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Congruences with Intervals and Subgroups
Modulo a Prime

Marc Munsch & Igor E. Shparlinski

Abstract. We obtain new results about the representation of almost
all residues modulo a prime p by a product of a small integer and
also an element of small multiplicative subgroup of (Z/pZ)∗. These
results are based on some ideas, and their modifications, of a recent
work of Cilleruelo and Garaev (2014).

1. Introduction

It is well known that the progress on many classical and modern number-theoretic
questions depends on the existence asymptotic formulas and good upper and
lower bounds on the number of solutions to the congruences of the form

au ≡ x (mod m), (1)

where u runs through a multiplicative subgroup G of the group of units Z
∗
m of

the residue ring Zm modulo an integers m ≥ 2, and x runs through a set {A +
1, . . . ,A+H } of H consecutive integers; see [17] for an outline of such questions.
In the special case where m = p is a prime number and G is a group of squares,
this is a celebrated question about the distribution of quadratic residues.

Recently, various modifications of the congruence (1) have been studied, such
as congruences with elements from more general sets than subgroups on the left-
hand side and also with products and ratios of variables from short intervals on
the right-hand side; see [2; 3; 5; 6; 7; 8; 9; 10; 11; 12; 14; 18] and references
therein. New applications of such congruences have also been found and include
questions about

• nonvanishing of Fermat quotients [1],
• estimating fixed points of the discrete logarithm [2; 3],
• distribution of pseudopowers [4], and
• distribution of digits in reciprocals of primes [22].

Here we consider the congruence (1) in the special case where m = p is prime.
Furthermore, we are mostly interesting in the solvability of (1) for rather small
intervals and subgroups.

Since we consider congruences modulo primes, it is convenient to use the lan-
guage of finite fields.
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For a prime p, we use Fp to denote the finite field of p elements, which we
assume to be represented by the set {0,1, . . . , p − 1}. We say that a set I ⊆ Fp

is an interval of length H if it contains H consecutive elements of Fp , assuming
that p − 1 is followed by 0. Furthermore, we say that I is an initial interval if
I = {1, . . . ,H } (we note that it is convenient to exclude 0 from initial intervals).

Furthermore, instead of subgroups, we consider a more general class sets,
which also contain sets of N consecutive powers {g, . . . , gN } of a fixed element
g ∈ F

∗
p .

Namely, as usual, for a set U ⊆ Fp , we use U (m) to denote its m-fold product
set

U (m) = {u1 · · ·um : u1, . . . , um ∈ U}.
We say that U ⊆ F

∗
p is an approximate subgroup of F∗

p if

#U (2) ≤ (#U)1+o(1)

as #U → ∞.
Consequently, here we study the solvability of equations over Fp of the type

au = x, u ∈ U , x ∈ I, (2)

where U ⊆ F
∗
p is an approximate subgroup of Fp , and I ⊆ F

∗
p is an interval.

It has been shown by Cilleruelo and Garaev [8] that for any ε > 0, there is
δ > 0 such that if U = G is a subgroup of order #U ≥ p3/8 and I is an initial
interval of length #I ≥ p5/8+ε , then (2) has a solution for all but at most O(p1−δ)

values of a ∈ Fp .
Here we show that the ideas of Cilleruelo and Garaev [8], combined with the

approach of Garaev [10] to estimating character sums for almost all primes, al-
low us to obtain similar results for a wider range of sizes #U and #I (and also for
approximate subgroups U ). Furthermore, we use some tools from additive combi-
natorics to establish a certain new result about subsets of approximate subgroups,
which may be of independent interest.

Throughout the paper, the implied constants in the symbols O and 
 are ab-
solute. We recall that the assertions U = O(V ) and U 
 V are both equivalent to
the inequality |U | ≤ cV with some constant c.

2. Background on Exponential and Character Sums

Let Xq denote the set of all ϕ(q) multiplicative characters modulo an integer
q ≥ 2, and let X ∗

q be the set of primitive characters χ ∈Xq , where ϕ(q) to denotes
the Euler function of q; we refer to [15] for a background on characters.

Let A = (an)n∈N be an arbitrary sequence of complex numbers. For an integer
h and a character χ ∈ Xq , we consider the weighted character sums

Sq(χ;h;A) =
h∑

n=1

anχ(n).
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If an = 1 for all n, then we simply use the notation

Sq(χ;h) =
h∑

n=1

χ(n).

