, and in our final result, Proposition 7.10,
we obtain a stronger conclusion for homogeneous polynomials with an isolated
singularity.

Theorem C (cf. Proposition 7.10). Consider a polynomial f ∈ Fp[x1, . . . , xn]
that is homogeneous under some N-grading, and such that degf ≥ deg(x1 · · ·xn)

and
√

Jac(f ) = m := (x1, . . . , xn). Then, there exists an integer N ≥ 1 such that
for all g ∈mN , fpt(f ) = fpt(f + g).

Notation. Throughout this article, we make the convention that 0 ∈ N. More-
over, p denotes a prime number and Fp denotes the field with p elements. For
every ideal I of a ring of characteristic p > 0, and every e ≥ 1, I [pe] denotes the
eth Frobenius power of I , the ideal generated by the set {gpe : g ∈ I }. Given a real
number a, 
a� (respectively, �a�) denotes the least integer that is greater than or
equal to (respectively, greatest integer less or equal to) a.

2. Basics of Base p Expansions

Definition 2.1. Given α ∈ (0,1], there exist unique integers α(e) for every e ≥ 1
such that 0 ≤ α(e) ≤ p − 1, α = ∑

e≥1 α(e) · p−e, and such that the integers α(e)

are not all eventually zero. We call α(e) the eth digit of α (base p), and we call
the expression α = ∑

e≥1 α(e) · p−e the non-terminating expansion of α (base p).

3The inequality fpt(f ) ≥ fpt(f + h) appearing in [BMS09, Remark 4.5] is a typo (the inequality
should be reversed).
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Definition 2.2. Let α ∈ (0,1], and fix e ≥ 1. We call 〈α〉e := α(1) · p−1 + · · · +
α(e) · p−e the eth truncation of α (base p). We adopt the convention that 〈α〉0 = 0
and 〈α〉∞ = α.

Notation 2.3. We adopt notation analogous to the standard decimal nota-
tion, using “:” to distinguish between consecutive digits. For example, we often
write

〈α〉e = . α(1) : α(2) : · · · : α(e) (basep).

Convention 2.4. Given a natural number b > 0 and an integer m, �m % b �
denotes the least positive residue of m modulo b. In particular, we have that 1 ≤
�m % b � ≤ b for all m ∈ Z. Moreover, if p and b are relatively prime, ord(p, b) =
min{k ≥ 1 : �pk % b � = 1}, which we call the order of p modulo b. In particular,
note that ord(p,1) = 1.

Lemma 2.5. Fix λ ∈ (0,1]∩Q. If we write λ = a
b

, not necessarily in lowest terms,
then

λ(e) = �ape−1 % b � · p − �ape % b �

b
and 〈λ〉e = λ − �ape % b �

bpe
.

Note that it is important to keep in mind Convention 2.4 when interpreting these
identities.

Proof. Since λ(e) = pe(〈λ〉e − 〈λ〉e−1), the first identity follows from the second.
Setting δ = λ − 〈λ〉e and multiplying both sides of the equality a

b
= λ = 〈λ〉e + δ

by bpe shows that ape = bpe〈λ〉e + bpeδ. As 0 < δ ≤ p−e and pe〈λ〉e ∈N, it fol-
lows that bpeδ is the least positive residue of ape modulo b. Finally, substituting
δ = λ − 〈λ〉e into bpeδ = �ape % b � establishes the second identity. �

We gather some of the important basic properties of base p expansions below.

Lemma 2.6. Fix α and β in [0,1].
(1) α ≤ β if and only if 〈α〉e ≤ 〈β〉e for all e ≥ 1; if α < β , then these inequalities

are strict for e � 0.
(2) If (ps − 1) · α ∈ N, then the base p expansion of α is periodic, with period

dividing s. In particular, if λ = a
b

with p � b, then the base p expansion of λ

is periodic with period equal to ord(p, b).
(3) Suppose that λ = a

b
with p � b. If s = ord(p, b), then for all k ≥ 1, pks ·

〈λ〉ks = (pks − 1) · λ.

Proof. (1) follows by definition; (2) follows immediately from Lemma 2.5; (3)
follows from (2). �

Lemma 2.7. Consider α < β in (0,1], and set �e := pe〈β〉e −pe〈α〉e . Note that,
by Lemma 2.6, the integer � = min{e : �e ≥ 1} is well-defined. Moreover, the
following hold:

(1) The sequence {�e}e≥1 is non-negative, non-decreasing, and unbounded.
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(2) Suppose β = a
b

with p � b. If s = ord(p, b), then ��+s+k ≥ pk + 1 for every
k ≥ 0.

Proof. We first observe that the following recursion holds.

�e+1 = p · �e + β(e+1) − α(e+1) for every e ≥ 0. (2.1)

Setting e = � in (2.1) and noting that �� ≥ 1 shows that

��+1 = p · �� + β(�+1) − α(�+1)

= (p − 1) · �� + �� + β(�+1) − α(�+1)

≥ (p − 1) · 1 + �� + β(�+1) − α(�+1)

≥ �� + β(�+1).

Furthermore, an induction on e ≥ � shows that

�e+1 ≥ �e + β(e+1) for every e ≥ �. (2.2)

Thus, {�e}e≥1 is non-decreasing, and as we consider non-terminating expansions,
β(e) �= 0 for infinitely many e, so that (2.2) also shows that �e+1 > �e for infin-
itely many e. We conclude that {�e}e≥1 is unbounded, and it remains to establish
(2).

By definition, β(�) − α(�) = �� ≥ 1, and hence β(�) ≥ 1. In fact, setting s =
ord(p, b), Lemma 2.6 states that β(�+s) = β(�) ≥ 1, and applying (2.2) with e =
� + s − 1 then shows that

��+s ≥ ��+s−1 + β(�+s) ≥ 2.

Hence, (2) holds for k = 0. Utilizing (2.1), an induction on k completes the proof.
�

3. F -pure Thresholds of Homogeneous Polynomials: A Discussion

We adopt the following convention from this point onward.

Convention 3.1. Throughout this article, L will denote a field of character-
istic p > 0, and m will denote the ideal generated by the variables in R =
L[x1, . . . , xn]. Moreover, any fixed N-grading of R will satisfy [R]0 = L.

Definition 3.2. Consider a polynomial f ∈ m, and for every e ≥ 1, set

νf (pe) = max{N :f N /∈ m[pe]}.
An important property of these integers is that {p−e · νf (pe)}e≥1 is a non-
decreasing sequence contained in the open unit interval [MTW05, Lemma 1.1
and Remark 1.2]. Consequently, the limit

fpt(f ) := lim
e→∞

νf (pe)

pe
∈ (0,1]

exists, and is called the F -pure threshold of f .
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The following illustrates important properties of F -pure thresholds; we refer the
reader to [MTW05, Prop. 1.9] or [Her12, Key Lemma 3.1] for a proof of the first,
and [Her12, Cor. 4.1] for a proof of the second.

Proposition 3.3. Consider a polynomial f contained in m.

(1) The base p expansion of the F -pure threshold determines {νf (pe)}e≥1; more
precisely,

νf (pe) = pe · 〈fpt(f )〉e for every e ≥ 1.

(2) The F -pure threshold is bounded above by the rational numbers determined
by its trailing digits (base p); more precisely, fpt(f ) is less than or equal to

. fpt(f )(s) : fpt(f )(s+1) : · · · : fpt(f )(s+k) : · · · (basep) for every s ≥ 1.

3.1. A Discussion of the Main Results

In this subsection, we gather the main results of this article. Note that the proofs
of these results appear in Section 5.

Convention 3.4. Given a polynomial f , we use Jac(f ) to denote the ideal of
R generated by the partial derivatives of f . If f is homogeneous under some
N-grading on R, each partial derivative ∂i(f ) of f is also homogeneous, and
if ∂i(f ) �= 0, then deg∂i(f ) = degf − degxi . Furthermore, if p � degf , then
Euler’s relation

degf · f =
∑

degxi · xi · ∂i(f )

shows that f ∈ Jac(f ). Thus, if p � deg(f ) and L is perfect, the Jacobian criterion
states that

√
Jac(f ) = m if and only if f has an isolated singularity at the origin.

Theorem 3.5. Fix an N-grading on L[x1, . . . , xn]. Consider a homogeneous
polynomial f with

√
Jac(f ) = m, and write λ := min{∑degxi/degf ,1} = a

b

in lowest terms.

(1) If fpt(f ) �= λ, then

fpt(f ) = λ −
(

�apL % b � + bE

bpL

)
= 〈λ〉L − E

pL

for some pair (L,E) ∈ N2 with L ≥ 1 and 0 ≤ E ≤ n − 1 − 
(�apL % b � +
a)/b�.

(2) If p > (n − 2) · b and p � b, then 1 ≤ L ≤ ord(p, b); note that ord(p,1) = 1.
(3) If p > (n − 2) · b and p > b, then a < �ape % b � for all 1 ≤ e ≤ L − 1.
(4) If p > (n − 1) · b, then there exists a unique pair (L,E) satisfying the con-

clusions of (1).

