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On Chow Quotients of Torus Actions

Hendrik Bäker, Jürgen Hausen, & Simon Keicher

Abstract. We consider torus actions on Mori dream spaces and ask
whether the associated Chow quotient is again a Mori dream space
and, if so, what does its Cox ring look like. We provide general tools
for the study of these problems and give solutions for K∗-actions on
smooth quadrics.

1. Introduction

Consider an action G × X → X of a connected linear algebraic group G on a
projective variety X defined over an algebraically closed field K of characteristic
zero. The Chow quotient is an answer to the problem of associating in a canoni-
cal way a quotient to this action: it is defined as the closure of the set of general
G-orbit closures viewed as points in the Chow variety; see Section 2 for more
background. The Chow quotient always exists, but, in general, its geometry ap-
pears to be not easily accessible.

In the present paper, we consider algebraic torus actions T × X → X and ask
for the Mori dream property of the normalized Chow quotient Y , provided that X

is a Mori dream space, that is, has finitely generated Cox ring [14]. A well under-
stood example class is given by subtorus actions on toric varieties. There, the nor-
malized Chow quotient is again toric and hence a Mori dream space. Moreover,
the corresponding fan can be computed, and thus the Cox ring of the normal-
ized Chow quotient is accessible as well [16; 6]. Note, however, that there is no
hope for comparable statements in general. For example, Castravet and Tevelev
[5] showed that the Chow quotient M0,n of the maximal torus action on the Grass-
mannian G(2, n) is not a Mori dream space for n sufficiently large.

Our aim is to provide tools for the treatment of nontoric examples and to open
up the case of K∗-actions on smooth projective quadrics as a new example class
for positive results. The first main result is the following.

Theorem 1.1. Let K∗ act on a smooth projective quadric X. Then the associated
normalized Chow quotient is a Mori dream space.

The second result concerns the computation of the Cox ring; recall that the ex-
plicit knowledge of the Cox ring is an approach to the geometry of the underlying
space [1]. We first prepare and state the result and then discuss the setting. After
an equivariant embedding into a projective space and applying a suitable linear
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transformation, any smooth projective quadric X is of the following shape:

X = V (g1) ⊆ Pr , g1 =
{

T0T1 + · · · + Tr−1Tr, r odd,

T0T1 + · · · + Tr−2Tr−1 + T 2
r , r even,

where the K∗-action is diagonal with weights ζ0, . . . , ζr , and the defining equation
is of degree zero. In order to write down the Cox ring of the Chow quotient,
consider the extended weight matrix

Q :=
[
ζ0 . . . ζr

1 . . . 1

]
,

where we assume that the columns of Q generate Z2. Let P be an integral Gale
dual, that is, an r −1 by r +1 matrix with the row space of Q as kernel. Determine
the Gelfand–Kapranov–Zelevinsky decomposition � associated to P and put the
primitive generators b1, . . . , bl of � differing from the columns of P as columns
into a matrix B . Then there is an integral matrix A such that B = P · A. Define
the shifted row sums

ηi := Ai∗ + Ai+1∗ + μ for i = 0,2, . . . and ηr := 2Ar∗ + μ if r is even,

where μ is the componentwise minimal vector such that the entries of the ηi are
all nonnegative. Then our result reads as follows.

Theorem 1.2. In the previous setting, assume that any r columns of Q gener-
ate Z2, there remain at least two different weights ζi when removing two of max-
imal absolute value, and for odd (even) r , there are at least four (three) ζi of
minimal absolute value. Then the normalized Chow quotient Y of the K∗-action
on X has the Cox ring

R(Y ) = K[T0, . . . , Tr , S1, . . . , Sl]/〈g2〉
with

g2 :=
{

T0T1S
η0 + T2T3S

η2 + · · · + Tr−1TrS
ηr−1, r odd,

T0T1S
η0 + · · · + Tr−2Tr−1S

ηr−2 + T 2
r Sηr , r even,

graded by Zl+2 via assigning to the ith variable the ith column of a Gale dual of
the block matrix [P,B].
Let us shed some light on this setting. The assumptions that any r columns of Q

generate Z2 and there remain at least two different weights ζi when removing two
of maximal absolute value mean exactly that Q defines a Cox ring of a projective
“intrinsic quadric” Y ′ in the sense of [3] with divisor class group Z2; see [4] for
other research on such varieties. The meaning of the Chow quotient Y computed
in Theorem 1.2 is that it dominates in a minimal manner all normal projective
varieties Y ′′ allowing a small quasi-modification Y ′′ → Y ′; see also Remark 4.6.
A discussion of the assumption that, for odd (even) r , there are at least four (three)
ζi of minimal absolute value is given in Remark 4.7.
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The proof of Theorem 1.2 is performed in Section 4. Besides the explicit de-
scription of the rays of the Gelfand–Kapranov–Zelevinsky decomposition pro-
vided in Proposition 4.1, it requires controlling the behavior of the Cox ring under
certain modifications. This technique is of independent interest and developed in
full generality in Section 3. The proof of Theorem 1.1, given in Section 5, uses
moreover methods from tropical geometry: we consider a “weak tropical resolu-
tion” of the Chow quotient (see Construction 5.3) and provide a reduction princi-
ple to divide out intrinsic torus symmetry (see Proposition 5.6).

2. Chow Quotients and Limit Quotients

We present the necessary background and a general result for the action of a torus
T on a projective (irreducible) variety X. For a precise definition of the quotients,
consider more generally the action G×X → X of any connected linear algebraic
group G on a projective variety X. The Chow quotient has been introduced by
Kapranov, Sturmfels, and Zelevinsky [16]. Initially, the construction appears to
depend on an embedding but finally turns out not to do so.

Construction 2.1. Suppose that X is a G-invariant closed subvariety of some
projective space. For a suitable open invariant subset U ⊆ X, all orbit closures
c(x) := G · x, where x ∈ U , have the same dimension k and degree d . Thus, each
x ∈ U defines a point c(x) ∈ Ch(X) in the Chow variety of k-cycles of degree d .
The Chow quotient of the G-action on X is the closure

X /
CQ G := {c(x);x ∈ U} ⊆ Ch(X).

By the normalized Chow quotient we mean the normalization X
∼
/

CQ G of X /
CQ G.

With a suitably small chosen U ⊆ X, we obtain a commutative diagram of mor-
phisms involving the normalization map:

U

X
∼
/

CQ G X /
CQ G

The limit quotient arises from the variation of Mumford’s GIT quotients [19].
Its construction relies on finiteness of the number of possible sets of semistable
points [8; 21].

Construction 2.2. Suppose that G is reductive. Let X1, . . . ,Xr ⊆ X be open
sets of semistable points arising from G-linearized ample line bundles on X.
Then, whenever Xi ⊆ Xj , we have a commutative diagram

Xi Xj

Xi � G
ϕij

Xj � G
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where the induced map ϕij : Xi � G → Xj � G of quotients is a dominant pro-
jective morphism. This turns the quotient spaces into a directed system, the GIT
system. The associated GIT limit Y , that is, the inverse limit, comes with a canon-
ical morphism

U :=
r⋂

i=1

Xi → Y.

The closure of the image of this morphism is denoted by X /
LQ G and is called

the limit quotient. There are canonical proper birational morphisms onto the GIT
quotients:

πi : X /
LQ G → Xi � G.