First, we recall that by the Pólya–Vinogradov (for ν = 1) and Burgess (for
ν ≥ 2) bounds (see [15, Thms. 12.5 and 12.6]) for an arbitrary integers q ≥ h ≥ 1,
the bound

max
χ∈Xq\{χ0}

|Sq(χ;h)| ≤ h1−1/νq(ν+1)/4ν2+o(1) (3)

holds with ν = 1,2,3 for any q and with an arbitrary positive integer ν if q is
cube-free.

It is well known that assuming the generalized Riemann hypothesis (GRH), we
derive a “square-root cancellation” bound

max
χ∈Xq\{χ0}

|Sq(χ;h)| ≤ h1/2qo(1), (4)

which in particular is quoted in [19, Bound (13.2)]. Despite this, it seems to be
difficult to find a proof of this bound; however, we can easily derive it from [13,
Thm. 2].

Furthermore, we use the following well-known property of the Gauss sums:

τq(χ) =
q∑

v=1

χ(v)e

(
v

q

)
, χ ∈Xq;

see, for example, [15, eq. (3.12)].

Lemma 1. For any primitive multiplicative character χ ∈ X ∗
q and an integer b

with gcd(b, q) = 1, we have

χ(b)τq(χ) =
q∑

v=1
gcd(v,q)=1

χ(v)e

(
bv

q

)
,

where χ is the complex conjugate character to χ .

By [15, Lemma 3.1] we also have:

Lemma 2. For any χ ∈ X ∗
q , we have

|τq(χ)| = q1/2.

We also recall the classical large sieve inequality, see [15, Thm. 7.11]:

Lemma 3. Let a1, . . . , aT be an arbitrary sequence of complex numbers, and let

A =
T∑

n=1

|an|2 and T (u) =
T∑

n=1

an exp(2πinu).
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Then, for an arbitrary integer Q ≥ 1, we have

Q∑
q=1

q∑
v=1

gcd(v,q)=1

∣∣∣∣T
(

v

q

)∣∣∣∣
2


 (Q2 + T )A.

3. Bounds of Character Sums for Almost All Moduli

Garaev [9], has obtained a series of improvements of the bound (3) that hold for
almost all moduli integer q ≥ 1. Namely, by [9, Thm. 10], for any δ < 1/4, if h

and Q tend to infinity in such a way that

logh√
logQ

→ ∞,

then

max
χ∈X ∗

q

∣∣∣∣
h∑

n=1

χ(n)

∣∣∣∣ ≤ h1−δ

for all but at most Q4δh(1−2δ)γ+o(1) moduli q ≤ Q, where γ is the following
fractional part:

γ =
{

2 logQ

logh

}
. (5)

Here we give some modifications of the bounds from [9] that are more conve-
nient for our applications, in particular, the size of the exceptional set in [9, Thm.
10] of moduli q ≤ Q, which depends on the fractional part γ .

We can simply estimate γ ≤ 1 and still derive a nontrivial bound O(Q4δh1−2δ)

from [9, Thm. 10]. However, here we show that we can modify the argument
of Garaev [9] and obtain a stronger bound than that corresponds to replacing γ

with 1. We also show that the argument of [9], augmented by some standard tech-
niques, can be used to estimate the largest values of sums |Sq(χ;h)| uniformly
over all integers h ≤ H and χ ∈X ∗

q , which is important for some applications.
We now define γ by the analogue of (5) but with H instead of h, that is,

γ =
{

2 logQ

logH

}
. (6)

Lemma 4. Let H and Q be sufficiently large positive integer numbers with Q ≥
H ≥ Qε for some fixed ε > 0, and let A = (an)n∈N be an arbitrary sequence of
complex numbers with |an| = 1. Then, for any δ < 1/4,

max
χ∈X ∗

q

max
h≤H

|Sq(χ;h;A)| ≤ H 1−δ

for all but at most Q4δHϑ+o(1) moduli q ≤ Q, where γ is given by (6), and ϑ =
min{(1 − 2δ)γ,2δ(1 − γ )}.
Proof. As we have mentioned, we follow the ideas of Garaev [9, Thm. 3].
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Without loss of generality we may assume that H = 2M + 1 is an odd integer.
We also define the function e(z) = exp(2πiz). We recall that for any integer z, we
have the orthogonality relation

M∑
b=−M

e

(
bz

H

)
=

{
H if z ≡ 0 (mod H),

0 if z �≡ 0 (mod H);
(7)

see [15, Sec. 3.1]. We also need the bound

u+h∑
n=u+1

e

(
bn

H

)

 H

|b| + 1
, (8)

which holds for any integers b, u, and H ≥ h ≥ 1 with |b| ≤ H/2; see [15, Bound
(8.6)].

