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Constructing Banach Spaces of Vector-Valued
Sequences with Special Properties

Geraldo Botelho & Vinícius V. Fávaro

Abstract. We develop new techniques to construct infinite-
dimensional Banach (or quasi-Banach) spaces formed by vector-
valued sequences with special properties. We also investigate when
such Banach/quasi-Banach spaces can be constructed with the maxi-
mum possible dimension. Numerous concrete applications of the re-
sults we prove are provided; the following example is illustrative:
given a Banach space X and p > 1, defining pn := p − 1

log(log(n+4))
,

we prove the existence of a Banach space of maximal dimension
formed, up to the null vector, by X-valued p-summable sequences
not belonging to the Nakano space of X-valued sequences determined
by (pn)∞

n=1.

1. Introduction

The title Linear subsets of nonlinear sets in topological vector spaces of the
recent survey [6] is a precise description of the field to which this paper be-
longs. It has been a long time that mathematicians have been searching for some
linear structure in nonlinear environments, but the paper [2] and the works of
Gurariy and his collaborators (see, e.g. [3; 14; 16; 17]) made the subject fash-
ionable, and the long list of recent references in [6] ensures the vitality of the
area. In this paper we continue the research initiated in [4; 8; 9] on the existence
of infinite-dimensional closed subspaces of Banach or quasi-Banach sequence
spaces formed by sequences with special properties. The state of the art is de-
scribed in [6, Section 2.4.2], and very recent contributions can be found in [13;
15; 23].

Let us explain how our results push the results of [4; 9] quite further. Given
a Banach space X, in [9] the authors introduce a large class of Banach or quasi-
Banach spaces formed by X-valued sequences, called invariant sequences spaces
(see Definition 2.1), which encompasses several classical sequences spaces as
particular cases (see [9, Example 1.2]). Roughly speaking, the main results of
[4; 9] prove that, for every invariant sequence space E of X-valued sequences
and every subset � of (0,∞], there exist a closed infinite-dimensional subspace
of E formed, up to the null vector, by sequences not belonging to

⋃
q∈� �q(X)
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and a closed infinite-dimensional subspace of E formed, up to the null vector,
by sequences not belonging to c0(X). In Section 2 of this paper, we consider the
following much more general situation: given Banach spaces X and Y , a map
f : X −→ Y , a set � ⊆ (0,+∞], and an invariant sequence space E of X-valued
sequences, we investigate the existence of closed infinite-dimensional subspaces
of E formed, up to the origin, by sequences (xj )

∞
j=1 ∈ E such that either

(f (xj ))
∞
j=1 /∈

⋃
q∈�

�q(Y ) or (f (xj ))
∞
j=1 /∈

⋃
q∈�

�w
q (Y ) or

(f (xj ))
∞
j=1 /∈ c0(Y ).

As usual, �p(X) and �w
p (X) are the Banach spaces (p-Banach spaces if 0 <

p < 1) of p-summable and weakly p-summable X-valued sequences, respec-
tively, and c0(X) is the Banach space of norm null X-valued sequences. Let-
ting f be the identity on X, the cases of sequences (xj )

∞
j=1 ∈ E such that

(f (xj ))
∞
j=1 /∈ ⋃

q∈� �q(Y ) or (f (xj ))
∞
j=1 /∈ c0(Y ) recover the situation investi-

gated in [4; 9]. So, the results proved in Section 2 generalize the previous results
in two directions: we consider f belonging to a large class of functions (see Def-
inition 2.3), and we consider spaces formed by sequences (xj )

∞
j=1 ∈ E such that

(f (xj ))
∞
j=1 does not belong to

⋃
q∈� �w

q (Y ), a condition much more restrictive
than not belonging to

⋃
q∈� �q(Y ).

In Section 3 we go even further by investigating when these Banach/quasi-
Banach spaces of X-valued sequences can be constructed with maximal dimen-
sion, that is, with the same dimension as that of the invariant sequence space E.
Refining the argument used in Section 2, we show that, in some cases, this maxi-
mal dimension can be actually achieved.

In order to simplify the statements of the results, we use the following ter-
minology, by now quite standard: a subset A of a topological vector space V is
spaceable if A ∪ {0} contains a closed infinite-dimensional subspace W of V . If
such a subspace W can be chosen such that dim(W) = dim(V ), then A is said to
be maximal spaceable.

It is worth mentioning that our results do not follow from the results of [19]
because we prove the spaceability of sets that are not, in general, complements of
vector subspaces (neither complements of countable unions of vector subspaces).
Even in the case of complements of vector subspaces, for instance, when f is a
linear operator and � is a singleton, our results encompass the nonlocally convex
range 0 < p < 1, whereas the results of [19], although quite general, are confined
to the locally convex case. Moreover, the question of maximal spaceability is not
treated in [19].

After proving the main result of each section (Theorems 2.5 and 3.2), we give
some concrete applications. In Section 2 we consider situations in which the func-
tion f is an (eventually discontinuous) linear operator or homogeneous polyno-
mial.
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For example, we prove that for any two complete nonequivalent norms ‖ · ‖1
and ‖ · ‖2 on an infinite-dimensional space X and p > 0, there exists an infinite-
dimensional Banach/quasi-Banach space formed, up to the origin, by X-valued
‖ · ‖1-p-summable non-‖ · ‖2-weakly p-summable sequences (Corollary 2.15).
Moreover, in Proposition 2.16 we show that even functions f without any alge-
braic structure give rise to interesting applications of Theorem 2.5. In Section 3
we apply Theorem 3.2 to show that for certain sequences (pj )

∞
j=1 of positive

numbers, there exists an infinite-dimensional Banach space of maximal dimen-
sion formed, up to the origin, by p-summable X-valued sequences not belonging
to the vector-valued Nakano sequence space determined by (pj )

∞
j=1.