The normalized limit quotient is the normalization X
∼
/

LQ G of X /
LQ G. Suitably

shrinking the open set U ⊆ X, we obtain a commutative diagram involving the
normalization map:

U

X
∼
/

LQ G X /
LQ G

Note that, in the literature, X /
LQ G is also called the “canonical component” of the

GIT limit, or even shortly the “GIT limit”. Similar to the full inverse limit, the
quotient X /

LQ G enjoys a universal property.

Remark 2.3. Given an irreducible variety W and a collection of dominant mor-
phisms ψi : W → Xi � G with ψj = ϕij ◦ ψi for all i, j , there is a unique mor-
phism ψ : W → X /

LQ G with ψi = πi ◦ ψ for all i.

For a general reductive group action, the (normalized) Chow quotient and the
(normalized) limit quotient need not coincide. For torus actions, however, they
do. This statement seems to have folklore status; a proof under a certain hypoth-
esis can be found in [13, Thm. 3.8]. Let us indicate how to deduce it from the
corresponding statement in the case of subtorus actions on projective toric vari-
eties obtained in [16; 6].

We recall the necessary results and concepts from [16; 6]. Let Z be a projective
toric variety with acting torus TZ and consider the action of a subtorus T ⊆ TZ .
The toric variety Z arises from a fan � in some Zr , and T ⊆ TZ corresponds to
an embedding Zk ⊆ Zr of a sublattice. Let P : Zr → Zr−k be the projection. The
quotient fan of � with respect to P is the fan in Zr−k with the cones

τ(v) :=
⋂

σ∈�,v∈P(σ)

P (σ ), v ∈ Qr−k.

Proposition 2.4. See [16; 6]. Consider the toric variety Z arising from a fan �

in Zr and the action of a subtorus T ⊆ TZ corresponding to a sublattice Zk ⊆
Zr . Let �′ be the quotient fan in Zr−k with respect to Zr → Zr−k , and Z′ the



On Chow Quotients of Torus Actions 455

associated toric variety. Then we have a commutative diagram

TZ/T

Z
∼
/

CQ T ∼= Z′
∼= Z

∼
/

LQ T

Z /
CQ ∼= Z /

LQ T

In particular, the (normalized) Chow quotient and the (normalized) limit quotient
of the T -action on Z are isomorphic to each other.

We turn to the general case. The result is formulated for a projective variety X

that is equivariantly embedded into a toric variety Z. Note that for a normal pro-
jective X, this can always be achieved, even with a projective space Z.

Proposition 2.5. Let Z be a projective toric variety, T ⊆ TZ a subtorus of the
big torus, and X ⊆ Z a closed T -invariant subvariety intersecting TZ . Then there
is a commutative diagram

X /
CQ T

∼=

embedding
Z /

CQ T

∼=

X
∼
/

CQ T
finite

Z
∼
/

CQ T

(X ∩ TZ)/T TZ/T

X
∼
/

LQ T
finite

Z
∼
/

LQ T

X /
LQ T

embedding
Z /

LQ T

where X
∼
/

CQ T → Z
∼
/

CQ T and X
∼
/

LQ T → Z
∼
/

LQ T normalize the closures of the images of
(X ∩ TZ)/T under the canonical open embeddings of TZ/T .

Proof. The right part of the diagram is Proposition 2.4. The closed embedding
X /

CQ T → Z /
CQ T exists by the construction of the Chow quotient; compare also [9,

Thm. 3.2].
To obtain a morphism X /

LQ T → Z /
LQ T , consider the sets of semistable points

V1, . . . , Vs ⊆ Z
∼
/

CQ T defined by T -linearized ample line bundles on Z. Then the
sets Ui := X ∩Vi are sets of semistable points of the respective pullback bundles,
see [19, Thm. 1.19], and we have induced morphisms Ui � T → Vi � T . Since
the Ui � T form a subsystem of the full GIT-system of X, the universal property
(Remark 2.3) yields a morphism of the limit quotients sending X /

LQ T birationally
onto the closure of (X ∩ TZ)/T .

Now look at the canonical morphism X /
CQ T → X /

LQ T provided by [15; 21]. It
fits into the diagram established so far, which in turn implies that X /

CQ T → X /
LQ T



456 H. Bäker, J . Hausen, & S. Keicher

is an isomorphism and X /
LQ T → Z /

LQ T is an embedding. Finally, the respective
normalizations fit into the diagram via their universal properties. �

Note that we will only use the part of Proposition 2.5 concerning the normaliza-
tions. This can be proved by similar arguments as before but without using the
isomorphism Z /

CQ T → Z /
LQ T of Proposition 2.4.

Corollary 2.6. Let T ×X → X be the action of a torus T on a normal projective
variety X. Then the normalized Chow quotient X

∼
/

CQ T and the normalized limit
quotient X

∼
/

LQ T are isomorphic to each other.

The following corollary shows that for torus actions, the limit quotient is up to
normalization already determined by the possible linearizations of a single ample
bundle, a statement that fails in general for other reductive groups; compare also
[15, Rem. 0.4.10].

Corollary 2.7. Let T × X → X be the action of a torus T on a normal pro-
jective variety X. Then the subsystem of GIT quotients arising from the possible
T -linearizations of a given ample line bundle L has the same normalized limit
quotient as the full system of GIT quotients.

Proof. Fix a T -linearization of L and consider the T -equivariant embedding
X → Pr defined by a suitable power of L. Then the subsystem of the GIT quo-
tients on X arising from other linearizations of L is induced from the full GIT
system on Pr . Now apply Proposition 2.5. �

We now prove a reduction theorem, which says in particular that the Chow quo-
tient of a torus action is birationally dominated by an iterated Chow quotient with
respect to K∗-actions.

Theorem 2.8. Let T × X → X be the action of a torus T on a normal projective
variety X. Fix a subtorus T0 ⊆ T and set T1 := T/T0. Then we have canonical
proper birational morphisms

(X
∼
/

CQ T0)
∼
/

CQ T1 → X
∼
/

CQ T , (X
∼
/

LQ T0)
∼
/

LQ T1 → X
∼
/

LQ T .

Proof. First, consider the case that T is a subtorus of the big torus TZ of a toric
variety Z. Then the maps TZ → TZ/T0 → TZ/T correspond to lattice homo-
morphisms Zr → Zr−k0 → Zr−k . The fan � of Z lives in Zr , and we have the
quotient fan �0 of � with respect to Zr → Zr−k0 . The quotient fan of �0 with re-
spect to Zr−k0 → Zr−k refines the quotient fan of � with respect to Zr → Zr−k .
Translated to toric varieties, this means that we have the desired maps

(Z
∼
/

CQ T0)
∼
/

CQ T1 → Z
∼
/

CQ T , (Z
∼
/

LQ T0)
∼
/

LQ T1 → Z
∼
/

LQ T .

We turn to the general case. Suitably embedding X, we can arrange the setup
of Proposition 2.5. Then we have a finite T1-equivariant map ν : X

∼
/

CQ T0 → Z
∼
/

CQ T0.
We consider the normalized limit quotient of the T1-action on X

∼
/

CQ T0. In a first
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step, we establish a commutative diagram

(X ∩ TZ)/T0

(X
∼
/

CQ T0) /
LQ T1 (Z

∼
/

CQ T0) /
LQ T1

For this, let V1, . . . , Vs ⊆ Z
∼
/

CQ T0 be the sets of semistable points arising from T1-
linearized ample line bundles. Then the inverse images ν−1(Vi) ⊆ X

∼
/

CQ T0 are sets
of semistable points of the respective pullback bundles, see [19, Thm. 1.19]. Note
that we have canonical induced maps

ν−1(Vi) � T1 → Vi � T1.