Now for each q ≤ Q, we fix χq ∈ X ∗
q and hq ≤ H with

|Sq(χq;hq;A)| = max
χ∈X ∗

q

max
h≤H

|Sq(χ;h;A)|.

Then using (7), we write

Sq(χq;hq;A) =
H∑

r=1

arχq(r)
1

H

hq∑
n=1

M∑
b=−M

e

(
b(r − n)

H

)

= 1

H

M∑
b=−M

hq∑
n=1

e

(
−bn

H

) H∑
r=1

arχq(r)e

(
br

H

)
.

Recalling (8), we see that

Sq(χq;hq;A) 

M∑

b=−M

1

|b| + 1

∣∣∣∣
H∑

r=1

arχq(r)e

(
br

H

)∣∣∣∣.
Writing

|b| + 1 = (|b| + 1)(2ν−1)/2ν(|b| + 1)1/2ν

and using the Hölder inequality, we derive

∑
q≤Q

|Sq(χq;hq;A)|2ν 
 (logQ)2ν−1
M∑

b=−M

1

|b| + 1
Ub, (9)

where

Ub =
∑
q≤Q

∣∣∣∣
H∑

r=1

arχq(r)e

(
br

H

)∣∣∣∣
2ν

.

We now note that ( H∑
r=1

arχq(r)e

(
br

H

))ν

=
T∑

n=1

ρb(n)χq(n),



660 Marc Munsch & Igor E. Shparlinski

where T = Hν and

ρb(n) =
H∑

r1,...,rν=1
r1···rν=n

ar1 · · ·arν e

(
b(r1 + · · · + rν)

H

)
.

Using Lemma 1, we write( H∑
r=1

arχq(r)e

(
br

H

))ν

=
T∑

n=1

ρb(n)
1

τq(χq)

q∑
v=1

gcd(v,q)=1

χq(v)e

(
nv

q

)

=
q∑

v=1
gcd(v,q)=1

χq(v)

τq(χq)

T∑
n=1

ρb(n)e

(
nv

q

)
.

Changing the order of summation, by Lemma 2 and the Cauchy inequality, we
obtain ∣∣∣∣

H∑
r=1

χq(r)e

(
br

H

)∣∣∣∣
2ν

≤
q∑

v=1
gcd(v,q)=1

∣∣∣∣
T∑

n=1

ρb(n)e

(
nv

q

)∣∣∣∣
2

.

Therefore,

Ub ≤
∑
q≤Q

q∑
v=1

gcd(v,q)=1

∣∣∣∣
T∑

n=1

ρb(n)e

(
nv

q

)∣∣∣∣
2

.

Recalling the well-known upper bound on the divisor function d(n) (see [15,
Bound (1.81)]), we conclude that

|ρb(n)| ≤
H∑

r1,...,rν=1
r1···rν=n

1 ≤ (d(n))ν = no(1)

as n → ∞. Thus,
T∑

n=1

|ρb(n)|2 ≤ T o(1)
T∑

n=1

|ρb(n)| ≤ T o(1)Hν = Hν(1+o(1)).

Hence, from Lemma 3 we now derive

Ub ≤ (Q2 + T )

T∑
n=1

|ρb(n)|2 ≤ (Q2 + Hν)Hν(1+o(1)),

which after substitution into (9) implies∑
q≤Q

max
χ∈X ∗

q

max
h≤H

|Sq(χ;h;A)|2ν ≤ (Q2 + Hν)Hν(1+o(1)). (10)

We now define the integer k by

k =
⌊

2 logQ

logH

⌋
.
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Note that

Q2 = Hk+γ .

Using (10) with ν = k (so ν < 2/ε in particular), we see that∑
q≤Q

max
χ∈X ∗

q

max
h≤H

|Sq(χ;h;A)|2k ≤ Q2Hk+o(1).

Hence, the desired bound holds for all but at most

Q2Hk+o(1)H−2k(1−δ) = Q2H−k(1−2δ)+o(1) = H 2kδ+γ+o(1)

= Q4δH (1−2δ)γ+o(1) (11)

moduli q ≤ Q (which is essentially a bound of the same strength as that of [9,
Thm. 10]).

Furthermore, using (10) with ν = k + 1, we see that∑
q≤Q

max
χ∈X ∗

q

max
h≤H

|Sq(χ;h;A)|2(k+1) ≤ H 2(k+1)+o(1).