From now on all Banach and quasi-Banach spaces are considered over a fixed
scalar field K, which can be either R or C.

2. Spaceability

The results of this section are proved within the general framework of invariant
sequence spaces introduced in [9].

Definition 2.1. Let X �= {0} be a Banach space.

(a) Given x ∈ XN, by x0 we mean the zerofree version of x, that is: if x has
only finitely many nonzero coordinates, then x0 = 0; otherwise, x0 = (xj )

∞
j=1

where xj is the j th nonzero coordinate of x.
(b) By an invariant sequence space over X we mean an infinite-dimensional Ba-

nach or quasi-Banach space E of X-valued sequences satisfying the following
conditions:
(b1) For x ∈ XN such that x0 �= 0, x ∈ E if and only if x0 ∈ E, and in this

case, ‖x‖E ≤ K‖x0‖E for some constant K depending only on E.
(b2) ‖xj‖X ≤ ‖x‖E for every x = (xj )

∞
j=1 ∈ E and every j ∈N.

An invariant sequence space is an invariant sequence space over some Banach
space X.

Several classical sequence spaces are invariant sequence spaces (see [9, Exam-
ple 1.2]). For an invariant sequence space over X, spaceability of sets of the form
E − ⋃

q∈� �q(X), where � ⊆ (0,+∞], and E − c0(X) was studied in [9]. Here
we take this study further by investigating the spaceability of the following sets:

Definition 2.2. Let X and Y be Banach spaces, E be an invariant sequence space
over X, � ⊆ (0,+∞], and f : X −→ Y be a function. We define the following
sets:

C(E,f,�) =
{
(xj )

∞
j=1 ∈ E : (f (xj ))

∞
j=1 /∈

⋃
q∈�

�q(Y )

}
,

Cw(E,f,�) =
{
(xj )

∞
j=1 ∈ E : (f (xj ))

∞
j=1 /∈

⋃
q∈�

�w
q (Y )

}
, and

C(E,f,0) = {(xj )
∞
j=1 ∈ E : (f (xj ))

∞
j=1 /∈ c0(Y )}.
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The case studied in [9] is simply the case of C(E,f,�) and C(E,f,0) with f

being the identity on X. Observe that the case of Cw(E,f,�) is not treated in [9]
at all. Whenever we say that either C(E,f,�), or Cw(E,f,�), or C(E,f,0) is
spaceable, we mean that it is spaceable in E.

Different (but closely related) types of subhomogeneous functions have been
considered in the literature (see, e.g., [10; 12; 20]). Here we use a class of func-
tions that encompasses the subhomogeneous functions as particular cases (see
Example 2.4). The applications of subhomogeneous functions f usually require
that f (0) = 0, so we have incorporated this condition to the definition:

Definition 2.3. A map f : X −→ Y between normed spaces is said to be:

(a) Noncontractive if f (0) = 0 and for every scalar α �= 0, there is a constant
K(α) > 0 such that

‖f (αx)‖Y ≥ K(α) · ‖f (x)‖Y

for every x ∈ X.
(b) Strongly noncontractive if f (0) = 0 and for every scalar α �= 0, there is a

constant K(α) > 0 such that

|φ(f (αx))| ≥ K(α) · |φ(f (x))|
for all x ∈ X and φ ∈ Y ′.

By the Hahn–Banach theorem, strongly noncontractive functions are noncontrac-
tive.

Example 2.4. Subhomogeneous functions are noncontractive because:

(a) A map f : X −→ Y such that f (0) = 0 and, for every scalar α �= 0, there is a
constant λα > 0 such that

‖f (αx)‖ ≥ |α|λα · ‖f (x)‖ for every x ∈ X

is noncontractive,
(b) A map f : X −→ Y such that f (0) = 0 and, for every scalar α �= 0, there is a

constant λα > 0 such that

|φ(f (αx))| ≥ |α|λα · |φ(f (x))| for all φ ∈ Y ′ and x ∈ X

is strongly noncontractive.

It is plain that bounded and unbounded linear operators are strongly noncon-
tractive (hence noncontractive) with K(α) = |α| for every α �= 0 and that homo-
geneous polynomials (continuous or not) are strongly contractive (hence contrac-
tive) with K(α) = |α|n for every α �= 0, where n is the degree of homogeneity.

Now we can prove the main result of this section.

Theorem 2.5. Let X and Y be Banach spaces, E be an invariant sequence space
over X, f : X −→ Y be a function, and � ⊆ (0,+∞].
(a) If f is noncontractive, then C(E,f,�) and C(E,f,0) are either empty or

spaceable.
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(b) If f is strongly noncontractive, then Cw(E,f,�) is either empty or space-
able.

Proof. (a) Let us fix a notation. For α = (αn)
∞
n=1 ∈K

N and w ∈ X, we denote

w ⊗ α = α ⊗ w := (αnw)∞n=1 ∈ XN.

The proof begins following the idea of the proof of [9, Thm. 1.3]. Assume that
C(E,f,�) is nonempty and choose x ∈ C(E,f,�). Since E is an invariant
sequence space, we have x0 ∈ E, and the condition f (0) = 0 guarantees that
x0 ∈ C(E,f,�). Writing x0 = (xj )

∞
j=1, we have that xj �= 0 for every j . Split N

into countably many infinite pairwise disjoint subsets (Ni )
∞
i=1. For every i ∈ N,

set Ni = {i1 < i2 < · · · } and define

yi =
∞∑

j=1

xj ⊗ eij ∈ XN.