Remark 3.6 (bounds on E when n = 2). In the context of Theorem 3.5, it is easy
to see that

1 ≤
⌈

�apL % b � + a

b

⌉
≤ 2.
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If n = 2, and a and b are such that the rounded value above equals two, then
the bounds on E in the theorem become 0 ≤ E ≤ −1, which is impossible. In this
case, the theorem allows us to conclude that fpt(f ) = λ. This is just one of several
special consequences of the theorem when n = 2. For more, see Section 4.1.

We postpone the proof of Theorem 3.5 to Section 5.2. The remainder of this sub-
section is focused on parsing the statement of Theorem 3.5, and presenting some
related results. The reader interested in seeing examples should consult Section 4.

Remark 3.7 (two points of view). Each of the two descriptions of fpt(f ) in The-
orem 3.5, which are equivalent by Lemma 2.5, are useful in their own right. For
example, the first description plays a key role in Section 4. On the other hand,
the second description makes it clear that either fpt(f ) = λ, or fpt(f ) is a ratio-
nal number whose denominator is a power of p, and further, describes how “far”
fpt(f ) is from being a truncation of λ; these observations allow us to address the
questions of Schwede and of the first author noted in the Introduction.

The second point of Theorem 3.5 also immediately gives a bound on the power of
p appearing in the denominator of fpt(f ) whenever fpt(f ) �= λ and p � 0. For
emphasis, we record this bound in the following corollary.

Corollary 3.8. In the context of Theorem 3.5, if fpt(f ) �= λ, and both p >

(n − 2) · b and p � b, then pord(p,b) · fpt(f ) ∈N. In particular, for all such primes,
pφ(b) · fpt(f ) ∈N, where φ denotes Euler’s phi function.

Using the techniques of the proof of Theorem 3.5, we can analogously find a
bound for the power of p appearing in the denominator of fpt(f ) whenever
fpt(f ) �= λ and p is not large, which we record here.

Corollary 3.9. In the setting of Theorem 3.5, if fpt(f ) �= λ and p � b, then
pM · fpt(f ) ∈ N, where M := 2 ·φ(b)+
log2(n− 1)�, and φ denotes Euler’s phi
function.

Remark 3.10. We emphasize that the constant M in Corollary 3.9 depends only
on the number of variables n and the quotient

∑
deg(xi)/degf = a

b
, but not on

the particular values of degxi and degf ; this subtle point will play a key role in
Proposition 7.3.

Remark 3.11 (towards minimal lists). For p � 0, the bounds for L and E ap-
pearing in Theorem 3.5 allows one to produce a finite list of possible values of
fpt(f ) for each class of p modulo degf . We refer the reader to Section 4 for
details and examples.

The uniqueness statement in point (4) of the Theorem 3.5 need not hold in general.

Example 3.12 (nonuniqueness in low characteristic). If p = 2 and f ∈ L[x1, x2, x3]
is any L∗-linear combination of x7

1 , x7
2 , x7

3 , then f satisfies the hypotheses of
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Theorem 3.5, under the standard grading. Using [Her15, Corollary 3.5], one can
directly compute that fpt(f ) = 1

4 . On the other hand, the identities

1

4
= 3

7
−

(
� 3 · 22 % 7 � + 7 · 0

7 · 22

)
=

〈
3

7

〉
2

= 3

7
−

(
� 3 · 23 % 7 � + 7 · 1

7 · 23

)
=

〈
3

7

〉
3
− 1

23

show that the pairs (L,E) = (2,0) and (L,E) = (3,1) both satisfy the conclu-
sions in Theorem 3.5. We point out that the proof of Theorem 3.5, being some-
what constructive, predicts the choice of (L,E) = (2,0), but does not “detect”
the choice of (L,E) = (3,1).

Before concluding this section, we present the following related result; like
Theorem 3.5 and Corollary 3.9, its proof relies heavily on Proposition 5.6.
However, in contrast to these results, its focus is on showing that fpt(f ) =
min{(∑degxi)/degf,1} for p � 0 in a very specific setting, as opposed to de-
scribing fpt(f ) when it differs from this value.

Theorem 3.13. In the context of Theorem 3.5, suppose that
∑

degxi > degf , so
that ρ := ∑

degxi/degf is greater than 1. If p > n−3
ρ−1 , then fpt(f ) = 1.

As we see below, Theorem 3.13 need not hold in low characteristic.

Example 3.14 (illustrating the necessity of p � 0 in Theorem 3.13). Set f =
xd

1 + · · · + xd
n . If n > d > p, then f ∈ m[p], and hence f pe−1 ∈ m[pe] for all

e ≥ 1. Consequently, νf (pe) ≤ pe−1 − 1, and therefore fpt(f ) = lime→∞ p−e ·
νf (pe) ≤ p−1.

4. F -pure Thresholds of Homogeneous Polynomials: Examples

In this section, we illustrate, via examples, how Theorem 3.5 may be used to
produce “short”, or even minimal, lists of possible values for F -pure thresholds.
We begin with the most transparent case: If degf = ∑

degxi , then the statements
in Theorem 3.5 become less technical. Indeed, in this case, a = b = 1, and hence
ord(p, b) = 1 = �m % b � for every m ∈ N. In this context, substituting these
values into Theorem 3.5 recovers the following identity, originally discovered by
Bhatt and Singh under the standard grading.

Example 4.1 ([BS15, Thm. 1.1]). Fix an N-grading on L[x1, . . . , xn]. Consider
a homogeneous polynomial f with d := degf = ∑

degxi and
√

Jac(f ) = m. If
p > n − 2 and fpt(f ) �= 1, then

fpt(f ) = 1 − A · p−1 for some integer 1 ≤ A ≤ d − 2.

Next, we consider the situation where degf = ∑
degxi + 1; already, we see that

this minor modification leads to a more complex statement.
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Corollary 4.2. Fix an N-grading on L[x1, . . . , xn]. Consider a homogeneous
polynomial f with d := degf = ∑

degxi + 1 and
√

Jac(f ) = m.

(1) If fpt(f ) = 1 − 1
d

, then p ≡ 1 mod d .
(2) Suppose p > (n − 2) · d and p > d . If fpt(f ) �= 1 − 1

d
, then

fpt(f ) = 1 − 1

d
−

(
A − �p % d �

d

)
· p−1

for some integer A satisfying
(a) 1 ≤ A ≤ n − 1 if p ≡ −1 mod d , and
(b) 1 ≤ A ≤ n − 2 otherwise.

Proof. We begin with (1): Lemma 2.5 implies that (d−1)
(1) ≤ (d−1)

(s)
for s ≥ 1

and hence that

(1 − d−1)
(1) = p − 1 − (d−1)

(1) ≥ p − 1 − (d−1)
(s) = (1 − d−1)

(s)
(4.1)

for every s ≥ 1. However, if fpt(f ) = 1 − d−1, then Proposition 3.3 implies

that (1 − d−1)
(1) ≤ (1 − d−1)

(s)
for every s ≥ 1. Consequently, equality holds

throughout (4.1), and hence (d−1)
(1) = (d−1)

(s)
for every s ≥ 1, which by

Lemma 2.5 occurs if and only if p ≡ 1 mod d .
We now address the second point: In this setting, Theorem 3.5 states that

fpt(f ) ∈ p−L · N for some integer L ≥ 1. We will first show that L must equal
one: Indeed, otherwise L ≥ 2, which allows us to set e = 1 in the third point
Theorem 3.5 to deduce that

d − 1 < �p(d − 1) % d � = d − �p % d �,

and hence that �p % d � < 1, which is impossible since �p % d � is always a pos-
itive integer. We conclude that L = 1, and the reader may verify that substituting

L = 1, �p(d − 1) % d � = d − �p % d �, and A = E + 1

into Theorem 3.5 produces the desired description of fpt(f ). �

Remark 4.3 (a consequence of Corollary 4.2 when n = 2). If n = 2 and f satis-
fies the conditions in Corollary 4.2, then the bounds on A when p �≡ −1 mod d

become 1 ≤ A ≤ 0, which is impossible. In this case, we conclude that fpt(f ) =
1 − 1

d
. This has the following interesting consequence: If p �= 2 and f is ho-

mogeneous under the standard grading with deg(f ) = 3, then fpt(f ) = 2
3 if

p ≡ 1 mod 3, and fpt(f ) = 2
3 − 1

3p
if p ≡ −1 mod 3.

4.1. The Two-Variable Case

We now shift our focus to the two-variable case of Theorem 3.5, motivated by the
following example.

Example 4.4. In [Har06, Cor. 3.9], Hara and Monsky independently described
the possible values of fpt(f ) whenever f is homogeneous in two variables (under
the standard grading) of degree 5 with an isolated singularity at the origin over an
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algebraically closed field (and hence, a product of five distinct linear forms) and
p �= 5; we recall their computation (the description in terms of truncations is our
own):

• If p ≡ 1 mod 5, then fpt(f ) = 2
5 or 2p−2

5p
= 〈 2

5 〉1.