Hence, the desired bound holds for all but at most

H 2(k+1)+o(1)H−2(k+1)(1−δ) = H 2(k+1)δ+o(1) = Q4δH 2δ(1−γ )+o(1) (12)

moduli q ≤ Q.
The bounds (11) and (12) yield the result. �

Covering the interval [1,H ] by O(logH) dyadic intervals of the form [H0/2,H0]
and using that

min{(1 − 2δ)γ,2δ(1 − γ )} ≤ 2δ(1 − 2δ),

we obtain the following:

Corollary 5. Let H and Q be sufficient large positive integer numbers with
Q ≥ H ≥ Qε for some fixed ε > 0, and let A = (an)n∈N be an arbitrary sequence
of complex numbers with |an| = 1. Then, for any δ < 1/4,

max
χ∈X ∗

q

|Sq(χ;h;A)| ≤ h1−δ

for all h ≤ H and for all but at most Q4δH 2δ(1−2δ)+o(1) moduli q ≤ Q.

For the traditional character sums, that is, when an = 1, we also have the following
result.

Corollary 6. Let Q be a sufficiently large positive integer number. For any fixed
ε > 0 and 3/14 > δ > 0, there is some ξ > 0 such that

max
χ∈X ∗

q

|Sq(χ;h)| ≤ h1−δ

for all h ∈ [Qε,Q] and for all but at most Q1−ξ moduli q ≤ Q.
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Proof. Clearly, it suffices to consider only q ∈ [Q/2,Q]. Let us fix some positive
δ with (3 −√

7)/2 < δ < 3/14. Simple calculus shows that there is some α > 1/2
such that

4δ + 2αδ(1 − 2δ) < 1 and 4δ + (2 − 3α)(1 − 2δ) < 1.

We now note that with the previous parameters, Corollary 5, used with H = Qα�,
implies that it remains to establish the results only for the values of h ∈ [Qα,Q].

Furthermore, by the Pólya–Vinogradov bound (that is, by (3) taken with ν = 1)
we have

max
χ∈X ∗

q

|Sq(χ;h)| ≤ h1−δ

for any h ≥ Q1/2(1−δ) and q ≤ Q.
Therefore, we only need to consider the values of h in the interval [Qα,

Q1/2(1−δ)], which we can cover by O(logQ) dyadic intervals [H/2,H ]. Now,
for H ∈ [Qα,Q1/2(1−δ)], we have

3 < 4(1 − δ) ≤ 2 logQ

logH
≤ 2α−1 < 4.

Hence, writing H = Qβ , for the parameter γ given by (6), we have

γ = 2β−1 − 3.

Recalling Lemma 4, we see that it remains to check that

4δ + β min{(2β−1 − 3)(1 − 2δ),2(4 − 2β−1)δ} < 1

for every β ∈ [α,1/2(1 − δ)]. We now have the following elementary estimates:

4δ + β min{(2β−1 − 3)(1 − 2δ),2(4 − 2β−1)δ}
= 4δ + β(2β−1 − 3)(1 − 2δ) = 4δ + (2 − 3β)(1 − 2δ)

≤ 4δ + (2 − 3α)(1 − 2δ) < 1,

and the result follows. �

4. Background from Additive Combinatorics

We use standard notation of additive combinatorics, including sumsets A + B =
{a+b : a ∈ A, b ∈ B} and k-folded sumsets kA = {a1 +· · ·+ak : a1, . . . , ak ∈ A},
assuming that A and B are subsets of some Abelian group G.

We first recall the Plünnecke inequality; see [23, Cor. 6.29].

Lemma 7. Suppose that A and B are subsets of some Abelian group G and that
#(A + B) ≤ K#A for some K ≥ 1. Then for any nonnegative integers k and m,
we have

#(kB − mB) ≤ Kk+m#A.

We now have the following obvious consequence of Lemma 7.
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Corollary 8. For any fixed integer m ≥ 1 and approximate subgroup U ⊆ F
∗
p ,

we have
#U (m) ≤ (#U)1+o(1).

Suppose that A ⊆ G and B ⊆ H are subsets of Abelian groups G and H, respec-
tively. A map ψ :A → B is called Freiman k-homomorphism if whenever

a1 + · · · + ak = ak+1 + · · · + a2k

for some a1, . . . , a2k , then we also have

ψ(a1) + · · · + ψ(ak) = ψ(ak+1) + · · · + ψ(a2k).

If ψ has an inverse that is also a Freiman k-homomorphism, then we say that ψ

is a Freiman k-isomorphism and also that A and B are Freiman k-isomorphic.
We note that if G is a torsion-free group, then considering a1 = · · · = ak =

a and ak+1 = · · · = a2k = b for some a, b ∈ A, we derive that any Freiman k-
isomorphism is an injection.