Consequently, the limit quotient of the system of the quotients ν−1(Vi) � T1 maps
to the limit quotient (Z

∼
/

CQ T0) /
LQ T1. Since the ν−1(Vi) � T1 form a subsystem of the

full GIT system of X
∼
/

CQ T0, this gives rise to a morphism

(X
∼
/

CQ T0) /
LQ T1 → (Z

∼
/

CQ T0) /
LQ T1

as needed for the previous commutative diagram. As in the proof of Proposi-
tion 2.5, we may pass to the normalizations and thus obtain a morphism

(X
∼
/

CQ T0)
∼
/

CQ T1 → (Z
∼
/

CQ T0)
∼
/

CQ T1.

Now, by the toric case, we have a proper birational morphism from the toric va-
riety on the right-hand side onto Z

∼
/

CQ T . Using once more Proposition 2.5, the
assertion follows. �

3. Toric Ambient Modifications

In this section, we provide a general machinery to study the effect of modifications
on the Cox ring. Similar to [17], we use toric embeddings. In contrast to the
geometric criteria given there, our approach here is purely algebraic, based on the
results of [2]. The heart is a construction of factorially graded rings out of given
ones.

We begin with recalling the necessary algebraic concepts. Let K be a finitely
generated Abelian group, and R a finitely generated integral K-graded K-algebra.
A homogeneous nonzero nonunit f ∈ R is called K-prime if f | gh with homo-
geneous g,h ∈ R always implies f | g or f | h. The algebra R is called facto-
rially K-graded if every homogeneous nonzero nonunit f ∈ R is a product of
K-primes.

We enter the construction of factorially graded rings. Consider a grading of
the polynomial ring K[T1, . . . , Tr1] by a finitely generated Abelian group K1 such
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that the variables Ti are homogeneous. Then we have a pair of exact sequences

0 Zk1
Q∗

1
Zr1

P1
Zn

0 K1
Q1

Zr1

P ∗
1

Zn 0

where Q1 : Zr1 → K1 is the degree map sending the ith canonical basis vector ei

to deg(Ti) ∈ K1. We enlarge P1 to an n × r2 matrix P2 by concatenating further
r2 − r1 columns. This gives a new pair of exact sequences

0 Zk2
Q∗

2
Zr2

P2
Zn

0 K2
Q2

Zr2

P ∗
2

Zn 0

Construction 3.1. Given a K1-homogeneous ideal I1 ⊆ K[T1, . . . , Tr1], we
transfer it to a K2-homogeneous ideal I2 ⊆ K[T1, . . . , Tr2] by taking extensions
and contractions according to the scheme

K[T1, . . . , Tr2]
ı2

K[T1, . . . , Tr1]
ı1

K[T ±1
1 , . . . , T ±1

r2
]

π∗
2

K[S±1
1 , . . . , S±1

n ]
π∗

1

K[T ±1
1 , . . . , T ±1

r1
]

where ı1, ı2 are the canonical embeddings, and π∗
i are the homomorphisms of

group algebras defined by P ∗
i : Zn → Zri .

Now let I1 ⊆ K[T1, . . . , Tr1] be a K1-homogeneous ideal, and I2 ⊆ K[T1, . . . , Tr2]
the transferred K2-homogeneous ideal. Our result relates factoriality properties of
the algebras R1 := K[T1, . . . , Tr1]/I1 and R2 := K[T1, . . . , Tr2]/I2 to each other.

Theorem 3.2. Assume that R1, R2 are integral, T1, . . . , Tr1 define K1-primes
in R1, and T1, . . . , Tr2 define K2-primes in R2. Then the following statements are
equivalent:

(i) The algebra R1 is factorially K1-graded.
(ii) The algebra R2 is factorially K2-graded.
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Proof. First, observe that the homomorphisms π∗
j embed K[S±1

1 , . . . , S±1
n ] as the

degree zero part of the respective Kj -grading and fit into a commutative diagram

I2 ⊆ K[T1, . . . , Tr2 ]
ı2

K[T1, . . . , Tr1 ]
ı1

I1⊇

I ′
2 ⊆ K[T ±1

1 , . . . , T ±1
r2

]
ψ : Ti 
→

⎧⎨
⎩Ti , 1≤i≤r1,

1, r1+1≤i≤r2

K[T ±1
1 , . . . , T ±1

r1
] I ′

1⊇

I ′′
2 K[S±1

1 , . . . , S±1
n ]

π∗
2 π∗

1

I ′′
1

The factor ring R′
1 of the extension I ′

1 := 〈ı1(I1)〉 is obtained from R1 by lo-
calization with respect to K1-primes T1, . . . , Tr1 :

R′
1 := K[T ±1

1 , . . . , T ±1
r1

]/I ′
1
∼= (R1)T1···Tr1

.

The ideal I ′′
1 is the degree zero part of I ′

1. Thus, its factor algebra is the degree
zero part of R′

1:

R′′
1 := K[T ±1

1 , . . . , T ±1
r1

]0/I
′′
1

∼= (R′
1)0.

Note that K[T ±1
1 , . . . , T ±1

r1
] and hence R′

1 admit units in every degree. Thus, [2,
Thm. 1.1] yields that R1 is a factorially K1-graded if and only if R′′

1 is a UFD.
The homomorphism ψ restricts to an isomorphism ψ0 of the respective degree

zero parts. Thus, the shifted ideal I ′′
2 := ψ−1

0 (I ′′
1 ) defines an algebra R′′

2 isomor-
phic to R′′

1 :

R′′
2 := K[T ±1

1 , . . . , T ±1
r2

]0/I
′′
2

∼= R′′
1 .

The ideal I ′
2 := 〈π∗

2 ((π∗
1 )−1(I ′

1))〉 has I ′′
2 as its degree zero part, and K[T ±1

1 , . . . ,

T ±1
r2

] admits units in every degree. The associated K2-graded algebra

R′
2 := K[T ±1

1 , . . . , T ±1
r2

]/I ′
2

is the localization of R2 by the K2-primes T1, . . . , Tr2 . Again by [2, Thm. 1.1] we
obtain that R′′

2 is a UFD if and only if R2 is factorially K2-graded. �

The following observation is intended for practical purposes; it reduces, for ex-
ample, the number of necessary primality tests.

Proposition 3.3. Assume that R1 is integral and the canonical map K2 → K1

admits a section (e.g., K1 is free).