• If p ≡ 2 mod 5, then fpt(f ) = 2p2−3
5p2 = 〈 2

5 〉2 or 2p3−1
5p3 = 〈 2

5 〉3.

• If p ≡ 3 mod 5, then fpt(f ) = 2p−1
5p

= 〈 2
5 〉1.

• If p ≡ 4 mod 5, then fpt(f ) = 2
5 , or 2p−3

5p
= 〈 2

5 〉1, or 2p2−2
5p2 = 〈 2

5 〉2.

The methods used in [Har06] rely on so-called “syzygy gap” techniques and
the geometry of P1, and hence differ greatly from ours. In this example, we ob-
serve the following: First, the F -pure threshold is always λ = 2

5 or a truncation
of 2

5 . Second, there seem to be fewer choices for the truncation point L than might
be expected, given Theorem 3.5.

In this subsection, we show that the two observations from Example 4.4 hold in
general in the two-variable setting. We now work in the context of Theorem 3.5
with n = 2 and relabel the variables so that f ∈ L[x, y]. Note that if degf <

degxy, then fpt(f ) = 1 by Theorem 3.13 (an alternate justification: this inequality
is satisfied if and only if, after possibly reordering the variables, f = x + ym for
some m ≥ 1, in which case we can directly compute that νf (pe) = pe − 1 and
hence that fpt(f ) = 1). Thus, the interesting case here is where degf ≥ degxy;
in this case, we obtain the following result.

Theorem 4.5 (cf. Theorem 3.5). Fix an N-grading on L[x, y]. Consider a ho-
mogeneous polynomial f with

√
Jac(f ) = m and degf ≥ degxy. If fpt(f ) �=

degxy
degf

= a
b

, written in lowest terms, then

fpt(f ) =
〈

degxy

degf

〉
L

= degxy

degf
− �apL % b �

b · pL

for some integer L satisfying the following properties:

(1) If p � b, then 1 ≤ L ≤ ord(p, b).
(2) If p > b, then a < �ape % b � for all 1 ≤ e ≤ L − 1.
(3) 1 ≤ �apL % b � ≤ b − a for all possible values of p.

Proof. Assuming that fpt(f ) �= degxy
degf

, the bounds for E in Theorem 3.5 become

0 ≤ E ≤ 1 −
⌈

�apL % b � + a

b

⌉
.

As the rounded term is always either one or two, the inequality forces it to equal
one, so that E = 0, which shows that fpt(f ) is a truncation of degxy

degf
. Moreover,

the fact that the rounded term equals one also implies that �apL % b � +a ≤ b. �
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Remark 4.6. Though the first two points in Theorem 4.5 appear in Theorem 3.5,
the third condition is special to the setting of two variables. Indeed, this extra
condition will be key in eliminating potential candidate F -pure thresholds. For
example, this extra condition allows us to recover the data in Example 4.4. Rather
than justify this claim, we present two new examples.

Example 4.7. Let f ∈ L[x, y] be as in Theorem 4.5, with deg(xy)
degf

= 1
3 . For p ≥ 5,

the following hold:

• If p ≡ 1 mod 3, then fpt(f ) = 1
3 or 〈 1

3 〉1 = 1
3 − 1

3p
.

• If p ≡ 2 mod 3, then fpt(f ) = 1
3 , or 〈 1

3 〉1 = 1
3 − 2

3p
, or 〈 1

3 〉2 = 1
3 − 1

3p2 .

In Example 4.7, the second and third points of Theorem 4.5 were uninteresting
since they did not “whittle away” any of the candidate F -pure thresholds identi-
fied by the first point of Theorem 4.5. The following example is more interesting,
as we will see that both of the second and third points of Theorem 4.5, along with
Proposition 3.3, will be used to eliminate potential candidates.

Example 4.8. Let f ∈ L[x, y] be as in Theorem 4.5 with deg(xy)
degf

= 2
7 . For p ≥ 11,

the following hold:

• If p ≡ 1 mod 7, then fpt(f ) = 2
7 or 〈 2

7 〉1 = 2
7 − 2

7p
.

• If p ≡ 2 mod 7, then fpt(f ) = 〈 2
7 〉1 = 2

7 − 4
7p

or 〈 2
7 〉2 = 2

7 − 1
7p2 .

• If p ≡ 3 mod 7, then fpt(f ) = 〈 2
7 〉2 = 2

7 − 4
7p2 , or 〈 2

7 〉3 = 2
7 − 5

7p3 , or 〈 2
7 〉4 =

2
7 − 1

7p4 .

• If p ≡ 4 mod 7, then fpt(f ) = 〈 2
7 〉1 = 2

7 − 1
7p

.

• If p ≡ 5 mod 7, then fpt(f ) = 〈 2
7 〉1 = 2

7 − 3
7p

or 〈 2
7 〉2 = 2

7 − 1
7p2 .

• If p ≡ 6 mod 7, then fpt(f ) = 2
7 , or 〈 2

7 〉1 = 2
7 − 5

7p
, or 〈 2

7 〉2 = 2
7 − 2

7p2 .

For the sake of brevity, we only indicate how to deduce the lists for p ≡ 3 mod 7
and p ≡ 4 mod 7. Similar methods can be used for the remaining cases.

(p ≡ 3 mod 7). In this case, it follows from Lemma 2.5 that ( 2
7 )

(1) = 2p−6
7 and

( 2
7 )

(5) = p−3
7 . In light of this, the second point of Proposition 3.3, which shows

that the first digit of fpt(f ) must be the smallest digit, implies that fpt(f ) �= 2
7 .

Thus, the first point of Theorem 4.5 states that

fpt(f ) =
〈

2

7

〉
L

for some 1 ≤ L ≤ ord(p,7) = 6 since p ≡ 3 mod 7.

However, since 2 � � 2p4 % 7 � = 1, the second point of Theorem 4.5 eliminates
the possibility that L = 5 or 6. Moreover, since � 2p % 7 � = 6 � 7 − 2 = 5, the
third point of Theorem 4.5 eliminates the possibility that L = 1. Thus, the only
remaining possibilities are fpt(f ) = 〈 2

7 〉2, 〈 2
7 〉3, and 〈 2

7 〉4.

(p ≡ 4 mod 7). As before, we compute that ( 2
7 )

(1) = 2p−1
7 is greater than

( 2
7 )

(2) = p−4
7 , and hence it again follows the second point of Proposition 3.3 that
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fpt(f ) �= 2
7 . Consequently, the first point of Theorem 4.5 states that

fpt(f ) =
〈

2

7

〉
L

for some 1 ≤ L ≤ ord(p,7) = 3 since p ≡ 4 mod 7.

However, we observe that 2 � � 2p2 % 7 � = 1, and hence the second point of
Theorem 4.5 eliminates the possibility that L = 2 or 3. Thus, the only remaining
option is that fpt(f ) = 〈 2

7 〉1.

Remark 4.9 (Minimal lists). In many cases, we are able to verify that the “whit-
tled down” lists obtained through the application of Theorems 4.5 and 3.5 and
Proposition 3.3 is, in fact, minimal. For example, every candidate listed in Ex-
ample 4.4 is of the form fpt(f ), where f varies among the polynomials x5 + y5,
x5 +xy4, and x5 +xy4 +7x2y3, and p varies among the primes less than or equal
to 29.

We now give an extreme example of the “minimality” of the lists of candidate
thresholds. Note that, in this example, the list of candidate thresholds is so small
that it actually determines the precise value of fpt(f ) for p � 0.

Example 4.10 (F -pure thresholds are precisely determined). Let f ∈ L[x, y] be
as in Theorem 4.5 with deg(xy)

degf
= 3

5 ; for example, we may take f = x5 + x3y +
xy2, under the grading given by (degx,degy) = (1,2). Using Theorem 4.5 and
Proposition 3.3 in a manner analogous to that used in Example 4.8, we obtain the
following complete description of fpt(f ) for p ≥ 7.

• If p ≡ 1 mod 5, then fpt(f ) = 3
5 .

• If p ≡ 2 mod 5, then fpt(f ) = 〈 3
5 〉1 = 3

5 − 1
5p

.

• If p ≡ 3 mod 5, then fpt(f ) = 〈 3
5 〉2 = 3

5 − 2
5p2 .

• If p ≡ 4 mod 5, then fpt(f ) = 〈 3
5 〉1 = 3

5 − 2p
5 .

We conclude this section with one final example illustrating “minimality”. In this
instance, however, we focus on the higher-dimensional case. Although the can-
didate list for F -pure thresholds produced by Theorem 3.5 is more complicated
(due to the possibility of having a nonzero “E” term when n > 2), the following
example shows that we can nonetheless obtain minimal lists in these cases using
methods analogous to those used in the previous examples of this section.

Example 4.11 (Minimal lists for n ≥ 3). Let f ∈ L[x, y, z] satisfy the hypotheses
of Theorem 3.5 with degxyz

degf
= 2

3 . Using the bounds for E and L therein, we obtain
the following for p ≥ 5:

• If p ≡ 1 mod 3, then fpt(f ) = 2
3 or 〈 2

3 〉1 = 2
3 − 2

3p
.