We need the following result of Ruzsa [21, Thm. 2.3.5], which is known as
the modelling lemma (see also [20, Thm. 2] for the case G = Z, which is fully
sufficient for our purposes).

Lemma 9. Suppose that A ⊆ G is a finite nonempty subset of a torsion-free
Abelian group G. Then for all integers k ≥ 2 and q ≥ |kA − kA|, there is a set
B ⊆ A with #B ≥ #A/k such that B is Freiman k-isomorphic to a subset of Z/qZ.

We now use Lemma 9 to show that sets with a small doubling contain subsets of
a given cardinality and also with small doubling. We present it in a more general
and explicit form than we need for applications since we think that it may be of
independent interest.

Lemma 10. Suppose that A ⊆ G is a finite nonempty subset of a torsion-free
Abelian group G of cardinality N = #A such that for some L ≥ 1, we have
#(2A) ≤ LN . Then for any positive integer M ≤ N , there is a set C ⊆ A with

#C = M and #(2C) ≤ 10L4M.

Proof. If M ≥ N/2, then we simply take C to be any subset of A of cardinal-
ity M . Then

#(2C) ≤ #(2A) ≤ LN ≤ 2LM.

Now assume that M ≤ N/2. First, we note that applying Lemma 7, we derive
#(2A− 2A) ≤ KN , where K = L4.

Let
B ⊆ A and KN ≤ q ≤ 2KN

be as in Lemma 9 (applied with k = 2), and let ψ be the corresponding Freiman
2-isomorphism. We consider the set X = ψ(B) ⊆ Z/qZ. As we have noticed, ψ

is an injection, so

#X = #B ≥ N

2
≥ M.
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By a simple averaging argument, for any integer R ≥ 1, there is a subset Y ⊆
Z/qZ of R consecutive residue classes modulo q , that is, of {r, . . . , r + R − 1}
for some r ∈ Z, such that

#(X ∩Y) ≥ #X · #Y
q

= R

q
#X .

We now take

R =
⌈

qM

#X

⌉

to guarantee #(X ∩ Y) ≥ M . We now collect arbitrary M elements of X ∩ Y in
one set Z and define

C = ψ−1(Z).

We clearly have #C = #Z = M and also, by the property of Freiman 2-
isomorphisms,

#(2C) = #(2Z) ≤ #(2Y) ≤ 2#Y = 2R

(since Y consists of consecutive residue classes). Furthermore, we have

R ≤
⌈

qM

#X

⌉
≤

⌈
2qM

N

⌉
≤ 4KM� = 4L4M� ≤ 5L4M,

which concludes the proof. �

We now see that Lemma 10 implies that an approximate subgroup of F∗
p contains

subsets of any size that behave as approximate subgroups.

Lemma 11. For any approximate subgroup U ⊆ F
∗
p and for any integer M ≤ #U ,

there is a subset V ⊆ U such that #V = M and

#V(2) ≤ #V(#U)o(1).

Proof. We fix a primitive root g of F∗
p and define the set

A = {a ∈ {0, . . . , p − 2} : ga ∈ U}.
We consider A as the set of integers. Since 0 ≤ a + b ≤ 2p − 4, at most two
elements from 2A correspond to the same element in U (2). So, we conclude that

#(2A) ≤ 2#(U (2)).

The result now follows immediately from Lemma 10. �

We note that in our applications of Lemma 11 the sets U and V are of comparable
cardinalities, so (#U)o(1) = (#V)o(1), and thus V is also an approximate subgroup.
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5. Some Equation over Fp with Variables from Intervals
and Subgroups

We easily verify that Corollary 8 allows us to obtain the following slight variation
of [8, Thm. 1], where instead of the sets U ⊆ Fp with #U (2) ≤ 10#U , we use
approximate subgroups. The proof then goes through without any changes.

Lemma 12. Let an initial interval I ⊆ Fp of length H and an approximate sub-
group U ⊆ F

∗
p of size N satisfy

HkN < p and N ≤ pk/(2k+1)

for some fixed integer k ≥ 1. Then the number J of solutions of the equation over
Fp

x1 = x2u, u ∈ U , x1, x2 ∈ I,

satisfies
J ≤ HNo(1).

Accordingly, we also have the following version of [8, Cor. 1].

Corollary 13. Let an initial interval I ⊆ Fp of length H and an approximate
subgroup U ⊆ F

∗
p of size N satisfy

HkN < p and N ≤ pk/(2k+1)

for some fixed integer k ≥ 1. Then the number K of solutions of the equation over
Fp

x1u1 = x2u2, u1, u2 ∈ U , x1, x2 ∈ I,

satisfies
K ≤ HN1+o(1).