(i) Let T1, . . . , Tr1 define K1-primes in R1 and Tr1+1, . . . , Tr2 define K2-primes
in R2. If no Tj with j ≥ r1 + 1 divides a Ti with i ≤ r1, then also T1, . . . , Tr1

define K2-primes in R2.
(ii) The ring R2 is integral. Moreover, if R1 is normal and Tr1+1, . . . , Tr2 define

primes in R2 (e.g., they are K2-prime, and K2 is free), then R2 is normal.
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Proof. The exact sequences involving the grading groups K1 and K2 fit into a
commutative diagram where the upwards sequences are exact and Zr2−r1 → K ′

2
is an isomorphism:

0 0 0

0 K1
Q1

Zr1
P ∗

1
Zn 0

0 K2
Q2

Zr2

P ∗
2

Zn 0

K ′
2 Zr2−r1 0

0 0

Moreover, denoting by K ′
1 ⊆ K2 the image of the section K1 → K2, there is a

splitting K2 = K ′
2 ⊕K ′

1. Since K ′
2 ⊆ K2 is the subgroup generated by the degrees

of Tr1+1, . . . , Tr2 , we obtain a commutative diagram

K[T1, . . . , Tr2]
ı2

K[T1, . . . , Tr1, T
±1
r1+1, . . . , T

±1
r2

]
ψ : Ti 
→

⎧⎨
⎩Ti , 1≤i≤r1,

1, r1+1≤i≤r2

K[T1, . . . , Tr1]

K[T1, . . . , Tr1, T
±1
r1+1, . . . , T

±1
r2

]
0

μ ∼=

where the map μ denotes the embedding of the degree zero part with respect to
the K ′

2-grading. By the splitting K2 = K ′
2 ⊕ K ′

1 the image of μ is precisely the
Veronese subalgebra associated with the subgroup K ′

1 ⊆ K2. For the factor rings
R2 and R1 by the ideals I2 and I1, the previous diagram leads to the following
situation:

R2

ı2

(R2)Tr1+1···Tr2

ψ
R1

((R2)Tr1+1···Tr2
)
0

μ ∼=

To prove (i), consider a variable Ti with 1 ≤ i ≤ r1. We have to show that Ti

defines a K2-prime element in R2. By the previous diagram, Ti defines a K ′
1-

prime element in ((R2)Tr1+1···Tr2
)0, the Veronese subalgebra of R2 defined by

K ′
1 ⊆ K2. Since every K2-homogeneous element of (R2)Tr1+1···Tr2

can be shifted
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by a homogeneous unit into ((R2)Tr1+1···Tr2
)0, we see that Ti defines a K2-prime

in (R2)Tr1+1···Tr2
. By assumption, Tr1+1, . . . , Tr2 define K2-primes in R2 and are

all coprime to Ti . It follows that Ti defines a K2-prime in R2.
We turn to assertion (ii). As just observed, the degree zero part ((R2)Tr1+1···Tr2

)0

of the K ′
2-grading is isomorphic to R1 and thus integral (normal if R1 is). More-

over, the K ′
2-grading is free in the sense that the associated torus SpecK[K ′

2] acts
freely on Spec(R2)Tr1+1···Tr2

. It follows that (R2)Tr1+1···Tr2
is integral (normal if R1

is). Construction 3.1 gives that R2 is integral. Moreover, if Tr1+1, . . . , Tr2 define
primes in R2, then we can conclude that R2 is normal. �

Let us apply the results to Cox rings. We first briefly recall the basic definitions
and facts; for details, we refer to [1]. For a normal variety X with finitely gener-
ated divisor class group Cl(X) and �(X,O∗) = K∗, its Cox ring is defined as the
graded ring

R(X) :=
⊕
Cl(X)

�(X,O(D)).

This ring is normal and factorially Cl(X)-graded. Moreover, if R(X) is finitely
generated, then we can reconstruct X from R(X) as a good quotient of an open
subset of SpecR(X) by the action of SpecK[Cl(X)].

Now return to the setting fixed at the beginning of the section and assume
in addition that the columns of P2 are pairwise different primitive vectors in Zn

and those of P1 generate Qn as a convex cone. Suppose that we have toric Cox
constructions πi : Ẑi → Zi , where Ẑi ⊆ Kri are open toric subvarieties, and πi

are toric morphisms defined by Pi ; see [7]. Then the canonical map Z2 → Z1 is
a toric modification. Consider the ideal I1 as discussed before and the geometric
data

X̄1 := V (I1) ⊆ Kr1 , X̂1 := X̄1 ∩ Ẑ1, X1 := π1(X̂1) ⊆ Z1.

Assume that R1 is normal and factorially K1-graded and T1, . . . , Tr1 define pair-
wise nonassociated prime elements in R1. Then R1 is the Cox ring of X1 by
[1, Thm. 3.2.1.4]. Our statement concerns the Cox ring of the proper transform
X2 ⊆ Z2 of X1 ⊆ Z1 with respect to Z2 → Z1.

Corollary 3.4. In this setting, assume that R2 is normal and the variables
T1, . . . , Tr2 define pairwise nonassociated K2-prime elements in R2. Then the K2-
graded ring R2 is the Cox ring of X2.

Proof. According to Theorem 3.2, the ring R2 is factorially K2-graded. Moreover,
with the toric Cox construction π2 : Ẑ2 → Z2, we obtain that R2 is the algebra of
functions of the closure X̂2 ⊆ Ẑ2 of π−1

2 (X2 ∩Tr2). Thus, [1, Thm. 3.2.1.4] yields
that R2 is the Cox ring of X2. �

Example 3.5. We start with the UFD R1 = K[T1, . . . , T8]/I1, where the ideal I1
is defined as

I1 = 〈T1T2 + T3T4 + T5T6 + T7T8〉.
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The ideal I1 is homogeneous with respect to the standard grading given by Q1 =
[1, . . . ,1]. A Gale dual is P1 = [e0, e1, . . . , e7], where e0 = −e1 − · · · − e7 and
ei are the canonical basis vectors. Concatenating e1 + e3 gives a matrix P2. The
resulting UFD is R2 = K[T1, . . . , T9]/I2 with

I2 = 〈T1T2T9 + T3T4T9 + T5T6 + T7T8〉.

4. Proof of Theorem 1.2

We approach the Chow quotient via toric embedding. The idea then is to obtain the
Cox ring via toric ambient modifications. An essential step for this is an explicit
description of the rays of certain Gelfand–Kapranov–Zelevinsky decompositions
given in Proposition 4.1; note that in the setting of polytopes, related statements
implicitly occur in literature (e.g., [11; 12]).

Recall that the Gelfand–Kapranov–Zelevinsky decomposition associated with
a matrix P ∈ Mat(n, r + 1;Z) is the fan � in Qn with the cones σ(v) = ⋂

v∈τ ◦ τ ,
where v ∈ Qn, and τ runs through the P -cones, that is, the cones generated by
some of the columns p0, . . . , pr of P . Fix a Gale dual matrix Q ∈ Mat(k, r +
1;Z), where r + 1 = k + n, and denote the columns of Q by q0, . . . , qr . Then we
have mutually dual exact sequences of rational vector spaces

0 Qk Q∗
Qr+1 P

Qn 0

0 Qk

Q
Qr+1

P ∗ Qn 0

By a Q-hyperplane we mean a linear hyperplane in Qk generated by some of the
columns q0, . . . , qr . Given a Q-hyperplane, we write it as the kernel u⊥ of a linear
form u and associate with it a ray in Qn as follows:

�(u) := cone

( ∑
u(qi )>0

u(qi)pi

)
.

It turns out that �(u) = �(−u) and thus the ray is well defined. We say that a
column qi of Q is extremal if it does not belong to the relative interior of the
“movable cone”

⋂
i cone(qj ; j �= i).

Proposition 4.1. Let Q and P be Gale dual matrices as before, assume that the
columns of P are pairwise linearly independent nonzero vectors generating Qn as
a cone, and let � be the Gelfand–Kapranov–Zelevinsky decomposition associated
with P .

(i) If a ray � ∈ � is the intersection of two P -cones, then � = �(u) with a Q-
hyperplane u⊥.