• If p ≡ 2 mod 3, then fpt(f ) = 〈 2
3 〉1 = 2

3 − 1
3p

or 〈 2
3 〉1 − 1

p
= 2

3 − 4
3p

.

We claim that this list is minimal. In fact, if f = x9 + xy4 + z3, homogeneous
under the grading determined by (degx,degy,deg z) = (1,2,3), we obtain each
of these possibilities as p varies. For example, if p = 13, then F -pure threshold
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equals 2
3 , and if p = 7, then it equals 〈 2

3 〉1 = 4
7 (and these exhaust the possibilities

for primes congruent to 1 modulo 3). On the other hand, if p = 5, then the F -pure
threshold equals 〈 2

3 〉1 = 3
5 , and if p = 11, then it equals 〈 2

3 〉1 − 1
p

= 6
11 (and these

exhaust the possibilities for primes congruent to 2 modulo 3).

5. F -pure Thresholds of Homogeneous Polynomials: Details

Here, we prove the statements referred to in Section 3; we begin with some pre-
liminary results.

5.1. Bounding the Defining Terms of the F -pure Threshold

This subsection is dedicated to deriving bounds for νf (pe). Our methods for
deriving lower bounds are an extension of those employed by Bhatt and Singh
[BS15].

Lemma 5.1. If f ∈ L[x1, . . . , xn] is homogeneous under some N-grading, then
for every e ≥ 1, νf (pe) ≤ �(pe − 1) · ∑

degxi/degf �. In particular, fpt(f ) ≤
min{∑degxi/degf ,1}.
Proof. By Definition 3.2 it suffices to establish the upper bound on νf (pe). How-
ever, since f νf (pe) /∈ m[pe], there is a supporting monomial μ = x

a1
1 · · ·xan

n of
f νf (pe) not in m[pe], and comparing degrees shows that

νf (pe) · degf = degμ =
∑

ai · degxi ≤ (pe − 1) ·
∑

degxi . �

Corollary 5.2. Let f ∈ L[x1, . . . , xn] be a homogeneous polynomial under
some N-grading, and write λ = min{∑degxi/degf ,1} = a

b
in lowest terms. If

fpt(f ) �= λ, then �e := pe〈λ〉e − pe〈fpt(f )〉e defines a nonnegative, nondecreas-
ing, and unbounded sequence. Moreover, if p � b, then

1 ≤ min{e : �e �= 0} ≤ ord(p, b).

Proof. By Lemma 5.1 the assumption that fpt(f ) �= λ implies that fpt(f ) < λ,
so that the asserted properties of {�e}e follow from Lemma 2.7. Setting s :=
ord(p, b), by Lemma 2.5 we have that

λ := . λ(1) : · · · : λ(s) (basep),

where the bar indicates that the digits of λ begin repeating after the sth digit.
More precisely, if we write n ≥ 1 uniquely as n = sq + r with 1 ≤ r ≤ s, then
λ(n) = λ(r).

By means of contradiction, suppose �s = 0, so that 〈λ〉s = 〈fpt(f )〉s , that is,

fpt(f ) = . λ(1) : · · · : λ(s) : fpt(f )(s+1) : fpt(f )(s+2) : · · · (basep). (5.1)

Since fpt(f ) ≤ λ, comparing the tails of the expansions of fpt(f ) and λ shows
that

. fpt(f )(s+1) : · · · : fpt(f )(2s) (basep) ≤ . λ(1) : · · · : λ(s) (basep).
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On the other hand, comparing the first s digits appearing in the second point of
Proposition 3.3, recalling the expansion (5.1), shows that

. λ(1) : · · · : λ(s) (basep) ≤ . fpt(f )(s+1) : · · · : fpt(f )(2s) (basep),

and thus we conclude that fpt(f )(s+e) = λ(s+e) for every 1 ≤ e ≤ s, that is,
�2s = 0. Finally, a repeated application of this argument shows that �ms = 0
for every m ≥ 1, which implies that fpt(f ) = λ, a contradiction. �

Notation 5.3. If R is any N-graded ring, and M is a graded R-module, [M]d
will denote the degree d component of M , and [M]≤d and [M]≥d the obvious
[R]0 submodules of M . Furthermore, we use HM(t) := ∑

d∈Z dim[M]d · td to
denote the Hilbert series of M .

For the remainder of this subsection, we work in the following context.

Setup 5.4. Fix an N-grading on R = L[x1, . . . , xn], and consider a homogeneous
polynomial f ∈ m with

√
Jac(f ) = m. In this context, ∂1(f ), . . . , ∂n(f ) form a

homogeneous system of parameters for R and hence a regular sequence. Conse-
quently, if we set Jk = (∂1(f ), . . . , ∂k(f )), then the sequences

0 → (R/Jk−1)(−degf + degxk)
∂k(f )−→ R/Jk−1 → R/Jk → 0

are exact for every 1 ≤ k ≤ n. Furthermore, using the fact that the Hilbert se-
ries is additive across short exact sequences, the well-known identities HR(t) =∏n

i=1 1/(1 − tdegxi ) and HM(−s)(t) = t sHM(t) imply that

HR/ Jac(f )(t) =
n∏

i=1

1 − tdegf −degxi

1 − tdegxi
, (5.2)

an identity that will play a key role in what follows.

Lemma 5.5. In the setting of Setup 5.4, we have that (m[pe] : Jac(f )) \ m[pe] ⊆
[R]≥(pe+1)·∑degxi−n·degf .

Proof. To simplify the notation, set J = Jac(f ). By (5.2) the degree of HR/J (t)

(a polynomial since
√

J = m) is N := ndegf − 2
∑

degxi , and so [R/J ]d = 0
whenever d ≥ N + 1. It follows that [R]≥N+1 ⊆ J , and to establish the claim, it
suffices to show that

(m[pe] : [R]≥N+1) \m[pe]

⊆ [R]≥(pe−1)·∑degxi−N = [R]≥(pe+1)·∑degxi−n·degf . (5.3)

By means of contradiction, suppose that (5.3) is false. Consequently, there
exists a monomial

μ = x
pe−1−s1
1 · · ·xpe−1−sn

n ∈ (m[pe] : [R]≥N+1)

such that degμ ≤ (pe − 1) · degxi − (N + 1). This condition implies that the
monomial μ◦ := x

s1
1 · · ·xsn

n is in [R]≥N+1, and since μ ∈ (m[pe] : [R]≥N+1), it
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follows that μμ◦ (which is apparently equal to (x1 · · ·xn)
pe−1) is in m[pe], a con-

tradiction. �

Proposition 5.6. In the setting of Setup 5.4, if p � (νf (pe) + 1), then νf (pe) ≥

(pe + 1) · ∑degxi/degf − n�.

Proof. The Leibniz rule shows that ∂i(m
[pe]) ⊆ m[pe], and so differentiating

f νf (pe)+1 ∈ m[pe] shows that (νf (pe) + 1) · f νf (pe) · ∂i(f ) ∈ m[pe] for all i. Our
assumption that p � νf (pe) + 1 then implies that f νf (pe) ∈ (m[pe] : J ) \ m[pe] ⊆
[R]≥(pe+1)·∑degxi−n·degf , where the exclusion follows by definition, and the final
containment by Lemma 5.5. Therefore,

degf · νf (pe) ≥ (pe + 1) ·
∑

degxi − n · degf,

and the claim follows. �

Corollary 5.7. In the setting of Setup 5.4, write λ = min{∑degxi/degf ,1} =
a
b

in lowest terms. If fpt(f )(e), the eth digit of fpt(f ), is not equal to p − 1, then

pe〈λ〉e − pe〈fpt(f )〉e ≤ n −
⌈

�ape % b � + a

b

⌉
.

Proof. By Proposition 3.3, νf (pe) = pe〈fpt(f )〉e ≡ fpt(f )(e) mod p, and so the
condition that fpt(f )(e) �= p − 1 is equivalent to the condition that p � (νf (pe) +
1). In light of this, we are free to apply Proposition 5.6. In what follows, we set
δ := (

∑
degxi) · (degf )−1.

First, suppose that min{δ,1} = 1, so that a = b = 1. Then 
(�ape % b � + a) ·
b−1� = 2, and so it suffices to show that pe〈1〉e − pe〈fpt(f )〉e ≤ n − 2. However,
the assumption that min{δ,1} = 1 implies that δ ≥ 1, and Proposition 5.6 then
shows that

pe · 〈fpt(f )〉e = νf (pe)

≥ 
(pe + 1) · δ − n� ≥ 
pe + 1 − n�
= pe − 1 + 2 − n

= pe · 〈1〉e + 2 − n.