We now prove the following direct extension of [8, Lemma 7]:

Lemma 14. Let an initial interval I ⊆ Fp of length H and an approximate sub-
group U ⊆ F

∗
p of size N satisfy

H ≤ N/2, HkN < p, N ≤ pk/(2k+1)

for some fixed integer k ≥ 1, and let Q be the set of primes q ∈ [N/2,N]. Then
the number S of solutions of the equation over Fp

q1u1x1 = q2u2x2, qi ∈ Q,ui ∈ U , xi ∈ I, i = 1,2,

satisfies
S ≤ HN2+o(1).

Proof. We have S = S1 + S2, where S1 is the number of solutions with the addi-
tional condition q1 = q2, and S2 is the number of solutions with q1 �= q2.

To estimate S1, we observe that we can apply Corollary 13 and derive

S1 ≤ HN2+o(1). (13)
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It remains to estimate S2. We fix x2, u1, u2 such that for λ = u2x2/u1, we have

S2 ≤ HN2T2, (14)

where T2 is the number of solutions of the equation
q1x1

q2
= λ, q1, q2 ∈ Q,q1 �= q2, x1 ∈ I.

From H < N/2 we deduce that gcd(q1x1, q2) = 1. Since N2H < p, from [8,
Lemma 3] we derive that x1q1 and q1 are uniquely determined. Since x1 < q1, the
value x1q1 uniquely determines x1 and q1. Hence, T2 ≤ 1, which, together with
(14), implies

S2 ≤ HN2. (15)

Combining (13) and (15), we conclude the proof. �

6. Products of Intervals and Subgroups

Following the standard notation, we use

A ·B = {ab : a ∈ A, b ∈ B}
to denote the product set of two sets A,B ∈ Fp .

We say that a certain property holds for almost all primes p if it fails for
o(Q/ logQ) primes p ≤ Q as x → ∞.

Here we are interested in the cardinality of the set I · U for an initial interval
I ⊆ Fp and an approximate subgroup U ⊆ F

∗
p . In particular, for almost all primes

p, we extend [8, Thm. 3] to a wider range of #I and #U .

Theorem 15. For any fixed α with 1/3 ≤ α < 1/2 and κ > 0, for almost all
primes p, for any initial interval I ⊆ Fp of length H , and any approximate sub-
group U ⊆ F

∗
p of size N that satisfy

H > p1−α+κ and N ≥ pα,

we have
#(I · U) = p + O(p1−η),

where

η = 3κ

7(1 + κ)
.

Proof. Let Q be a sufficiently large positive integer. It is clear that it suffices to
establish the desired result for all but o(Q/ logQ) primes p in the dyadic interval
p ∈ [Q/2,Q]. Using Corollary 6 with some fixed positive ε < 1 − 2α and δ <

3/14, we see that we can remove o(Q/ logQ) primes p ∈ [Q/2,Q] such that for
remaining primes p, we have

max
χ∈X ∗

p

∣∣∣∣
h∑

n=1

χ(n)

∣∣∣∣ ≤ h1−δ (16)
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for every integer
h ∈ [pε,p], (17)

provided that Q is large enough.
We now always assume that p is such that (16) holds.
We now set

m = κ−1�, � = �p1/m�, M = �pα�, h = �0.4p1−2α�.
By Lemma 11 we can choose a subset V ⊆ U such that

#V = M and #V(2) ≤ #Vpo(1) = (#V)1+o(1).

Let Q be the set of primes q ∈ [M/2,M].
We verify that

h�M ≤ 0.4p1−2α × p1/m × pα = 0.4p1−α+1/m ≤ H

since 1/m < κ . Hence, it suffices to prove that for some ρ > 0 that depends only
on α, κ , and ε, there are at most O(p1−ρ) values of λ ∈ F

∗
p for which the equation

over Fp

qvxz = λ (18)

has no solution in q ∈ Q, v ∈ V and positive integers x ≤ h, z ≤ �.
Let � ⊂ F

∗
p be the set of these elements λ, and let L = #�.

We use the orthogonality of characters χ ∈ Xp to express the number of solu-
tions to (18) for λ ∈ � via the following character sums:

1

p − 1

∑
λ∈�

∑
q∈Q

∑
v∈V

∑
x≤h

∑
z≤�

∑
χ∈Xp

χ(qvxzλ−1) = 0.

We now clear the denominator, change the order of summations, and separate
the term corresponding to the principal character χ = χ0. This leads us to the
equation

h�LM#Q+
∑

χ∈X ∗
p

∑
x≤h

∑
q∈Q

∑
v∈V

χ(qvx)
∑
z≤�

χ(z)
∑
λ∈�

χ(λ) = 0.