(ii) If k = 2, then every ray of � can be obtained as an intersection of two P -
cones.
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(iii) Assume that k = 2 and fix nonzero linear forms ui with ui ⊥ qi . Then the
rays of � are cone(p0), . . . , cone(pr) and the �(ui) with qi not extremal.

The proof relies on the fact that � describes the lifts of regular Q-subdivisions.
We adapt the precise formulation of this statement to our needs. Let γ ⊆ Qr+1 be
the positive orthant and define a γ -collection to be a set B of faces of γ such that
any two γ1, γ2 ∈B admit an invariant separating linear form f in the sense that

P ∗(Qn) ⊆ f ⊥, f|γ1 ≥ 0, f|γ2 ≤ 0, f ⊥ ∩ γi = γ1 ∩ γ2.

Write B1 ≤ B2 if for every γ1 ∈ B1, there is a γ2 ∈ B2 with γ1 ⊆ γ2. Moreover,
call a γ -collection B normal if it cannot be enlarged as a γ -collection and the
images Q(γ0), where γ0 ∈ B, form the normal fan of a polyhedron. For a face
γ0 � γ , we denote by γ ∗

0 = γ ⊥
0 ∩ γ ∨ the corresponding face of the dual cone γ ∨.

Now assume that the columns of P are pairwise different nonzero vectors.
Then [1, Sect. 2.2] provides us with an order-reversing bijection

{normal γ -collections} → �, B 
→
⋂

γ0∈B
P(γ ∗

0 ).

Proof of Proposition 4.1. We prove (i). Let � = P(γ ∗
1 ) ∩ P(γ ∗

2 ) with γ1, γ2 � γ .
We may assume that the relative interiors P(γ ∗

1 )◦ and P(γ ∗
2 )◦ intersect nontriv-

ially. Then γ1 and γ2 admit an invariant separating linear form f = Q∗(u) with a
linear form u on Qk . In terms of the components of fi = u(qi) of f , we have

γ1 = cone(ei;fi ≥ 0), γ2 = cone(ei;fi ≤ 0).

Write f = f + − f − with the unique vectors f +, f − ∈ Qr+1 having only non-
negative components. Then P(f ) = 0 gives P(f +) = P(f −). We conclude that
� = cone(P (f +)), and the assertion follows.

We prove (ii) and (iii). The rays of � arise from normal γ -collections that are
submaximal with respect to “≤” in the sense that the only dominating γ -collection
is the trivial collection 〈γ 〉 consisting of all faces γ0 � γ that are invariantly sep-
arable from γ . There are precisely two types of such submaximal collections:

• the normal γ -collections B= 〈γ0〉, where γ0 � γ is a facet satisfying Q(γ0) =
Q(γ ),

• the normal γ -collections B= 〈γ1, γ2〉, where γ1, γ2 � γ are invariantly sepa-
rable from each other and satisfy

γi = Q−1(Q(γi)) ∩ γ, Q(γ ) = Q(γ1) ∪ Q(γ2).

The submaximal γ -collections of the first type give the rays cone(pi) ∈ � with qi

not extremal. If qi is extremal, then the (unique) γ -collection of the second type
with Q(γ1) = cone(qj ; j �= i) defines the ray cone(pi). The remaining rays of �

are of the form � = P(γ ∗
1 ) ∩ P(γ2)

∗ with the remaining collections of the second
type. �

Remark 4.2. Statements (ii) and (iii) of Proposition 4.1 hold as well for pairs P ,
Q, where the columns of Q generate the cone over a so-called totally-2-splittable
polytope; these have been studied in [11; 12].
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As a further preparation of the proof of Theorem 1.2, we have to specialize the
discussion of Section 3 to the case of a single defining equation. The following
notion will be used for an explicit description of the transferred ideal.

Definition 4.3. Consider an n × (r + 1) matrix P and an n × l matrix B , both
integral. A weak B-lifting (with respect to P ) is an integral (r + 1) × l matrix A

allowing a commutative diagram

Zr+1+l

ei 
→ ei
ej 
→ mj ej [Er+1,A]

Zr+1+l

[P,B]

Zr+1

P

Zn

En

Zn

where ei are the first r + 1 and ej the last l canonical basis vectors of Zr+1+l ,
mj are positive integers, and En and Er+1 denote the unit matrices of sizes n and
r + 1, respectively.

Note that weak B-liftings A always exist. Given such A, consider the following
homomorphism of Laurent polynomial rings:

ψA : K[T ±1
0 , . . . , T ±1

r ] → K[T ±1
0 , . . . , T ±1

r , S±1
1 , . . . , S±1

l ],∑
ανT

ν 
→
∑

ανT
νSAt ·ν .

Set K1 := Zr+1/P ∗(Zn). Then the left-hand side algebra is K1-graded by assign-
ing to the ith variable the class of ei in K1.

Lemma 4.4. In the previous notation, let g1 ∈ K[T ±1
0 , . . . , T ±1

r ] be a K1-
homogeneous polynomial.

(i) We have T νSμψA(g1) = g′
2 with ν ∈ Zr+1, μ ∈ Zl and a unique monomial-

free g′
2 ∈K[T0, . . . , Tr , S1, . . . , Sl].

(ii) The polynomial g′
2 is of the form g′

2 = g2(T0, . . . , Tr+1, S
m1
1 , . . . , S

m1
l ) with

a g2 ∈ K[T0, . . . , Tr , S1, . . . , Sl] not depending on the choice of A.
(iii) If, in the setting of Construction 3.1, we have I1 = 〈g1〉, then the transferred

ideal is given by I2 = 〈g2〉.
(iv) The variable Ti defines a prime element in K[T0, . . . , Tr+l+1]/〈g2〉 if and

only if the polynomial g2(T1, . . . , Ti−1,0, Ti+1, . . . , Tr+l+1) is irreducible.

Proof. Consider the commutative diagram of group algebras corresponding to
the dualized diagram (Definition 4.3). There, ψA occurs as the homomorphism
of group algebras defined by the transpose [Er+1,A]∗. Let T κ be any monomial
of g1. Then g′

1 := T −κg1 gives rise to the same g2, but g′
1 is of K1-degree zero

and hence a pullback g′
1 = ψP ∗(h). The latter allows us to use commutativity of

the diagram, which gives (i) and (ii). Assertions (iii) and (iv) are clear. �
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Proof of Theorem 1.2. Recall that we consider the quadric X = V (g1) ⊆ Pr with
g1 = T0T1 + · · · + Tr−1Tr , where we replace the last term with T 2

r in the case of
an even r , and a K∗-action on Pr , given by weights ζ0, . . . , ζr such that g0 is of
degree zero and, in particular, X is invariant.

In a first step, we construct a suitable GIT quotient X1 of the K∗-action on X.
Lifting the data to Kr+1 gives X̄ := V (g1) ⊆ Kr+1, which is invariant under the
action of T2 = K∗ ×K∗ on Kr+1 given by the weight matrix

Q :=
[
ζ0 . . . ζr

1 . . . 1

]
.

Consider the weight w = (0,1) of T2 and the associated set of semistable points
Ẑ1 ⊆ Kr+1, that is, the union of all localizations Kr+1

f , where f is homogeneous

with respect to some positive multiple of w. Then Ẑ1 is a toric open subset, and
with X̂1 := X̄ ∩ Ẑ1, we obtain a commutative diagram

X̂1 ⊆

�T
2

Ẑ1

�T
2

X1 Z1

where the induced map X1 → Z1 of quotients is a closed embedding. We are in
the setting presented before Corollary 3.4. In particular, Ẑ1 → Z1 is a toric Cox
construction with a Gale dual P of Q as describing matrix; note that the columns
of P generate Zr−1 as a lattice. Moreover, the Cox ring of X1 is the Z2-graded
ring

R1 = K[T0, . . . , Tr ]/〈g1〉.
Observe that X1 is as well the K∗-quotient of the image of X̂1 in X, which in turn
is the set of semistable points of a suitable linearization of O(1).