If, instead, min{δ,1} = δ, then Proposition 5.6 once again shows that

pe〈fpt(f )〉e = νf (pe) ≥ 
(pe + 1) · δ − n�
= 
pe · δ + δ − n�
=

⌈
pe ·

(
〈δ〉e + �ape % b �

b · pe

)
+ δ − n

⌉

= pe · 〈δ〉e +
⌈

�ape % b �

b
+ δ

⌉
− n,

the second to last equality following from Lemma 2.5. �
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Example 5.8 (illustrating that Corollary 5.7 is not an equivalence). If p = 2 and
f is any L∗-linear combination of x15

1 , . . . , x15
5 , then Corollary 5.7 states that if

fpt(f )(e) �= 1, then �e := 2e〈3−1〉e − 2e〈fpt(f )〉e ≤ 4. We claim that the converse
fails when e = 4. Indeed, a direct computation using [Her15, Cor. 3.5] shows that
fpt(f ) = 1

8 , and comparing the base 2 expansions of fpt(f ) = 1
8 and λ = 1

3 shows
that �4 = 4, even though fpt(f )(4) = 1 = p − 1.

5.2. Proofs of the Main Results

In this subsection, we return to the statements in Section 3, whose proofs were
postponed. For the benefit of the reader, we restate these results here.

Theorem 3.5. Fix an N-grading on R. Consider a homogeneous polynomial f

with
√

Jac(f ) = m, and write λ := min{∑degxi/degf ,1} = a
b

in lowest terms.

(1) If fpt(f ) �= λ, then

fpt(f ) = λ −
(

�apL % b � + b · E
b · pL

)
= 〈λ〉L − E

pL

for some (L,E) ∈N2 with L ≥ 1 and 0 ≤ E ≤ n−1−
(�apL % b � +a)/b�.
(2) If p > (n − 2) · b and p � b, then 1 ≤ L ≤ ord(p, b); note that ord(p,1) = 1.
(3) If p > (n − 2) · b and p > b, then a < �ape % b � for all 1 ≤ e ≤ L − 1.
(4) If p > (n − 1) · b, then there exists a unique pair (L,E) satisfying the con-

clusions of (1).

Proof. We begin by establishing (1): The two descriptions of fpt(f ) are equiv-
alent by Lemma 2.5, and so it suffices to establish the identity in terms of trun-
cations. Setting �e := pe〈λ〉e − pe〈fpt(f )〉e, Corollary 5.2 states that {�e}e≥1
is a nonnegative, nondecreasing, and unbounded sequence; in particular, min{e :
�e �= 0} ≥ 1 is well defined, and we claim that

� := min{e : �e �= 0} ≤ L := max{e : fpt(f )(e) �= p − 1},
the latter also being well defined. Indeed, set μe := 
(�ape % b � + a)/b�. Since
1 ≤ μe ≤ 2, the sequence {n − μe}e≥1 is bounded above by n − 1, and therefore
�e > n − μe for e � 0. For such e � 0, Corollary 5.7 implies that fpt(f )(e) =
p − 1, which demonstrates that L is well defined. Note that, by definition, �� =
λ(�) − fpt(f )(�) ≥ 1, so that fpt(f )(�) ≤ λ(�) − 1 ≤ p − 2; by definition of L, it
follows that � ≤ L.

Since fpt(f )(e) = p − 1 for e ≥ L + 1, we have

fpt(f ) = 〈fpt(f )〉L + 1

pL
= 〈λ〉L − �L

pL
+ 1

pL
= 〈λ〉L − E

pL
, (5.4)

where E := �L − 1. In order to conclude this step of the proof, it suffices to note
that

1 ≤ �� ≤ �L ≤ n − μL ≤ n − 1; (5.5)

indeed, the second bound in (5.5) follows from the fact that L ≥ �, the third fol-
lows from Corollary 5.7, and the last from the bound 1 ≤ μe ≤ 2.
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For point (2), we continue to use the notation adopted before. We begin by
showing that

�e = 0 for all 0 ≤ e ≤ L − 1 whenever p > (n − 2) · b. (5.6)

Since the sequence �e is nonnegative and nondecreasing, it suffices to show that
�L−1 = 0. Therefore, by way of contradiction, we suppose that �L−1 ≥ 1. By
definition, 0 ≤ fpt(f )(L) ≤ p − 2, and hence

�L = p · �L−1 + λ(L) − fpt(f )(L) ≥ λ(L) + 2.

Comparing this with (5.5) shows that λ(L) + 2 ≤ �L ≤ n − 1, so that

λ(L) ≤ n − 3.

On the other hand, if p > (n − 2) · b, then it follows from the explicit formulas in
Lemma 2.5 that

λ(e) = �ape−1 % b � · p − �ape % b �

b
≥ p − b

b

>
(n − 2) · b − b

b
= n − 3 for every e ≥ 1. (5.7)

In particular, setting e = L in this identity shows that λ(L) > n − 3, contradicting
our earlier bound.

Thus, we conclude that (5.6) holds, which, when combined with (5.5), shows
that L = min{e : �e �= 0}. In summary, we have just shown that L = � when p >

(n − 2) · b. If we assume further that p � b, the desired bound L = � ≤ ord(p, b)

then follows from Corollary 5.2.
We now focus on point (3) and begin by observing that

fpt(f ) = λ(1) : · · · : λ(L−1) : λ(L) − �L : p − 1 (basep)

whenever p > (n − 2) · b. (5.8)

Indeed, by (5.6), the first L − 1 digits of fpt(f ) and λ agree, whereas fpt(f )(e) =
p − 1 for e ≥ L + 1 by definition of L. Finally, (5.6) shows that �L = λ(L) −
fpt(f )(L), so that fpt(f )(L) = λ(L) − �L.

Recall that, by the second point of Proposition 3.3, the first digit of fpt(f ) is
its smallest digit, and it follows from (5.8) that λ(1) ≤ λ(e) for all 1 ≤ e ≤ L, and
this inequality is strict for e = L. However, it follows from the explicit formulas
in Lemma 2.5 that whenever p > b,

λ(1) ≤ λ(e) ⇐⇒ a · p − �ap % b � ≤ �ape−1 % b � · p − �ape % b �

⇐⇒ a ≤ �ape−1 % b �,

where the second equivalence relies on the fact that p > b. Summarizing, we have
just shown that a ≤ �ape−1 % b � for all 1 ≤ e ≤ L whenever p > (n − 2) · b and
p > b; relabeling our index, we see that

a ≤ �ape % b � for all 0 ≤ e ≤ L − 1 whenever p > (n − 2) · b and p > b.

It remains to show that this bound is strict for 1 ≤ e ≤ L − 1. By contradiction,
assume that a = �ape % b � for some such e. In this case, a ≡ a · pe mod b,
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and since a and b are relatively prime, we conclude that pe ≡ 1 mod b, so that
ord(p, b) | e. However, by definition 1 ≤ e ≤ L − 1 ≤ ord(p, b) − 1, where the
last inequality follows point (2). Thus, we have arrived at a contradiction and
therefore conclude that our asserted upper bound is strict for 1 ≤ e ≤ L − 1.

To conclude our proof, it remains to establish the uniqueness statement in point
(4). To this end, let (L′,E′) denote any pair of integers satisfying the conclusions
of point (1) of this theorem; that is,

fpt(f ) = 〈λ〉L′ − E′ · p−L′
with 1 ≤ E′ ≤ n − 1 − μL′ ≤ n − 2.

A modification of (5.7) shows that λ(e) > n − 2 and hence that λ(e) ≥ E′ + 1
whenever p > (n − 1) · b, and it follows that

fpt(f ) = 〈λ〉L′ − E′ · p−L′ = . λ(1) : · · · : λ(L′−1) : λ(L′) − (E′ + 1) : p − 1

whenever p > (n − 1) · b.

The uniqueness statement then follows from comparing this expansion with (5.8)
and invoking the uniqueness of nonterminating base p expansions. �

Corollary 3.9. In the setting of Theorem 3.5, if fpt(f ) �= λ and p � b, then
pM · fpt(f ) ∈ N, where M := 2 ·φ(b)+
log2(n− 1)�, and φ denotes Euler’s phi
function.

Proof. We adopt the notation used in the proof of Theorem 3.5. In particular,
� ≤ L and fpt(f ) ∈ p−L · N. Setting s = ord(p, b) and k = 
logp(n − 1)� in
Lemma 2.7 shows that

��+s+
logp(n−1)� ≥ p
logp(n−1)� + 1 ≥ n. (5.9)

By definition of L, Corollary 5.7 states that �L ≤ n − 1, and since {�e}e≥1 is
nondecreasing, (5.9) then shows that L is bounded above by �+s+
logp(n−1)�.
To obtain a uniform bound, note that � ≤ s by Corollary 5.2, whereas s ≤ φ(b) by
definition, and logp(n − 1) ≤ log2(n − 1) since p ≥ 2. �

Theorem 3.13. In the context of Theorem 3.5, suppose that
∑

degxi > degf , so
that ρ := ∑

degxi/degf is greater than 1. If p > n−3
ρ−1 , then fpt(f ) = 1.