Therefore,
h�LM#Q ≤ W, (19)

where

W =
∑

χ∈X ∗
p

∣∣∣∣∑
x≤h

∑
q∈Q

∑
v∈V

χ(xqv)

∣∣∣∣
∣∣∣∣∑
z≤�

χ(z)

∣∣∣∣
∣∣∣∣∑
λ∈�

χ(λ)

∣∣∣∣.
Because ε < 1 − 2α, if Q is sufficiently large, condition (17) is satisfied for our
choice of h. Therefore, the bound (16) holds, and we write∣∣∣∣∑

x≤h

∑
q∈Q

∑
v∈V

χ(xqv)

∣∣∣∣ ≤ (h1−δM#Q)1/m

∣∣∣∣∑
x≤h

∑
q∈Q

∑
v∈V

χ(xqv)

∣∣∣∣
(m−1)/m

.

Using the fact that
m − 1

2m
+ 1

2m
+ 1

2
= 1,
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and extending the summation over all χ ∈ Xp , we obtain

W ≤ (h1−δM#Q)1/m

( ∑
χ∈Xp

∣∣∣∣∑
x≤h

∑
q∈Q

∑
v∈V

χ(xqv)

∣∣∣∣
2)(m−1)/2m

×
( ∑

χ∈Xp

∣∣∣∣∑
z≤�

χ(z)

∣∣∣∣
2m)1/2m( ∑

χ∈Xp

∣∣∣∣∑
λ∈�

χ(λ)

∣∣∣∣
2)1/2

. (20)

First, using the orthogonality of characters, we obtain

∑
χ∈Xp

∣∣∣∣∑
λ∈�

χ(λ)

∣∣∣∣
2

= (p − 1)L (21)

and ∑
χ∈Xp

∣∣∣∣∑
z≤�

χ(z)

∣∣∣∣
2m

= (p − 1)S,

where S is the number of solutions of the following equation over Fp :

z1 · · · zm = zm+1 · · · z2m, 1 ≤ zj ≤ �, i = 1, . . . ,2m.

Since Lm < p, this is in fact an equation over Z, and from the well-known bounds
of the divisor function we obtain S ≤ �m+o(1) solutions. Hence, we have

∑
χ∈Xp

∣∣∣∣∑
z≤�

χ(z)

∣∣∣∣
2m

≤ p�m+o(1). (22)

Furthermore, the same orthogonality property implies that

∑
χ∈Xp

∣∣∣∣∑
x≤h

∑
q∈Q

∑
v∈V

χ(qvx)

∣∣∣∣
2

= (p − 1)T , (23)

where T is the number of solutions of the following equation over Fp:

q1v1x1 = q2v2x2, qi ∈ Q,vi ∈ V,1 ≤ xi ≤ h, i = 1,2. (24)

Using α ≥ 1/3, we verify that for any k ≥ 2 and a sufficiently large Q, we have

h ≤ M/2.

Furthermore, if we define an integer k ≥ 1 by the inequalities

k − 1

2k − 1
< α <

k

2k + 1
,

then we have

M ≤ pα ≤ pk/(2k+1)

and

hkM < pk(1−2α)+α = pk−(2k−1)α < p.
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Hence, due to the choice of V , we see that Lemma 14 applies to equation (24) and
implies T ≤ hM2+o(1), which, together with (23), yields

∑
χ∈Xp

∣∣∣∣∑
x≤h

∑
q∈Q

∑
v∈V

χ(qvx)

∣∣∣∣
2

≤ phM2+o(1). (25)

Substituting (21), (22), and (25) into (20) and recalling (19), we obtain

h�LM#Q ≤ (h1−δM#Q)1/m(p�m)1/2m(pL)1/2(phM2+o(1))(m−1)/2m.

Since #Q = M1+o(1), we obtain

h�LM2 ≤ h(m+1)/2m−δ/m�1/2pL1/2M(m+1)/m+o(1)

or
L ≤ h−2δ/m�−1p2(hM2)−1+1/m.

Finally, since
hM2 = p1+o(1),

we derive
L ≤ h−2δ/m�−1p1+1/m+o(1) = h−2δ/mp1+o(1).

Recalling the choice of m and δ, we conclude the proof. �

In the case where U is a subgroup of F∗
p , we prove a more general and stronger

result under the GRH, which is nontrivial for any H and N as long as HN > p1+κ

for some fixed κ > 0.