Observe that y0
i = x0, so 0 �= y0

i ∈ E; hence, yi ∈ E for every i because E is
an invariant sequence space. For q ∈ �, q < +∞, we have

∑∞
j=1 ‖f (xj )‖q

Y =
+∞ because x0 ∈ C(E,f,�). If +∞ ∈ �, then by the same reason we have
supi ‖f (xi)‖Y = +∞. It follows that each yi ∈ C(E,f,�). Let K be the constant
of condition 2.1(b1) and define s̃ = 1 if E is a Banach space and s̃ = s if E is an
s-Banach space, 0 < s < 1. For (ai)

∞
i=1 ∈ �s̃ ,

∞∑
i=1

‖aiyi‖s̃
E =

∞∑
i=1

|ai |s̃ · ‖yi‖s̃
E ≤ Ks̃ ·

∞∑
i=1

|ai |s̃ · ‖y0
i ‖s̃

E

= Ks̃ · ‖x0‖s̃
E ·

∞∑
i=1

|ai |s̃

= Ks̃ · ‖x0‖s̃
E · ‖(ai)

∞
i=1‖s̃

s̃ < +∞.

Thus,
∑∞

i=1 ‖aiyi‖E < +∞ if E is a Banach space and
∑∞

i=1 ‖aiyi‖s
E < +∞ if

E is an s-Banach space, 0 < s < 1. In both cases the series
∑∞

i=1 aiyi converges
in E; hence, the operator

T : �s̃ −→ E, T ((ai)
∞
i=1) =

∞∑
i=1

aiyi,

is well defined. It is easy to see that T is linear and injective. Thus, T (�s̃) is
a closed infinite-dimensional subspace of E. We just have to show that if z =
(zn)

∞
n=1 ∈ T (�s̃), z �= 0, then (f (zn))

∞
n=1 /∈ ⋃

q∈� �q(Y ). Given such a z, there are

sequences (a
(k)
i )∞i=1 ∈ �s̃ , k ∈ N, such that z = limk→∞ T ((a

(k)
i )∞i=1) in E. Note

that, for each k ∈ N,

T ((a
(k)
i )∞i=1) =

∞∑
i=1

a
(k)
i yi =

∞∑
i=1

a
(k)
i ·

∞∑
j=1

xj eij =
∞∑
i=1

∞∑
j=1

a
(k)
i xj eij .
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Fix r ∈ N such that zr �= 0. Since N = ⋃∞
j=1 Nj , there are (unique) m, t ∈ N such

that emt = er . Thus, for each k ∈ N, the r th coordinate of T ((a
(k)
i )∞i=1) is the

vector a
(k)
m xt . Condition 2.1(b2) ensures that convergence in E implies coordi-

natewise convergence, so

zr = lim
k→∞a(k)

m xt =
(

lim
k→∞a(k)

m

)
xt .

It follows that αm := limk→∞ a
(k)
m �= 0. On the one hand, we have

αmxj =
(

lim
k→∞a(k)

m

)
xj = lim

k→∞a(k)
m xj

for every j ∈ N. On the other hand, for j, k ∈ N, the mj th coordinate of

T ((a
(k)
i )∞i=1) is a

(k)
m xj . So, coordinatewise convergence gives limk→∞ a

(k)
m xj =

zmj
. It follows that zmj

= αmxj for every j ∈ N. Observe that m, which de-
pends on r , is fixed, so the natural numbers (mj )

∞
j=1 are pairwise distinct (re-

call that Nm = {m1 < m2 < · · · }). Since
∑∞

j=1 ‖f (xj )‖q
Y = +∞ for every q ∈ �,

q �= +∞, by Definition 2.3(a) we have

∞∑
n=1

‖f (zn)‖q
Y ≥

∞∑
j=1

‖f (zmj
)‖q

Y =
∞∑

j=1

‖f (αmxj )‖q
Y

≥ [K(αm)]q ·
∞∑

j=1

‖f (xj )‖q
Y = +∞

for every q in �, q �= +∞. Besides, if +∞ ∈ �, then we have (f (xj ))
∞
j=1 /∈

�∞(Y ) because x0 ∈ C(E,f,�); therefore,

sup
n

‖f (zn)‖Y ≥ sup
j

‖f (zmj
)‖Y = sup

j

‖f (αmxj )‖Y

≥ K(αm) · sup
j

‖f (xj )‖Y = +∞.

This shows that (f (zn))
∞
n=1 /∈ ⋃

q∈� �q(X) and completes the proof that z ∈
C(E,f,�).

Assume now that C(E,f,0) is nonempty and choose x ∈ C(E,f,0). As be-
fore, x0 ∈ E because E is an invariant sequence space, and x0 ∈ C(E,f,0)

because f (0) = 0 and x0 = (xj )
∞
j=1 with xj �= 0 for every j . Proceeding as

before, we define the vectors yi ∈ E for i ∈ N. We know that f (xi) �−→ 0
because x0 ∈ C(E,f,0), so each yi ∈ C(E,f,0). Define the injective lin-
ear operator T : �s̃ −→ E as before and note that all we have to prove is
that if z = (zn)

∞
n=1 ∈ T (�s̃), z �= 0, then (f (zn))