Proof. We begin with the following elementary manipulations, the first of which
relies on the assumption that ρ − 1 is positive: Isolating n − 3 in our assumption
that p > (n − 3) · (ρ − 1)−1 − 1 shows that (p + 1) · (ρ − 1) > n − 3, and adding
p + 1 and subtracting n from both sides then show that (p + 1) · ρ − n > p − 2;
rounding up, we see that


(p + 1) · ρ − n� ≥ p − 1. (5.10)

Assume, by means of contradiction, that fpt(f ) �= 1. By hypothesis, 1 =
min{ρ,1}, and Corollary 5.2 then states that 1 = min{e : pe〈1〉e − pe〈fpt(f )〉e ≥
1}; in particular,

νf (p) = fpt(f )(1) = p · 〈fpt(f )〉1 ≤ p〈1〉1 − 1 = p − 2.
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Thus, we can apply Proposition 5.6, which, when combined with (5.10), implies
that

νf (p) ≥ 
(p + 1) · ρ − n� ≥ p − 1.

We have arrived at a contradiction, and conclude that fpt(f ) = 1. �

6. Applications to Log Canonical Thresholds

Given a polynomial fQ over Q, we will denote its log canonical threshold by
lct(fQ). In this article, we will not need to refer to the typical definition(s) of
lct(fQ) (e.g., via resolution of singularities) and will instead rely on the limit
in (6.1) as our definition. However, so that the reader unfamiliar with this topic
may better appreciate (6.1), we present the following characterizations. In what
follows, we fix fQ ∈Q[x1, . . . , xn].
(1) If π : X → An

Q
is a log resolution of the pair (An

Q
,V(fQ)), then lct(fQ) is

the supremum over all λ > 0 such that the coefficients of the divisor Kπ −
λ · π∗ div(f ) are all greater than −1; here, Kπ denotes the relative canonical
divisor of π .

(2) For every λ > 0, consider the function 
λ(fQ) : Cn →R given by

(z1, . . . , zn) �→ |f (z1, . . . , zn)|−2λ,

where | · | ∈ R denotes the norm of a complex number; note that 
λ(fQ)

has a pole at all (complex) zeros of fQ. In this setting, lct(fQ) := sup{λ :

λ(fQ) is locally R-integrable}, where “locally R-integrable” here means
that we identify Cn = R2n, and require that this function be (Lebesgue) inte-
grable in a neighborhood of every point in its domain.

(3) The roots of the Bernstein–Sato polynomial bfQ of fQ are all negative rational
numbers, and − lct(fQ) is the largest such root [Kol97, Thm. 10.6].

For more information on these invariants, the reader is referred to the surveys
[BL04; EM06]. We now recall the striking relationship between F -pure and log
canonical thresholds: Though there are many results due to many authors relating
characteristic zero and characteristic p > 0 invariants, the one most relevant to
our discussion is the following theorem, which is due to Mustaţă and the fourth
author.

Theorem 6.1 ([MZ13, Cors. 3.5 and 4.5]). Given an polynomial fQ over Q, there
exist constants C ∈ R>0 and N ∈ N (depending only on fQ) with the following
property: For p � 0, either fpt(fp) = lct(fQ), or

1

pN
≤ lct(fQ) − fpt(fp) ≤ C

p
.

Note that, as an immediate corollary of Theorem 6.1,

fpt(fp) ≤ lct(fQ) for all p � 0 and lim
p→∞ fpt(fp) = lct(fQ). (6.1)
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We point out that (6.1) (which follows from the work of Hara and Yoshida) ap-
peared in the literature well before Theorem 6.1 (see, e.g., [MTW05, Thms. 3.3
and 3.4]).

6.1. Regarding Uniform Bounds

Though the constants C ∈ R>0 and N ∈ N appearing in Theorem 6.1 are known
to depend only on fQ, their determination is complicated (e.g., they depend on
numerical invariants coming from resolution of singularities), and they therefore
are not explicitly described. In Theorem 6.2, we give an alternate proof of this
result for homogeneous polynomials with an isolated singularity at the origin; in
the process of doing so, we also identify explicit values for C and N .

Theorem 6.2. If fQ ∈Q[x1, . . . , xn] is homogeneous under some N-grading with√
Jac(fQ) = m, then lct(fQ) = min{∑degxi/degf ,1}, which we write as a

b
in

lowest terms. Moreover, if fpt(fp) �= lct(fQ), then

b−1

pord(p,b)
≤ lct(fQ) − fpt(fp) ≤ n − 1 − b−1

p
for p � 0,

where ord(p, b) denotes the order of p mod b (which by convention equals one
when b = 1).

Proof. Since the reduction of ∂k(f ) mod p equals ∂k(fp) for large values of p,
the equality

√
Jac(fQ) = m reduces mod p for p � 0. Taking p → ∞, it follows

from Theorem 3.5 and (6.1) that lct(fQ) = min{∑degxi/degf ,1}, and in light
of this, Theorem 3.5 states that

lct(fQ) − fpt(fp) = �apL % b �

b · pL
+ E

pL
. (6.2)

Suppose first that lct(fQ) �= 1. Having already chosen p � 0, we may fur-
ther enlarge p so as to assume that b is not a power of p. It follows that
1 ≤ �apL % b � ≤ b − 1, and then

1

b · pL
≤ �apL % b �

b · pL
≤ 1 − b−1

pL
.

In this case, Theorem 3.5 implies that 1 ≤ L ≤ ord(p, b) and 0 ≤ E ≤ n − 2
for p � 0, and substituting these bounds into (6.2) produces the desired bounds
on the difference between the log canonical and F -pure threshold.

If, instead, lct(fQ) = 1, then a = b = 1, so that �apL % b � = ord(p, b) = 1.
Having chosen p � 0, the bounds on L in Theorem 3.5 then imply that L = 1
and

�apL % b �

b · pL
= 1

p
.

Moreover, substituting a = b = 1 into Theorem 3.5 also shows that 0 ≤ E ≤
n − 3 for p � 0. Finally, it is left to the reader to verify that substituting these
inequalities into (6.2) produces the desired bounds in each case. �
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Remark 6.3 (on uniform bounds). Of course, ord(p, b) ≤ φ(b), where φ denotes
Euler’s phi function. By enlarging p, if necessary, it follows that the lower bound
in Theorem 6.2 is itself bounded below by p−φ(b)−1. In other words, in the lan-
guage of Theorem 6.1, we may take N = φ(b) + 1 and C = n − 1 − b−1.

Remark 6.4 (regarding sharpness). The bounds appearing in Theorem 6.2 are
sharp: If d > 2 and fQ = xd

1 + · · ·+ xd
d , then lct(fQ) = 1, and Theorem 6.2 states

that
1

p
≤ lct(fQ) − fpt(fp) ≤ d − 2

p
(6.3)

whenever fpt(fp) �= 1 and p � 0. However, it is shown in [Her15, Cor. 3.5] that

lct(fQ) − fpt(fp) = 1 − fpt(fp) = �p % d � − 1

p

whenever p > d . If d is odd and p ≡ 2 mod d , then the lower bound in (6.3) is
obtained, and similarly, if p ≡ d − 1 mod d , then the upper bound in (6.3) is ob-
tained; in both these cases, Dirichlet’s theorem guarantees that there are infinitely
many primes satisfying these congruence relations.

6.2. On the Size of a Set of Bad Primes

In this subsection, we record some simple observations regarding the set of primes
for which the F -pure threshold does not coincide with the log canonical thresh-
old, and we begin by recalling the case of elliptic curves: Let fQ ∈Q[x, y, z] be a
homogeneous polynomial of degree three with

√
Jac(fQ) = m, so that E := V(f )

defines an elliptic curve in P2
Q

. As shown in the proof of Theorem 6.2, the
reductions fp ∈ Fp[x, y, z] satisfy these same conditions for p � 0 and thus
define elliptic curves Ep = V(fp) ⊆ P2

Fp
for all p � 0. Recall that the ellip-

tic curve Ep is called supersingular if the natural Frobenius action on the lo-
cal cohomology module H 2

(x,y,z)
(Fp[x, y, z]/(fp)) is injective or, equivalently, if

(fp)p−1 /∈ (xp, yp, zp) (see, e.g., [Sil09, Chaps. V.3 and V.4] for these and other
characterizations of supersingularity). Using these descriptions, we can show that
Ep is supersingular if and only if fpt(fp) = 1 [MTW05, Ex. 4.6]. In light of this,
Elkies’ well-known theorem on the set of supersingular primes, which states that
Ep is supersingular for infinitely many primes p, can be restated as follows.

Theorem 6.5 ([Elk87, Thm. 1]). For fQ ∈ Q[x, y, z] as just described, there are
infinitely many primes p such that fpt(fp) �= lct(fQ).

Recall that given a set S of prime numbers, the density of S, δ(S), is defined as

δ(S) = lim
n→∞

#{p ∈ S : p ≤ n}
#{p : p ≤ n} .

In the context of elliptic curves over Q, the set of primes {p : fpt(fp) �= lct(fQ)},
which is infinite by Elkies’ result, may be quite large (i.e., have density 1

2 ) or may
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be quite small (i.e., have density zero); see [MTW05, Ex. 4.6] for more informa-
tion. This discussion motivates the following question.

Question 6.6. For which polynomials fQ is the set of primes {p : fpt(fp) �=
lct(fQ)} infinite? In the case that this set is infinite, what is its density?