Set n := r − 1 and consider the Gelfand–Kapranov–Zelevinsky decomposition
� associated to P . Then, according to Proposition 2.4, the toric variety Z2 deter-
mined by � is the normalized Chow quotient of the K∗-action on Pr . Moreover,
let X2 ⊆ Z2 denote the proper transform of X1 ⊆ Z1 under the toric morphism
Z2 → Z1. Then Proposition 2.5 tells us that X2 and the Chow quotient X /

CQ K
∗

share the same normalization.
We will now show that X2 is in fact normal and that its Cox ring is as claimed

in the theorem. As before, put the primitive generators b1, . . . , bl of rays of �

differing from columns of P into a matrix B and choose a weak B-lifting A with
respect to P ; using the fact that the columns of P generate Zn, we can choose the
numbers mj all equal to one. With the shifted row sums η0, η2, . . . , ηr−1, we set

g2 :=
{

T0T1S
η0 + T2T3S

η2 + · · · + Tr−1TrS
ηr−1, r odd,

T0T1S
η0 + · · · + Tr−2Tr−1S

ηr−2 + T 2
r Sηr , r even.

Lemma 4.4 then ensures that I2 := 〈g2〉 is the transferred ideal of I1 := 〈g1〉 in the
sense of Construction 3.1; define P1 := P and P2 := [P,B] to adapt the settings.
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Consider the ring

R2 = K[T0, . . . , Tr , S1, . . . , Sl]/〈g2〉.
Our task is to show that the variables S1, . . . , Sl define prime elements in R2. Then
Proposition 3.3 tells us that R2 and thus X2 are normal, and Corollary 3.4 yields
that the Cox ring of X2 is R2 together with the Z2+l-grading defined by a Gale
dual Q2 of P2 = [P,B].

Suitably renumbering the variables Ti , we achieve that |ζr−3|, . . . , |ζr | are min-
imal among all |ζi | in the case of odd r and, similarly, in the case of even r , we
have ζr−3 = ζr−2 = ζr−1 = 0. In order to see that the Sj define primes, it suffices
to show that, according to odd and even r ,

g2 = Tr−3Tr−2 + Tr−1Tr + h, or g2 = Tr−2Tr−1 + T 2
r + h

with a polynomial h ∈ K[T0, . . . , Tr , S1, . . . , Sl] not depending on the last four
(three) Ti ; see Lemma 4.4(iv). This in turn is seen by constructing a suitable weak
B-lifting via the description of the rays through b1, . . . , bl provided by Propo-
sition 4.1. Each bj (or a suitable integral multiple) stems from a Q-hyperplane,
and the uj can be chosen to be nonpositive on the last four (three) qi . Putting
max(0, uj (qi)) into a matrix A′ gives a weak B-lifting A′ with A′

i∗ = 0 for the
last four (three) rows. By Lemma 4.4 the weak B-lifting A′ yields the same g2,
which now has the desired form. �

Example 4.5. Consider the quadric X = V (T0T1 + T2T3 + T4T5 + T 2
6 ) ⊆ P6 and

the action of K∗ on P6 given by

t · [x0, . . . , x6] := [t−2x0, t
2x1, t

−1x2, t
1x3, x4, x5, x6].

An integral Gale dual P of the extended weight matrix Q is of size 5 × 7 and
explicitly given as ⎡

⎢⎢⎢⎢⎣
−1 −1 1 1 0 0 0
0 0 0 0 −1 1 0
0 −1 −1 1 0 1 0
0 0 1 1 −1 −1 0
0 0 0 0 −1 0 1

⎤
⎥⎥⎥⎥⎦ .

Computing the associated Gelfand–Kapranov–Zelevinsky decomposition, we see
that it comes with one new ray, namely

b1 = (−1,0,−1,1,0) = 2p0 + p2,

where p0, . . . , p6 are the columns of P . The Cox ring of the normalized Chow
quotient X

∼
/

CQ K
∗ is the ring

R(X
∼
/

CQ K
∗) = K[T0, . . . , T6, S1]/ 〈T0T1S

2
1 + T2T3S1 + T4T5 + T 2

6 〉
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together with the grading by Cl(X) = Z3 via a Gale dual of [p0, . . . , p6, b1], that
is, the degrees of the variable are the columns of⎡

⎣−2 2 −1 1 0 0 0 0
1 1 1 1 1 1 1 0
2 0 1 0 0 0 0 −1

⎤
⎦ .

Remark 4.6. The setting of Theorem 1.2 can also be interpreted in terms of Mori
theory, especially in the sense of [14]. There are (up to isomorphism) finitely
many normal projective varieties Y1, . . . , Ys sharing as their Cox ring a given
R1 = K[T0, . . . , Tn]/〈g1〉 with its Z2-grading coming from the extended weight
matrix Q. Each Yi is a GIT-quotient of the induced K∗-action on the quadric X =
V (g1) ⊆ Pr and thus dominated in universal manner by the normalized Chow
quotient Y = X

∼
/

CQ K
∗. Thus, Y is the “Mori master space” controlling the whole

class of small birational relatives Yi . This picture obviously extends to all Mori
dream spaces, and it is a natural desire to study the geometry of such Mori master
spaces.

Remark 4.7. The assumption in Theorem 1.2 that, for odd (even) r , there are at
least four (three) weights ζi of minimal absolute value is used for verifying the
primality conditions on the variables Ti in Corollary 3.4. It would be interesting
to see what happens beyond this assumption. We expect that the Cox ring then
has further generators, in addition to the variables Sj ; note that in the setting of
Remark 4.6, the Sj correspond to the canonical sections of exceptional divisors
of Y → Yi for some fixed i.

5. Proof of Theorem 1.1

The main idea of the proof is to consider, instead of the Chow quotient, its “weak
tropical resolution” and to use intrinsic symmetry of the latter space. This ap-
proach applies also to problems beyond K∗-actions on quadrics; we therefore
develop it in sufficient generality. We begin with recalling the necessary concepts
from tropical geometry.

Let f be a Laurent polynomial in n variables. The Newton polytope Bf ⊆ Qn

is the convex hull over the exponent vectors of f . The tropical variety trop(V (f ))

of the zero set V (f ) ⊆ Tn lives in Qn and is defined to be the union of all (n−1)-
dimensional cones of the normal fan of Bf . The tropical variety of an arbitrary
closed subset Y ⊆ Tn is the intersection trop(Y ) over all trop(V (f )), where f

runs through the ideal of Y . It turns out that trop(Y ) is the support of an (in
general not unique and not pointed) fan in Qn.

Definition 5.1. Consider a toric variety Z defined by a fan � in Qn and an
irreducible subvariety Y ⊆ Z intersecting the big torus Tn ⊆ Z nontrivially. We
call the embedding Y ⊆ Z weakly tropical if the support |�| ⊆ Qn equals the
tropical variety trop(Y ∩Tn) ⊆ Qn.
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Remark 5.2. Any tropical embedding in the sense of Tevelev [22] is weakly
tropical. If Y ⊆ Z is a weakly tropical subvariety of a toric variety Z, then, by
[10, Sect. 14], for any toric orbit Tn · z ⊆ Z intersecting Y nontrivially, we have

dim(Z) − dim(Tn · z) = dim(Y ) − dim(Tn · z ∩ Y).