∞
n=1 /∈ c0(Y ). To do so, con-

struct the subsequence (zmj
)∞j=1 as before and recall that zmj

= αmxj for ev-

ery j , where αm �= 0. Since ‖f (xj )‖Y �−→ 0 because x0 ∈ C(E,f,0), we
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have

lim sup
n

‖f (zn)‖Y ≥ lim sup
j

‖f (zmj
)‖Y = lim sup

j

‖f (αmxj )‖Y

≥ K(αm) · lim sup
j

‖f (xj )‖Y > 0,

which proves that ‖f (zn)‖Y �−→ 0, and hence f (zn) �−→ 0 in Y .
(b) If +∞ ∈ �, then there is nothing to prove because, in this case,

Cw(E,f,�) = C(E,f,�), which was treated in (a) with a weaker assumption
on f . We thus can assume that +∞ /∈ �. Assume that Cw(E,f,�) is nonempty
and choose x ∈ Cw(E,f,�). Once again, x0 ∈ E because E is an invariant
sequence space, and x0 ∈ Cw(E,f,�) because f (0) = 0 and x0 = (xj )

∞
j=1

with xj �= 0 for every j . Proceeding as before, we define the vectors yi ∈ E

for i ∈ N. For q ∈ �, since x0 ∈ Cw(E,f,�), there is φq ∈ Y ′ such that∑∞
j=1 |φq(f (xj ))|q = +∞, so each yi ∈ Cw(E,f,�). Define the injective lin-

ear operator T : �s̃ −→ E as in the proof of (a) and note that all we have to
prove is that if z = (zn)

∞
n=1 ∈ T (�s̃), z �= 0, then (f (zn))

∞
n=1 /∈ �w

q (Y ) for every
q ∈ �. To do so, construct the subsequence (zmj

)∞j=1 as before and recall that
zmj

= αmxj for every j , where αm �= 0. Given q ∈ �, by Definition 2.3(b) we
have

∞∑
n=1

|φq(f (zn))|q ≥
∞∑

j=1

|φq(f (zmj
))|q =

∞∑
j=1

|φq(f (αmxj ))|q

≥ [K(αm)]q ·
∞∑

j=1

|φq(f (xj ))|q = +∞,

proving that z /∈ �w
q (Y ). �

Observe that [9, Thm. 1.3] is a particular case of Theorem 2.5(a) with f being the
identity operator on X. So, all consequences of [9, Thm. 1.3] listed in [9] are also
consequences of Theorem 2.5. Next, we list some consequences of Theorem 2.5
that do not follow from [9, Thm. 1.3].

Definition 2.6. Let X and Y be Banach spaces, and 0 < p ≤ q < +∞. We say
that

• a linear operator u : X −→ Y is absolutely (q,p)-summing if (u(xj ))
∞
j=1 ∈

�p(Y ) for each (xj )
∞
j=1 ∈ �w

q (X).
• an n-homogeneous polynomial P : X −→ Y is p-dominated if (P (xj ))

∞
j=1 ∈

�p/n(Y ) for each (xj )
∞
j=1 ∈ �w

p (X).

Corollary 2.7. Let X and Y be Banach spaces.

(a) Let 1 ≤ p ≤ q < +∞, and let u : X −→ Y be a nonabsolutely (q,p)-
summing linear operator. Then the set

{(xj )
∞
j=1 ∈ �w

p (X) : (u(xj ))
∞
j=1 /∈ �q(Y )}

is spaceable.
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(b) Let 0 < p < +∞, and let P : X −→ Y be a non-p-dominated n-homoge-
neous polynomial. Then the set

{(xj )
∞
j=1 ∈ �w

p (X) : (P (xj ))
∞
j=1 /∈ �p/n(Y )}

is spaceable.

Proof. Just apply Theorem 2.5 having in mind that linear operators and homo-
geneous polynomials are (strongly) noncontractive maps and that �w

p (X) is an
invariant sequence space over X. �

There are lots of continuous nonabsolutely (q,p)-summing linear operators
studied in the literature. Many results asserting the existence of continuous
non-p-dominated homogeneous polynomials are available (see [11] and refer-
ences therein). They give us another opportunity to apply our results, for exam-
ple:

Corollary 2.8. Let X be an infinite-dimensional Banach space, n ≥ 3, and
p ≥ 1. Then the set

{(xj )
∞
j=1 ∈ �w

p (X) : (P (xj ))
∞
j=1 /∈ �p/n}

is spaceable for some continuous scalar-valued n-homogeneous polynomial P

on X.

Proof. By [11, Thm. 2.4] there is a continuous scalar-valued non-p-dominated
n-homogeneous polynomial on X. The result follows from Corollary 2.7(b). �

We keep on using the standard terminology regarding linear operators and homo-
geneous polynomials:

Definition 2.9. Let X and Y be Banach spaces. The symbol xj
w−→ x means

that the sequence (xj )
∞
j=1 is weakly convergent to x. We say that

• a linear operator u : X −→ Y is completely continuous if u(xj ) −→ u(x) in Y

whenever xj
w−→ x in X;

• an n-homogeneous polynomial P : X −→ Y is weakly sequentially continuous

at the origin if P(xj ) −→ 0 in Y whenever xj
w−→ 0 in X.

By cw
0 (X) we denote the closed subspace of �∞(X) formed by weakly null X-

valued sequences. It is easy to check that cw
0 (X) is an invariant sequence space

over X, so from Theorem 2.5 we have the following:

Corollary 2.10. Let X and Y be Banach spaces.