As illustrated by the case of an elliptic curve, Question 6.6 is quite subtle, and we
expect it to be quite difficult to address in general. However, as we further see,
when the numerator of lct(fQ) is not equal to 1, we are able to give a partial an-
swer to this question using simple methods. Our main tool will be Proposition 3.3,
which provides us with a simple criterion for disqualifying a rational number from
being an F -pure threshold. We stress the fact that Proposition 6.7 is not applicable
when lct(fQ) = 1 and hence sheds no light on the elliptic curve case discussed.

Proposition 6.7. Let fQ denote any polynomial over Q, and write lct(fQ) = a
b

in lowest terms. If a �= 1, then the set of primes for which lct(fQ) is not an
F -pure threshold (of any polynomial) is infinite and contains all primes p such
that pe · a ≡ 1 mod b for some e ≥ 1. In particular,

δ({p : fpt(fp) �= lct(fQ)}) ≥ 1

φ(b)
.

Proof. Since a and b are relatively prime, there exists c ∈ N such that a · c ≡
1 mod b. We claim that

{p : p ≡ c mod b}
⊆ {p : pe · a ≡ 1 mod b for some e ≥ 1}
⊆ {p : lct(fQ) is not an F -pure threshold in characteristic p > 0}.

Once we establish this, the proposition will follow since δ({p : p ≡ c mod b}) =
1

φ(b)
by Dirichlet’s theorem. By the definition of c, the first containment holds by

setting e = 1, and so it suffices to establish the second containment. However, if
pe · a ≡ 1 mod b for some e ≥ 1, then Lemma 2.5 shows that

lct(fQ)(e+1) = �ape % b � · p − �ape+1 % b �

b
= p − �ape+1 % b �

b
.

On the other hand, Lemma 2.5 also shows that

lct(fQ)(1) = a · p − �ap % b �

b
,

and since a ≥ 2 by assumption, we see that lct(fQ)(1) > lct(fQ)(e) for all p � 0.
In light of this, the second point of Proposition 3.3, which states an F -pure
threshold’s first digit must be its smallest, shows that lct(fQ) cannot be the
F -pure threshold of any polynomial in characteristic p > 0. �

We conclude this section with the following example, which follows immedi-
ately from Corollary 4.2 and which illustrates a rather large family of polynomials
whose set of “bad” primes greatly exceeds the bound given by Proposition 6.7.
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Example 6.8. If fQ ∈ Q[x1, . . . , xd−1] is homogeneous (under the standard grad-
ing) of degree d with

√
Jac(fQ) = m, then {p : p �≡ 1 mod d} ⊆ {p : fpt(fp) �=

lct(fQ) = 1 − 1
d
}. In particular,

δ({p : fpt(fp) �= lct(fQ)}) ≥ δ({p : p �≡ 1 mod d}) = 1 − 1

φ(d)
.

7. Supporting Evidence for the ACC Conjecture for F -pure
Thresholds

Motivated by the relationship between F -pure thresholds and log canonical
thresholds, Blickle, Mustaţă, and Smith conjectured that a certain collection of F -
pure thresholds satisfies the ascending chain condition. A slight variation of their
conjecture is the following; recall that under Convention 3.1, R = L[x1, . . . , xn],
where L is a field of characteristic p > 0.

Conjecture 7.1 (cf. [BMS09, Conj. 4.4]). Fix an integer n ≥ 1.

(1) The set {fpt(f ) : f ∈ R} satisfies the ascending chain condition (ACC); that
is, it contains no strictly increasing infinite sequence.

(2) For every f ∈ R, there exists an integer N (which may depend on f ) such
that

fpt(f ) ≤ fpt(f + g) for all g ∈mN .

As discussed in [BMS09, Rem. 4.5], the first conjecture implies the second
by a straightforward argument using [BMS09, Cor. 3.4]. For the sake of clarity,
we point out that there is a typo in the statement of [BMS09, Rem. 4.5]. Indeed,
the inequality “fpt(f ) ≥ fpt(f + g)” appearing therein is incorrect and should be
reversed (i.e., so that it will be consistent with Conjecture 7.1 (2)).

In this section, we confirm Conjecture 7.1 (1) for a restricted set of F -pure thresh-
olds (see Proposition 7.3). Additionally, we confirm Conjecture 7.1 (2) in the case
that f is homogeneous under some N-grading (see Proposition 7.4) and establish
stronger versions of this conjecture under some additional hypotheses (see Propo-
sitions 7.8 and 7.10).

7.1. A Special Case of Conjecture 7.1 (1)

Definition 7.2. For every ω ∈ Nn, let Wω denote the set of polynomials f ∈ R

satisfying the following conditions:

(1)
√

Jac(f ) = m.
(2) f is homogeneous under the grading determined by (degx1, . . . ,degxn) = ω.
(3) p � degf (and hence does not divide the denominator of min{∑degxi/degf ,

1} in lowest terms).

Given N ∈ N, set W�N := ⋃
ω Wω , where the union is taken over all ω =

(ω1, . . . ,ωn) ∈ Nn with ωi ≤ N for each 1 ≤ i ≤ n.
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Proposition 7.3. For every N ∈N and μ ∈ (0,1], the set

{fpt(f ) : f ∈ W�N } ∩ (μ,1]
is finite. In particular, this set of F -pure thresholds satisfies ACC.

Proof. Fix f ∈ W�N such that fpt(f ) > μ. By definition, there exists an
N-grading on R such that degxi ≤ N for all 1 ≤ i ≤ N and under which f is
homogeneous. Moreover, by Lemma 5.1,

μ < fpt(f ) ≤
∑n

i=1 degxi

degf
≤ n · N

degf
.

Consequently, degf ≤ n·N
μ

, and it follows that

λ := min

{∑n
i=1 degxi

degf
,1

}
⊆ S := (0,1] ∩

{
a

b
∈ Q : b ≤ n · N

μ

}
,

a finite set. We now argue that fpt(f ) can take on only finitely many values: If
fpt(f ) �= λ, then by Corollary 3.9 there exists an integer Mλ, depending only on λ

and n, such that pMλ · fpt(f ) ∈ N. If M := max{Mλ : λ ∈ S}, then it follows that
fpt(f ) ∈ {a/pM : a ∈N} ∩ (0,1], a finite set. �

7.2. Regarding Conjecture 7.1 (2)

Throughout this subsection, we fix an N-grading on R.

Proposition 7.4. Fix f ∈ m homogeneous. If g ∈ [R]≥degf +1, then fpt(f ) ≤
fpt(f + g). In particular, Conjecture 7.1 (2) holds for f .

Proof. It suffices to show that νf (pe) ≤ νf +g(p
e) for every e ≥ 1; that is, set-

ting N := νf (pe), it suffices to show that (f + g)N /∈ m[pe]. Suppose, by way of
contradiction, that (f + g)N = f N + ∑N

k=1

(
N
k

)
f N−kgk ∈ m[pe]; note that, since

f N /∈ m[pe] by definition, each monomial summand of f N must cancel with one
of

∑N
k=1

(
N
k

)
f N−kgk . However, for any monomial summand μ of any f N−kgk ,

k ≥ 1,

degμ ≥ (N − k)degf + k(degf + 1) > N degf = deg(f N),

and such cancellation is impossible. �

The remainder of this article is dedicated to establishing a stronger version of
Conjecture 7.1 (2).

Lemma 7.5. Consider f ∈ m such that pL · fpt(f ) ∈N for some L ∈N. If g ∈m,
then

fpt(f + g) ≤ fpt(f ) if and only if (f + g)p
L·fpt(f ) ∈m[pL].

Proof. If (f + g)p
L·fpt(f ) ∈ m[pL], then (f + g)p

s ·fpt(f ) ∈ m[ps ] for s ≥ L. Con-
sequently, νf +g(p

s) < ps · fpt(f ) for s � 0, and hence fpt(f + g) ≤ fpt(f ). We
now focus on the remaining implication.
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By the hypothesis, pL · fpt(f ) − 1 ∈ N, so that the identity fpt(f ) = (pL ·
fpt(f ) − 1)/pL + 1/pL shows that

〈fpt(f )〉L = pL · fpt(f ) − 1

pL
.

If fpt(f + g) ≤ fpt(f ), then the preceding identity and Proposition 3.3 show that

νf +g(p
L) = pL〈fpt(f + g)〉L ≤ pL〈fpt(f )〉L = pL fpt(f ) − 1,

and consequently, this bound for νf +g(p
L) shows that (f + g)p

L fpt(f ) ∈ m[pL].
�

Lemma 7.6. If h is homogeneous and h /∈ m[pe], then degh ≤ (pe − 1) ·∑n
i=1 degxi .

Proof. Every supporting monomial of h is of the form x
pe−a1
1 · · ·xpe−an

n , where
each ai ≥ 1. Then

degh =
n∑

i=1

(pe − ai)degxi ≤ (pe − 1)

n∑
i=1

degxi.
�

Lemma 7.7. Fix f ∈ m homogeneous such that λ := ∑
degxi/degf ≤ 1. If (pe −

1) · λ ∈N and g ∈ [R]≥degf +1, then (f + g)p
e〈λ〉e ≡ f pe〈λ〉e mod m[pe].