Construction 5.3 (Weak tropical resolution). Let Z be a complete toric variety
arising from a fan � in Qn, and Y ⊆ Z an irreducible subvariety intersecting the
big torus Tn ⊆ Z nontrivially. Fix a fan structure �Y carried on the tropical variety
trop(Y ∩Tn) ⊆ Qn for Y ∩Tn and consider the coarsest common refinement

�′ := � � �Y = {τ ∩ σ ;σ ∈ �, τ ∈ �Y }
of the fans � and �Y . Then the canonical map of fans �′ → � defines a bira-
tional toric morphism Z′ → Z of the associated toric varieties. With the proper
transform Y ′ ⊆ Z′ of Y ⊆ Z, we obtain a proper birational map Y ′ → Y , which
we call a weak tropical resolution of Y ⊆ Z.

Proof. The only thing to show is the properness of the morphism Y ′ → Y . But
this follows directly from Tevelev’s criterion [22, Prop. 2.3]. �

The use of passing to the weak tropical resolution in our context is that it enables
us to divide out torus symmetries in a controlled manner. This leads to an explicit
version of [18, Thm. 1.2] relating the Mori dream space property of a variety to
the Mori dream space property of a certain quotient.

Construction 5.4. Consider a toric variety Z arising from a fan � in Qr and
a weakly tropical embedded subvariety Y ⊆ Z. Suppose that Y is invariant under
the action of a subtorus T ⊆ Tr . Set

Z0 := {z ∈ Z;dim(Tr · z) ≥ r − 1, Tz finite}, Y0 := Y ∩ Z0.

Then Z0 ⊆ Z is an open toric subset corresponding to a subfan �0 � � with cer-
tain rays �1, . . . , �s of � as its maximal cones. Let the matrix P ∈ Mat(n, r;Z)

describe an epimorphism π : Tr → Tn with ker(π) = T and consider the follow-
ing fan in Zn:

�0 := {0,P (�1), . . . ,P (�s)}.
Note that �1, . . . , �s are precisely the rays of � that are not contained in ker(P ).
The matrix P determines a toric morphism Z0 → Z /

0 T onto the toric vari-
ety associated to �0. We define Y /

0 T ⊆ Z /
0 T to be the closure of the image

π(Y ∩Tr ).

Remark 5.5. The tropical variety trop(Y /
0 T ∩ Tn) contains all rays P(�1), . . . ,

P (�s) of the fan �0. If there is a fan � in Zn having trop(Y /
0 T ∩Tn) as its support

and P(�1), . . . ,P (�s) as its rays, then Y /
0 T admits a weakly tropical completion

with boundary of codimension at least two.
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Proposition 5.6. Consider a toric variety Z and a weakly tropical subvariety
Y ⊆ Z. Suppose that Y is invariant under the action of a subtorus T ⊆ Tr . Then
the following statements are equivalent:

(i) The normalization of Y has finitely generated Cox ring.
(ii) The normalization of Y /

0 T has finitely generated Cox ring.

Proof. Let ν : Ỹ → Y be the normalization map. By W ⊆ Y we denote the open
T -invariant subset consisting of all points y ∈ Y having a finite isotropy group Ty .
The fact that Y ⊆ Z is tropically embedded ensures that Y0 ⊆ W has a comple-
ment of codimension at least two in W . This property is preserved when passing
to the respective normalizations W̃ := ν−1(W) and Ỹ0 := ν−1(Y0). In particular,
the separations in the sense of [18, p. 978] of the corresponding quotients W̃/T

and Ỹ0/T have the same Cox rings. Since normalizing commutes with taking
quotients and separating, the latter space is isomorphic to the normalization of
Y /

0 T . Thus, the assertion follows from [18, Thm. 1.2]. �

Proposition 5.7. Let Z be a toric variety, Y ⊆ Z a complete subvariety invari-
ant under a subtorus T of the big torus of Z, and Y ′ → Y be a weak tropical
resolution. If the normalization of Y ′ /

0 T has finitely generated Cox ring, then the
normalization Ỹ of Y is a Mori dream space.

Proof. Since the normalization of Y ′ /
0 T has finitely generated Cox ring, Propo-

sition 5.6 shows that the normalization Y ′′ of Y ′ has finitely generated Cox ring
and thus is a Mori dream space. The canonical morphism π : Y ′′ → Ỹ is proper
and birational. In order to see that Ỹ is a Mori dream space, we may apply the
general [20, Thm. 10.4] or look at a suitable sheaf S = ⊕

K O
Ỹ
(D) of divisorial

algebras on Ỹ mapping onto the Cox sheaf R of Ỹ . By the properness of π we ob-
tain S = π∗S ′′ over the set W ⊆ Ỹ of regular points for S ′′ = ⊕

K OY ′′(π∗(D)).
Since Y ′′ is a Mori dream space, �(π−1(W),S ′′) is finitely generated. This im-
plies finite generation of the Cox ring R(Ỹ ) = �(W,R). �

A second preparation of the proof of Theorem 1.1 concerns toric ambient modi-
fication. We will always write e1, . . . , en ∈ Zn for the canonical basis vectors and
set e0 := −e1 − · · · − en. Moreover, we denote by �(n) the fan in Zn consisting
of all cones spanned by at most n of the vectors e0, . . . , en and by �′(n) ⊆ �(n)

the subfan consisting of all cones of dimension at most n − 1.

Lemma 5.8. Consider nonzero vectors v1, . . . , vl ∈ Qn contained in a maximal
cone τ ∈ �(n), a cone σ ⊆ Qn generated by some of the vectors e0, . . . , en,

v1, . . . , vl , and a cone δ ∈ �′(n). Suppose that � := δ ∩ σ is one-dimensional
and � /∈ �′(n). Then � is contained in some facet of τ .

Proof. We may assume that τ = cone(e1, . . . , en). Replacing δ and σ with
suitable faces, we may assume that �◦ = δ◦ ∩ σ ◦. The proof uses Gale du-
ality, and we work in the notation of Section 4. Consider the matrix P :=
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[e0, . . . , en, v1, . . . , vl] and its Gale dual

Q := [q0, . . . , qn+l] :=

⎡
⎢⎢⎢⎣

0 v11 · · · v1n −1 0
...

...
...

. . .

0 vl1 · · · vln 0 −1
1 1 · · · 1 0 · · · 0

⎤
⎥⎥⎥⎦ .

Set r := n + l and let e′
0, . . . , e

′
r denote the canonical basis vectors of Zr+1 and

γ := Qr+1
≥0 the positive orthant. Then there are faces γ1, γ2 � γ such that for the

corresponding dual faces γ ∗
i , we have

P(γ ∗
1 ) = δ, P (γ ∗

2 ) = σ, P (γ ∗
1 )◦ ∩ P(γ ∗

2 )◦ �= ∅.

For some n+1 ≤ j ≤ r , we have e′
j ∈ γ ∗

2 , and we may assume that γ ∗
1 is generated

by at most n − 1 of the vectors e′
0, . . . , e

′
n. The latter implies e′

n+1, . . . , e
′
n+l ∈ γ1.