(a) Let u : X −→ Y be a noncompletely continuous linear operator. Then the set

{(xj )
∞
j=1 ∈ cw

0 (X) : (u(xj ))
∞
j=1 /∈ c0(Y )}

is spaceable. In particular, if X lacks the Schur property, then there exists an
infinite-dimensional Banach space formed, up to the origin, by weakly null
but not norm null X-valued sequences.
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(b) Let P : X −→ Y be an n-homogeneous polynomial that fails to be weakly
sequentially continuous at the origin. Then the set

{(xj )
∞
j=1 ∈ cw

0 (X) : (P (xj ))
∞
j=1 /∈ c0(Y )}

is spaceable.

Again, linear operators that fail to be completely continuous and homogeneous
polynomials that fail to be weakly sequentially continuous at the origin are easily
found in the literature.

Our next purpose is to explore the possibility of considering discontinuous
functions in Theorem 2.5. If u : X −→ Y is an unbounded linear operator, then
there is a sequence (xj )

∞
j=1 such that xj −→ 0 in X but u(xj ) �−→ 0 in Y . We

shall see, as a particular case of a more general result, that there is an infinite-
dimensional Banach space formed, up to the null vector, by sequences of this
type.

Definition 2.11. A map f : X −→ Y between Banach spaces is said to be:

• bounded if f sends bounded subsets of X to bounded subsets of Y ,
• linearly strongly noncontractive near the origin if it is strongly noncontractive

and there are 0 < ε ≤ 1 and t > 0 such that in Definition 2.3(b) we can choose
K(α) = t |α| whenever 0 < |α| < ε.

Proposition 2.12. Let X, Y be Banach spaces, and f : X −→ Y be a map.

(a) If f is discontinuous at the origin and noncontractive, then the set

{(xj )
∞
j=1 ∈ c0(X) : (f (xj ))

∞
j=1 /∈ c0(Y )}

is spaceable.
(b) If f is unbounded and linearly strongly noncontractive near the origin, then

the set

{(xj )
∞
j=1 ∈ �p(X) : (f (xj ))

∞
j=1 /∈ �w

p (Y )}
is spaceable for every p > 0.

Proof. (a) The discontinuity of f at the origin and the fact that f (0) = 0 guar-
antee that C(c0(X),f,0) is nonempty, so its spaceability follows from Theo-
rem 2.5(a) because c0(X) is an invariant sequence space over X.

(b) Let us prove that Cw(�p(X),f, {p}) �= ∅ for p > 0: by the unbounded-
ness of f there is a bounded sequence (xj )

∞
j=1 in X such that (f (xj ))

∞
j=1 /∈

�∞(Y ). Since weakly bounded subsets of Banach spaces are norm bounded [21,
Thm. 2.5.5], the set {f (xj ) : j ∈ N} fails to be weakly bounded in Y . Thus, there
is a functional φ ∈ Y ′ such that (|φ(f (xj ))|p)∞j=1 /∈ �∞. By the duality �′

1 = �∞
and the Banach–Steinhaus theorem (uniform boundedness principle) there is a
sequence (αj )

∞
j=1 ∈ �1 such that the numerical series

∑∞
j=1 αj |φ(f (xj ))|p di-

verges. In particular,
∑∞

j=1 |αj | · |φ(f (xj ))|p = +∞. Let 0 < ε ≤ 1 and t > 0 be
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as in the definition of linearly strongly noncontractive map at the origin, and let
N ∈ N be such that |αj |1/p < ε for every j ≥ N . So K(|αj |1/p) = t |αj |1/p for
j ≥ N , and hence

∞∑
j=N

|φ(f (|αj |1/pxj ))|p ≥
∞∑

j=N

[K(|αj |1/p)]p · |φ(f (xj ))|p

= tp ·
∞∑

j=N

|αj | · |φ(f (xj ))|p = +∞.

Putting zj = |αj |1/pxj , we have that (zj )
∞
j=1 ∈ �p(X) because (xj )

∞
j=1 is

bounded and (αj )
∞
j=1 ∈ �1, and, by the computation before, (f (zj ))

∞
j=1 /∈ �w

p (Y ).
It follows that Cw(�p(X),f, {p}) �= ∅; hence, it is spaceable by Theorem 2.5(b)
because �p(X) is an invariant sequence space over X for every p > 0. �

Recall that a subset A of a topological vector space E is maximal dense-lineable
if A ∪ {0} contains a dense linear subspace V of E with dim(V ) = dim(E).

Proposition 2.13. Let X and Y be Banach spaces, and p > 0. Then the sets

{(xj )
∞
j=1 ∈ c0(X) : (u(xj ))

∞
j=1 /∈ c0(Y )} and

{(xj )
∞
j=1 ∈ �p(X) : (u(xj ))

∞
j=1 /∈ �w

p (Y )}
are spaceable for every unbounded linear operator u : X −→ Y . Moreover,
if X is separable and p < +∞, then these subsets are also maximal dense-
lineable.

Proof. The first assertion follows from Proposition 2.12. We shall apply [5,
Thm. 2.3(b)] to prove the second assertion. Assume that X is separable and
p < +∞. It is easy to see that c0(X) and �p(X) are separable as well. Let A

be either C(c0(X),u,0) or Cw(�p(X),u, {p}). By the first assertion we know
that A ∪ {0} contains a c-dimensional subspace, where c is the cardinality of the
continuum. Let c00(X) denote the space of eventually null X-valued sequences.
It is clear that A + c00(X) ⊆ A, A ∩ c00(X) = ∅ and c00(X) is a dense infinite-
dimensional subspace of c0(X) and �p(X). By [5, Thm. 2.3(b)] A ∪ {0} contains
a c-dimensional dense subspace, and the result follows because c0(X) and �p(X)

are c-dimensional (recall that they are separable infinite-dimensional Banach or
quasi-Banach spaces). �

Example 2.14. Let X be an infinite-dimensional Banach space, and 0 < p <

+∞. In [9, Cor. 1.5] it is proved that �w
p (X) − �p(X) is spaceable, that is,

there exists an infinite-dimensional Banach/quasi-Banach space formed, up to
the origin, by X-valued sequences (xj )

∞
j=1 such that

∑∞
j=1 |φ(xj )|p < +∞ for

every bounded linear functional φ ∈ X′ and
∑∞

j=1 ‖xj‖p = +∞. Considering
an unbounded linear functional φ on X, which always exists, Proposition 2.13
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yields the following dual result: there exists an infinite-dimensional Banach/quasi-
Banach space formed, up to the origin, by X-valued sequences (xj )

∞
j=1 such that∑∞

j=1 ‖xj‖p < +∞ and
∑∞

j=1 |φ(xj )|p = +∞.

For the full appreciation of the next application, keep in mind that every infinite-
dimensional Banach space admits lots of complete nonequivalent norms (see, e.g.,
[1]). Given two complete nonequivalent norms ‖ ·‖1 and ‖ ·‖2 on X, it is expected
that the sets �p(X,‖ · ‖1) − �p(X,‖ · ‖2) and �w

p (X,‖ · ‖1) − �w
p (X,‖ · ‖2) are

spaceable (we are using the notation A−B = A∩B�). Applying Proposition 2.13
(and the open mapping theorem) we have much more:

Corollary 2.15. Let ‖ · ‖1 and ‖ · ‖2 be any two complete nonequivalent norms
on an infinite-dimensional space X, and p > 0. Then the sets

c0(X,‖ · ‖1) − c0(X,‖ · ‖2) and �p(X,‖ · ‖1) − �w
p (X,‖ · ‖2)

are spaceable. Moreover, if X is separable and p < +∞, then these subsets are
also maximal dense-lineable.

Of course, the corollary can be adapted, mutatis mutandis, to any pair of noniso-
morphic infinite-dimensional Banach spaces of the same dimension, for example,
for any two nonisomorphic separable infinite-dimensional Banach spaces.

Applications of Theorem 2.5 go beyond linear operators and homogeneous
polynomials. We give below an illustrative example. For the definition of r-
regular maps, see [20, Def. 2.2]; examples, including and beyond linear operators
and homogeneous polynomials, can be found in [20, Examples 2.4].

Proposition 2.16. Let p,q > 0, X, Y be Banach spaces, and f : X −→ Y be a
noncontractive map that fails to be p

q
-regular at the origin. Then the set

{(xj )
∞
j=1 ∈ �p(X) : (f (xj ))

∞
j=1 /∈ �q(Y )}

is spaceable.

Proof. By [20, Thm. 2.5], the non- p
q

-regularity of f at the origin ensures that the
set C(�p(X),f, {q}) is nonvoid, so its spaceability follows from Theorem 2.5(a).

�

3. Maximal Spaceability

Whereas in Section 2 we proved spaceability of certain sets of vector-valued se-
quences, in this section we move forward to prove maximal spaceability. With
such a much more general conclusion, we are supposed to work with more re-
strictive conditions. To give our result more generality, we work with sequences
of functions instead of one single function. In doing so, we give an interesting
application (Corollary 3.3) of the main result of this section (Theorem 3.2) within
the setting of classical Nakano sequence spaces.



550 Geraldo Botelho & Vinícius V. Fávaro

Definition 3.1. A sequence of functions (fj : K −→ K)∞j=1 is said to be:

(a) Noncontractive if fj (0) = 0 for every j and for every scalar α �= 0, there is a
constant K(α) > 0 such that

|fj (αξ)| ≥ K(α) · |fj (ξ)| for all ξ ∈K and j ∈ N

and if inf{K(α) : |α| = 1} > 0.
(b) Nonincreasing near the origin if there are C > 0 and ε > 0 such that |fn(ξ)| ≥

C|fm(ξ)| whenever n ≤ m and |ξ | < ε.

For p > 0 and � ⊆ (0,+∞], define

C(�p, (fj )
∞
j=1,�) =

{
(ξj )

∞
j=1 ∈ �p : (fj (ξj ))

∞
j=1 /∈

⋃
q∈�

�q

}
.

Theorem 3.2. Let (fj : K −→ K)∞j=1 be a noncontractive and nonincreasing
near the origin sequence, p > 0, and � ⊆ (0,+∞]. If C(�p, (fj )

∞
j=1,�) is

nonempty, then

C(�p(X), (fj ◦ ‖ · ‖)∞j=1,�) :=
{
(xj )

∞
j=1 ∈ �p(X) : (fj (‖xj‖))∞j=1 /∈

⋃
q∈�

�q

}

is maximal spaceable, regardless of the infinite-dimensional Banach space X.

Proof. The structure of the proof is similar to that of Theorem 2.5, but the differ-
ences are substantial, and it is worth giving a detailed argument.

By assumption there exists a scalar sequence ξ = (ξj )
∞
j=1 ∈ �p such that

(fj (ξj ))
∞
j=1 /∈ ⋃

q∈� �q . Since fj (0) = 0 for every j , it is clear that we may sup-
pose that ξj �= 0 for every j ∈ N. Again, split N into countably many infinite
pairwise disjoint subsets Ni = {i1 < i2 < · · · }, i ∈ N, and define

yi =
∞∑

j=1

ξj eij ∈K
N

for every i ∈ N. Since ‖yi‖r = ‖ξ‖r for every r > 0 and fj (0) = 0 for every j ,
we have that yi ∈ C(�p, (fj )

∞
j=1,�) for every i. As in the proof of Theorem 2.5,

for λ = (λn)
∞
n=1 ∈ K

N and w ∈ X, we denote

λ ⊗ w := (λnw)∞n=1 ∈ XN.