Theorem 16. Fix κ > 0. Assuming the GRH, for any prime p, any initial interval
I ⊆ Fp of length H , and any subgroup U ⊆ F

∗
p of size N such that HN > p1+κ ,

we have
#(I · U) = p + O(p1−κ+o(1)).

Proof. It suffices to prove that for some ρ > 0 depending only on ε, there are at
most O(p1−ρ) values of λ ∈ F

∗
p for which the equation over the field Fp

ux = λ (26)

has no solution in u ∈ U and positive integers x ≤ H .
Let � ⊂ F

∗
p be the set of this elements λ, and let L = #�.

We use the orthogonality of characters χ ∈ Xp to express the number of solu-
tions to (26) for λ ∈ � via the following character sums:

1

p − 1

∑
λ∈�

∑
u∈U

∑
x≤H

∑
χ∈Xp

χ(uxλ−1) = 0.

As in the proof of Theorem 15, this leads us to the equation

HLN +
∑

χ∈X ∗
p

∑
x≤H

∑
u∈U

χ(ux)
∑
λ∈�

χ(λ) = 0.

Therefore,
HLN ≤ W, (27)
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where

W =
∑

χ∈X ∗
p

∣∣∣∣∑
x≤h

∑
u∈U

χ(xu)

∣∣∣∣
∣∣∣∣∑
λ∈�

χ(λ)

∣∣∣∣.
Using the Cauchy inequality and extending the summation over all χ ∈ Xp ,

we obtain

W ≤
( ∑

χ∈X ∗
p

∣∣∣∣∑
x≤H

∑
u∈U

χ(xu)

∣∣∣∣
2)1/2( ∑

χ∈Xp

∣∣∣∣∑
λ∈�

χ(λ)

∣∣∣∣
2)1/2

. (28)

Now we use the fact that ∑
u∈U

χ(u) = 0

if χ is nontrivial over the subgroup U . Hence, there are at most (p − 1)/N char-
acters such that the last sum does not vanish, in which case it is equal to N .

Therefore, proceeding as in the proof of Theorem 15 and using the bound (4),
we obtain

W ≤
(

p

N
(NH 1/2po(1))2

)1/2

(pL)1/2.

Substituting this inequality into (27) yields

HLN ≤ (pN)1/2H 1/2(pL)1/2po(1),

giving the bound

L ≤ p2+o(1)

NH
,

which concludes the proof. �

7. Comments

Our proof of Corollary 6 uses (3) (with ν = 1) and thus does not extend to more
general weighted sums Sq(χ;h;A). However, for some interesting sequences A
that admit a version of (3), we can obtain such a result. For example, combin-
ing our argument with a bound of Karacuba [16], we can derive a version of
Corollary 6 for the sequence of shifted primes, that is, for the sequence an = 1 if
n = � + a for a prime � and an = 0 otherwise (where a �= 0 is a fixed integer).

We note that we have slightly modified the scheme of the proof of [8, Thm. 3],
which has allowed us to extract the optimal saving η from the preliminary bounds
used in the proof of Theorem 15. In particular, instead of separating the sum W

into contribution from “good” and “bad” characters and balancing them, we have
used a more direct approach via the Hölder inequality, which makes the optimal
use of bounds on the moments of the character sums involved (including the “∞-
moment”, that is, the bound on the maximum value of some of these sums).

It is easy to see that if for some p instead of (4), we have a weaker bound

max
χ∈Xp\{χ0}

|Sp(χ;h)| ≤ h1−δpo(1)
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with some fixed δ ≤ 1/2, the method of proof of Theorem 16 still applies and
in the case where U is a subgroup of F∗

p , leads to a nontrivial bound under the

condition H 2δN > p1+κ . For example, this observation can be combined with
Corollary 6 to a nontrivial bound under the condition H 3/7N > p1+κ for almost
all p. On the other hand, using the conditional under the GRH bound (4) in the
proof of Theorem 15, we can get the same result for all primes and also with a
larger η = κ/(1 + κ).

The question about the set of elements missing from the set product I · U ,
which is considered in Theorems 15 and 16, is a multiplicative version of the
question of [22] about the set of elements missing from the set difference I − U
(only in the case where U is a subgroup of F∗

p). The argument of [22] also works
for the set sum I + U without any changes. However, in [22] mostly the case
of large subgroups of size #U > p1/2 is of interest, and so the technique used is
different.

Finally, clearly slightly changing the values of η, we can also include the value
α = 1/2 in the range of Theorem 15 (for example, we can apply it with α =
1/2 − κ/2 instead of 1/2 and κ/2 instead of κ/2).
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