Let f = Q∗(u) be a separating linear form for γ1 and γ2. Then f|γ1 ≥ 0 implies

u(qn+1), . . . , u(qn+l ) ≥ 0, u(q0) ≥ u(q1), . . . , u(qn).

Note that we must have f (e′
j ) = u(qj ) > 0 because e′

j does not lie in γ2. Let
τ1, τ2 � γ be the maximal faces with f|τ1 ≥ 0 and f|τ2 ≤ 0. Then f separates τ1
and τ2, and τ ∗

i ⊆ γ ∗
i . We conclude

∅ �= P(τ ∗
1 )◦ ∩ P(τ ∗

2 )◦ ⊆ P(τ ∗
1 ) ∩ P(τ ∗

2 ) ⊆ P(γ ∗
1 ) ∩ P(γ ∗

2 ) = �.

Since e′
j /∈ τ2, we obtain τ ∗

2 �= {0} and thus 0 /∈ P(τ ∗
2 )◦. Together with the dis-

played line, this gives P(τ ∗
1 ) ∩ P(τ ∗

2 ) = �. Since at least two of e′
0, . . . , e

′
n lie

in γ1, we obtain e′
0 ∈ τ1, and thus

� ⊆ P(τ ∗
1 ) ⊆ cone(e1, . . . , en). �

Lemma 5.9. For n ∈ Z≥1, consider �′(n) and let b1, . . . , bl ∈ Qn be pairwise
different primitive vectors lying on the support of �′(n) but not on its rays. Denote
by σj ∈ �′(n) the minimal cone with bj ∈ σj and write

bj = a0j e0 + · · · + anj en, where aij > 0 if ei ∈ σj , aij = 0 if ei /∈ σj .

Then, for P := [e0, . . . , en] and B := [b1, . . . , bl], the matrix A := (aij ) is a weak
B-lifting with respect to P . The lift of h1 = T0 +· · ·+Tn in the sense of Lemma 4.4
is given by

h2 = T0S
a01
1 · · ·Sa0l

l + · · · + TnS
an1
1 · · ·Sanl

l .

Moreover, the variables T0, . . . Tn, S1, . . . , Sl define pairwise nonassociated prime
elements in K[T0, . . . Tn, S1, . . . , Sl]/〈h2〉 if and only if the vectors b1, . . . , bl lie
in a common cone of �(n).

Proof. Only the last sentence needs some explanation. The fact that b1, . . . , bl lie
in a common cone of �(n) is equivalent to the fact that there is a term of h2 not
depending on S1, . . . , Sl , and, moreover, for every k, there is a further term of h2
not depending on Sk . Now, Lemma 4.4(iv) gives the desired characterization. �
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Proof of Theorem 1.1. We may assume that X = V (g1) ⊆ Pr with a polynomial
g1 = T0T1 + · · · + Tr−1Tr , where we replace the last term with T 2

r in the case
of an even r , and K∗ acts linearly with weights ζ0, . . . , ζr , where |ζr | is minimal
among all |ζi |; see [1, Prop. 3.2.4.7].

The first step is to determine the normalized Chow quotient of the K∗-action
on X. As observed in Proposition 2.5, the Chow quotient X /

CQ K
∗ is canonically

embedded into the Chow quotient of Pr by the K∗-action. To determine the latter,
consider the extended weight matrix

Q :=
[
ζ0 . . . ζr

1 . . . 1

]
and let P be a Gale dual matrix. Then, according to Proposition 2.4, the nor-
malized Chow quotient of the K∗-action on Pr is the toric variety Z having the
Gelfand–Kapranov–Zelevinsky decomposition � defined by the columns of P as
its fan. Moreover, by Proposition 2.5 the Chow quotient of the K∗-action on X

has the same normalization as the closure

Y = (X ∩Tr )/K∗ ⊆ Z.

The second step is to determine a weak tropical resolution of Y ⊆ Z. For this,
we first need trop(Y ∩ TZ). Let μ0, . . . ,μn ∈ Zr+1 be the vertices of the Newton
polytope g1 and consider the matrix Pgr with the rows μi −μ0, i = 1, . . . , n. Then
we obtain a commutative diagram with exact rows

0 Q2 Qr+1 P
Qr−1

�

0

0 Qr+1−n Qr+1
Pgr

Qn 0

Note that g1 equals T μ0 times the pullback of the polynomial h1 := 1+S1 +· · ·+
Sn under the homomorphism of tori Tr → Tn defined by Pgr. The tropical variety
of V (h1) ⊆ Tn is the support of the fan �′(n), and thus we have

trop(Y ∩ TZ) = �−1(trop(V (h1))) = �−1(|�′(n)|).
We endow trop(Y ∩ TZ) with the natural fan structure lifting �′(n); note that the
cones are in general not pointed. By definition the weak tropical resolution Y ′
of Y is the closure of Y ∩ TZ in the toric variety Z′ with the coarsest common
refinement �′ := � � trop(Y ∩ TZ) as its fan.

In the third step, we pass to Y ′ /
0 TY ′ , where TY ′ is the kernel of the homomor-

phism of tori TZ → Tn defined by �. By Construction 5.4 the quotient Y ′ /
0 TY ′

is the closure of the image of Y ∩ TZ under TZ → Tn in the toric variety Z′ /
0 TY ′

associated to the describing fan in Zn having as maximal cones the rays �(�),
where � runs through the rays of �′.

Claim. For every ray � ∈ �′, there is a facet of cone(e0, . . . , en−1) containing
the image b := �(�) ∈Qn.
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Indeed, since every cone of trop(Y ∩ TZ) is saturated with respect to �, we have
�(�) = �(σ) ∩ δ for some σ ∈ � and δ ∈ �′(n). The image �(σ) is a cone
spanned by some ei and some images vj := �(νj ), where νj are the primitive
generators of the rays of � different from columns pi of P . Proposition 4.1 yields
the presentations

νj =
r−1∑
i=0

αijpi with certain αij ≥ 0.

Hence, we obtain vj ∈ cone(e0, . . . , en−1). Lemma 5.8 then shows that �(�) lies
in some facet of cone(e0, . . . , en−1), and the claim is verified.

Finally, in the fourth step, we show that Y ′ /
0 TY ′ is normal and has finitely

generated Cox ring; by Proposition 5.7 this will complete the proof. First, note
that we have the toric modification Z′ /

0 TY ′ → W , where W ⊆ Pn is the open
toric subset corresponding to the subfan �′(n) of �(n). Moreover, Y ′ /

0 TY ′ is the
proper transform under Z′ /

0 TY ′ → W of the closure of V (h1) ⊆ Tn in W . The
claim just verified and Lemma 5.9 ensure that we may apply Proposition 3.3 and
Corollary 3.4. In particular, we see that Y ′ /

0 TY ′ is normal with finitely generated
Cox ring. �

Example 5.10. Consider the quadric X = V (T0T1 + · · · + T6T7) ⊆ P7 and the
action of K∗ on P7 given by

t · [x0, . . . , x7] := [t−3x0, t
3x1, t

−3x2, t
3x3, t

−2x4, t
2x5, t

−1x6, tx7].
Theorem 1.2 and its proof do not apply to this case because only two weights ζi

have minimal absolute value. The way through the weak toric resolution Y ′ as
gone in the proof of Theorem 1.1 produces a quotient Y ′ /

0 TY ′ embedded into the
toric variety with fan obtained by subdividing �(3) at (0,−1,−1).
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