Define s̃ = 1 if p ≥ 1 and s̃ = p if 0 < p < 1. For (wj )
∞
j=1 ∈ �s̃(X),

∞∑
j=1

‖yj ⊗ wj‖s̃
p =

∞∑
j=1

∥∥∥∥
∞∑

k=1

ξkwjejk

∥∥∥∥
s̃

p

=
∞∑

j=1

( ∞∑
k=1

‖ξkwj‖p
X

)s̃/p

=
∞∑

j=1

( ∞∑
k=1

|ξk|p · ‖wj‖p
X

)s̃/p
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=
∞∑

j=1

‖wj‖s̃
X ·

( ∞∑
k=1

|ξk|p
)s̃/p

=
∞∑

j=1

‖wj‖s̃
X · ‖ξ‖s̃

p = ‖ξ‖s̃
p · ‖(wj )

∞
j=1‖s̃

s̃ < +∞.

Thus,
∑∞

j=1 ‖yj ⊗ wj‖p < +∞ if p ≥ 1 and
∑∞

j=1 ‖yj ⊗ wj‖p
p < +∞ if

0 < p < 1. It follows that the series
∑∞

j=1 yj ⊗ wj converges in �p(X) and the
operator

T : �s̃(X) −→ �p(X), T ((wj )
∞
j=1) =

∞∑
j=1

yj ⊗ wj ,

is well defined. Clearly, T is linear and injective, and thus T (�s̃(X)) is a closed
infinite-dimensional subspace of �p(X) with

dim�p(X) ≥ dimT (�s̃(X)) ≥ dimT (�s̃(X)) = dim�s̃(X) = dim�p(X);
hence, dimT (�s̃(X)) = dim�p(X). Now we just have to show that if z =
(zn)

∞
n=1 ∈ T (�s̃(X)), z �= 0, then (fn(‖zn‖))∞n=1 /∈ ⋃

q∈� �q . There are sequences

(w
(k)
i )∞i=1 ∈ �s̃(X), k ∈ N, such that z = limk→∞ T ((w

(k)
i )∞i=1) in �p(X). Note

that, for each k ∈ N,

T ((w
(k)
i )∞i=1) =

∞∑
i=1

yi ⊗ w
(k)
i

=
∞∑
i=1

∞∑
j=1

ξjw
(k)
i eij .

Since z �= 0, there is r ∈ N such that zr �= 0. Since N = ⋃∞
j=1 Nj , there are

(unique) m, t ∈ N such that emt = er . Thus, for each k ∈ N, the r th coordinate

of T ((w
(k)
i )∞i=1) is ξtw

(k)
m . Since convergence in �p(X) implies coordinatewise

convergence, we have

zr = lim
k→∞ ξtw

(k)
m = ξt · lim

k→∞w(k)
m

and

lim
k→∞w(k)

m = zr

ξt

�= 0.

For j, k ∈ N, the mj th coordinate of T ((w
(k)
i )∞i=1) is ξjw

(k)
m . Defining um =

zr/ξt �= 0, we have

lim
k→∞ ξjw

(k)
m = ξj · lim

k→∞w(k)
m = ξjum

for every j ∈ N. On the other hand, coordinatewise convergence gives
limk→∞ ξjw

(k)
m = zmj

, so zmj
= ξjum for each j ∈ N. By construction we have

mj ≤ j for every j . Let C and ε be as in Definition 3.1(b). Since ξ ∈ �p , there is
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N ∈N such that |ξn| < ε for n ≥ N . Finally,

∞∑
j=N

|fmj
(‖zmj

‖)|q ≥
∞∑

j=N

[K(‖um‖)]q · |fmj
(|ξj |)|q

≥ C · [K(‖um‖)]q ·
∞∑

j=N

|fj (|ξj |)|q

= C · [K(‖um‖)]q ·
∞∑

j=N

∣∣∣∣fj

(
ξj

ξj

|ξj |
)∣∣∣∣

q

≥ C · [K(‖um‖)]q ·
∞∑

j=N

[
K

( |ξj |
ξj

)]q

· |fj (ξj )|q

≥ C · [K(‖um‖)]q ·
[

inf|α|=1
K(α)

]q ·
∞∑

j=N

|fj (ξj )|q

= C · [K(‖um‖)]q ·
[

inf|α|=1
K(α)

]q · ‖(fj (ξj ))
∞
j=N‖q

q = +∞

for all 0 < q < p, proving that (fn(‖zn‖))∞n=1 /∈ ⋃
q∈� �q . �

Let us give a concrete application of Theorem 3.2. In what follows, 	 shall be
either [1,+∞) or (0,1]. Given a bounded sequence (pj )j=1 ⊆ 	 and a Banach
space X, by �((pj )

∞
j=1,X) we denote the Nakano space of X-valued sequences,

that is,

�((pj )
∞
j=1,X) =

{
(xj )

∞
j=1 ∈ XN :

∞∑
j=1

‖xj‖pj < +∞
}
.