Proof. We claim that

f pe〈λ〉e−kgk ∈m[pe] for all 1 ≤ k ≤ pe〈λ〉e. (7.1)

Indeed, suppose that (7.1) is false. Since g ∈ [R]≥degf +1 and μ is a supporting
monomial of f pe〈λ〉e−kgk , we also have that

degμ ≥ degf · (pe〈λ〉e − k) + (degf + 1) · k = degf · pe〈λ〉e + k. (7.2)

However, since (pe − 1) · λ ∈ N, it follows from Lemma 2.6 that pe〈λ〉e = (pe −
1) · λ. Substituting this into (7.2) shows that

degμ ≥ degf · (pe − 1) · λ + k = k + (pe − 1)

n∑
i=1

degxi,

which contradicts Lemma 7.6 since k ≥ 1. Thus, (7.1) holds, and it follows from
the binomial theorem that (f + g)p

e〈λ〉e ≡ f pe〈λ〉e mod m[pe]. �

We are now able to prove our first result on the local m-adic constancy of the
F -pure threshold function f �→ fpt(f ).

Proposition 7.8. Fix f ∈ m homogeneous such that λ := ∑
degxi/degf ≤ 1,

and suppose that either fpt(f ) = λ, or fpt(f ) = 〈λ〉L and (pL − 1) · λ ∈ N for
some L ≥ 1. Then fpt(f + g) = fpt(f ) for each g ∈ [R]≥degf +1.
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Proof. By Proposition 7.4 it suffices to show that fpt(f ) ≥ fpt(f + g). First, say
that fpt(f ) = λ. It is enough to show that for all e ≥ 1, (f + g)νf (pe)+1 ∈ m[pe],
so that νf (pe) ≥ νf +g(p

e). By the binomial theorem it suffices to show that for
all 0 ≤ k ≤ νf (pf ) + 1, f νf (pe)+1−kgk ∈ m[pe]. To this end, take any monomial
μ of such an f νf (pe)+1−kgk . Then

degμ ≥ (νf (pe) + 1 − k) · degf + k · (degf + 1)

= (νf (pe) + 1) · degf + k ≥ (νf (pe) + 1) · degf. (7.3)

By Lemma 3.3, νf (pe) = pe〈λ〉e , and by definition, 〈α〉e ≥ α − 1/pe for all 0 <

α ≤ 1. Then by (7.3),

degμ ≥ (pe〈λ〉e + 1) · degf

≥
(

pe

(
λ − 1

pe

)
+ 1

)
· degf

= pe · λ · degf

= pe ·
∑

degxi.

We may now conclude that μ ∈m[pe] by Lemma 7.6.
Now say that fpt(f ) = 〈λ〉L and (pL − 1) · λ ∈ N for some L ≤ 1. By

Lemma 7.5 it suffices to show that (f +g)p
L·fpt(f ) ∈ m[pL]. Indeed, pL · fpt(f ) >

pL〈fpt(f )〉L = νf (pL) (the equality by Proposition 3.3), so that f pL·fpt(f ) ∈
m[pL]; thus, (f + g)p

L·fpt(f ) ≡ f pL·fpt(f ) ≡ 0 mod m[pL] by Lemma 7.7. �

We see that the hypotheses of Proposition 7.8 are often satisfied in Example 7.9.
We also see that the statement of the proposition is sharp in the sense that there
exist f and g satisfying its hypotheses such that fpt(f ) = 〈λ〉L for some L ≥ 1,
(pL − 1) · λ /∈N, and fpt(f + g) > fpt(f ).

Example 7.9. Let f = x15 +xy7 ∈ L[x, y], which is homogeneous with degf =
15 under the grading determined by (degx,degy) = (1,2), and has an isolated
singularity at the origin when p ≥ 11. It follows from Theorem 4.5 that

fpt(f ) =
〈

1 + 2

15

〉
L

=
〈

1

5

〉
L

,

where 1 ≤ L ≤ ord(p,5) ≤ 4, or L = ∞ (i.e., fpt(f ) = 1
5 ). Furthermore, since f

is a binomial, we can use the algorithm in [Her14, Alg. 4.2], recently implemented
by Sara Malec, Karl Schwede, and the third author in an upcoming Macaulay2
package, to compute the exact value fpt(f ) and hence the exact value of L for a
fixed p. We list some of these computations in Figure 1.

We see that the hypotheses of Proposition 7.8 are often satisfied in this ex-
ample, and it follows that fpt(f ) = fpt(f + g) for every g ∈ [R]≥16 when-
ever either “∞” appears in the second column or “Yes” appears in the third.
When p = 17, however, we have that fpt(f ) = 〈 1

5 〉1 = 3
17 , and when g ∈

{x14y, x12y2, y8, x13y2, x14y2} ⊆ [R]≥16, we may verify that (f + g)3 /∈ m[17],



84 D. J. Hernández et al.

p L (pL − 1) · 1
5 ∈ N?

11 1 Yes
13 1 No
17 1 No
19 2 Yes
23 4 Yes
29 ∞ –
31 1 Yes

p L (pL − 1) · 1
5 ∈ N?

37 4 Yes
41 1 Yes
43 ∞ –
47 1 No
53 4 Yes
59 2 Yes
61 1 Yes

p L (pL − 1) · 1
5 ∈N?

67 1 No
71 ∞ –
73 3 No
79 2 Yes
83 2 No
97 1 No
101 1 Yes

Figure 1 Some data on F -pure thresholds of f = x15 + xy7 ∈ L[x, y]

so that it follows from Lemma 7.5 that fpt(f + g) > 3
17 . For another example of

this behavior, it can be computed that when p = 47 and g ∈ {x12y2, x10y3, x8y4,

x4y6, x9y4, x10y4}, fpt(f + g) > fpt(f ).

We further show that the F -pure threshold function f �→ fpt(f ) is locally con-
stant in the m-adic topology at all homogeneous polynomials with an isolated
singularity at the origin.

Proposition 7.10. Suppose that f ∈ L[x1, . . . , xn] is homogeneous under some
N-grading such that

√
Jac(f ) = (x1, . . . , xn) and degf ≥ ∑

degxi . Then fpt(f +
g) = fpt(f ) for each g ∈ [R]≥ndegf −∑

degxi+1.

Proof. Let λ = ∑
degxi/degf . If fpt(f ) = λ, then Proposition 7.8 implies

that fpt(f ) = fpt(f + g). For the remainder of this proof, we will assume that
fpt(f ) �= λ. By Proposition 7.4 it suffices to show that fpt(f ) ≥ fpt(f + g). Since
fpt(f ) = 〈λ〉L − E/pL for some integers E ≥ 0 and L ≥ 1 by Theorem 3.5, it
suffices to show that (f + g)p

L fpt(f ) ∈m[pL] by Lemma 7.5.
To this end, note that

fpt(f ) = 〈λ〉L − E

pL
≥ λ − 1

pL
− E

pL
≥ λ − n − 1

pL
, (7.4)
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where the first inequality follows from Lemma 2.6, and the second from our
bounds on E. Suppose, by way of contradiction, that (f + g)p

L·fpt(f ) /∈ m[pL].
Since

(f + g)p
L·fpt(f ) = f pL·fpt(f ) +

pL·fpt(f )∑
k=1

(
pL · fpt(f )

k

)
f pL·fpt(f )−kgk,

the inequality pL · fpt(f ) > pL〈fpt(f )〉L = νf (pL) implies that f pL·fpt(f ) ∈
m[pL], and so there must exist 1 ≤ k ≤ pL · fpt(f ) for which f pL·fpt(f )−kgk /∈
m[pL]. We will now show, as in the proof of Lemma 7.7, that this is impossible
for degree reasons. Indeed, for such a k, there exists a supporting monomial μ

of f pL fpt(f )−kgk not contained in m[pL], so that degμ ≤ (pL − 1) · ∑degxi by
Lemma 7.6. However, since g ∈ [R]≥n·degf −∑

degxi+1,

degμ ≥ degf · (pL · fpt(f ) − k) + k ·
(

n · degf −
∑

degxi + 1

)
. (7.5)

The derivative with respect to k of the right-hand side of (7.5) is (n − 1)degf −∑
degxi + 1, which is always nonnegative by our assumption that degf ≥∑
degxi . Thus, the right-hand side of (7.5) is increasing with respect to k, and

since k ≥ 1,

degμ ≥ degf · (pL · fpt(f ) − 1) +
(

n · degf −
∑

degxi + 1

)

≥ degf · (pL · λ − n) +
(

n · degf −
∑

degxi + 1

)

= pL · degf · λ −
∑

degxi + 1

= (pL − 1) ·
∑

degxi + 1,

where the second inequality is a consequence of (7.4). Thus, we have arrived at
a contradiction, and we conclude that (f + g)p

L·fpt(f ) ∈ m[pL], completing the
proof. �
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