As usual, when X = K, we simply write �((pj )
∞
j=1). This space of scalar-valued

Nakano sequences was introduced in [22] for 	 = [1,+∞) and has been explored
by many authors since then (see, e.g., [18] and references therein). For the case
	 = (0,1], see [24]. For vector-valued Nakano sequence spaces, we refer to [7].
The referee kindly pointed out to us that spaceability in scalar-valued Nakano se-
quence spaces has been recently treated in [23]. As far as we know, (maximal)
spaceability involving vector-valued Nakano sequence spaces has never been in-
vestigated. In this direction we have the following:

Corollary 3.3. Let (pj )j=1 ⊆ 	 be a monotonically nondecreasing bounded
sequence, and p > 0. If �p −�((pj )

∞
j=1) is nonempty, then �p(X)−�((pj )

∞
j=1,X)

is maximal spaceable, regardless of the infinite-dimensional Banach space X.

Proof. For j ∈N, consider the function

fj : K −→K, fj (ξ) = |ξ |pj .
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It is clear that fj (0) = 0. Let L ≥ 1 be such that pj ≤ L for every j . For α ∈ K,
α �= 0, choosing

K(α) =
{

min{|α|, |α|L} if 	 = [1,+∞),

min{|α|, |α|p1} if 	 = (0,1],
condition (a) of Definition 3.1 is fulfilled. From the monotonicity of the se-
quence (pj )

∞
j=1, condition (b) holds for C = ε = 1. Letting � = {1}, we have

C(�p, (fj )
∞
j=1,�) = �p −�((pj )

∞
j=1) and C(�p(X), (fj ◦‖·‖)∞j=1,�) = �p(X)−

�((pj )
∞
j=1,X), so the result follows from Theorem 3.2. �

Of course, the most interesting case occurs when pj −→ p. We can find in the
literature several situations where �p −�((pj )

∞
j=1) �= ∅ with (pj )

∞
j=1 being mono-

tonically nondecreasing and pj −→ p (hence bounded). For example, in the case
	 = [1,+∞), take p > 1 and a monotonically nondecreasing sequence (aj )

∞
j=1

of real numbers such that aj −→ +∞ and
∑∞

j=1 Caj = +∞ for every 0 < C < 1.
A concrete example of such a sequence is aj = 1 + log(log(j + 4)) (see [22,
p. 512]). Putting pj = p − 1/aj , we obtain a monotonically increasing sequence
converging to p such that �p − �((pj )

∞
j=1) �= ∅ (cf. [7, Cor. 2.1]). For the case

	 = (0,1] and p = 1, see [24, Thm. 3].

Acknowledgments. The authors thank L. Bernal-González for his helpful
suggestions and the referee for his/her careful reading of the paper and for draw-
ing our attention to reference [23].

References

[1] W. Arendt and R. Nittka, Equivalent complete norms and positivity, Arch. Math.
(Basel) 92 (2009), 414–427.

[2] R. M. Aron, D. García, and M. Maestre, Linearity in non-linear problems, Rev. R.
Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM 95 (2001), no. 1, 7–12.

[3] R. M. Aron, V. I. Gurariy, and J. B. Seoane-Sepúlveda, Lineability and spaceability
of sets of functions on R, Proc. Amer. Math. Soc. 133 (2005), 795–803.

[4] C. S. Barroso, G. Botelho, V. V. Fávaro, and D. Pellegrino, Lineability and spaceabil-
ity for the weak form of Peano’s theorem and vector-valued sequence spaces, Proc.
Amer. Math. Soc. 141 (2013), 1913–1923.

[5] L. Bernal-González and M. Ordoñez Cabrera, Lineability criteria, with applications,
J. Funct. Anal. 266 (2014), 3997–4025.

[6] L. Bernal-González, D. Pellegrino, and J. B. Seoane-Sepúlveda, Linear subsets of
nonlinear sets in topological vector spaces, Bull. Amer. Math. Soc. (N.S.) 51 (2014),
71–130.

[7] O. Blasco and P. Gregori, Type and cotype in vector-valued Nakano sequence spaces,
J. Math. Anal. Appl. 264 (2001), 657–672.

[8] G. Botelho, D. Cariello, D. Pellegrino, and V. V. Fávaro, Maximal spaceability in
sequence spaces, Linear Algebra Appl. 437 (2012), 2978–2985.

[9] G. Botelho, D. Diniz, V. V. Fávaro, and D. Pellegrino, Spaceability in Banach and
quasi-Banach sequence spaces, Linear Algebra Appl. 434 (2011), 1255–1260.



554 Geraldo Botelho & Vinícius V. Fávaro

[10] G. Botelho, D. Pellegrino, and P. Rueda, A nonlinear Pietsch domination theorem,
Monatsh. Math. 158 (2009), 247–257.

[11] , Dominated polynomials on infinite dimensional spaces, Proc. Amer. Math.
Soc. 138 (2010), 209–216.

[12] , A unified Pietsch domination theorem, J. Math. Anal. Appl. 365 (2010),
269–276.

[13] D. Cariello and J. B. Seoane-Sepúlveda, Basic sequences and spaceability in �p

spaces, J. Funct. Anal. 266 (2014), 3797–3814.
[14] V. P. Fonf, V. I. Gurariy, and M. I. Kadets, An infinite dimensional subspace of C[0,1]

consisting of nowhere differentiable functions, C. R. Acad. Bulgare Sci. 52 (1999),
no. 11–12, 13–16.

[15] V. P. Fonf and C. Zanco, Almost overcomplete and almost overtotal sequences in
Banach spaces, J. Math. Anal. Appl. 420 (2014), 94–101.

[16] V. I. Gurariy, Linear spaces composed of everywhere nondifferentiable functions,
C. R. Acad. Bulgare Sci. 44 (1991), no. 5, 13–16 (Russian).

[17] V. I. Gurariy and L. Quarta, On lineability of sets of continuous functions, J. Math.
Anal. Appl. 294 (2004), no. 1, 62–72.
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