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New Examples of Proper Holomorphic Maps
among Symmetric Domains

AERYEONG SEO

1. Introduction

Let 2, s be a bounded symmetric domain of type I defined by
Qs ={ZeM(r,s,C): I,, —ZZ" > 0}.

Here we denote by >0 the positive definiteness of square matrices, by M (r, s, C)
the set of r x s complex matrices, and by I, , the r x r identity matrix. Let D, s
be a generalized ball defined by

s—1 2 2 2 2
Drs={z1,.. . 24 €PN 2P b 2P > et P+ [z P

DErFINITION 1.1. (1) Let f,g: Q) — Q2 be holomorphic maps between do-
mains 21, 2. We say that f and g are equivalentif andonlyif f =AogoB
for some B € Aut(£21) and A € Aut(£2y).

(2) Letgy, g2 : P* — PV be rational maps. We say g1 and g» are rationally equiv-
alent if there is a rational map g : P* — PV such that g is a common exten-
sion of g1 and g;.

The aim of this paper is presenting a simple way to generate proper monomial
rational maps between generalized balls and via the relations between generalized
balls and bounded symmetric domains of type I given in [4], giving new examples
of proper holomorphic maps between bounded symmetric domains of type I.

Consider a proper rational map g : D,y — D, ¢. In homogeneous coordi-
nate, put g([z1, ..., Zr+s]) = [&1,--., & +s]. Suppose that g; are monomials in
Z1,...,2Zr4s for each i, 1 <i <r’ + s’. Then we can define the homogeneous
polynomial P : R"* — R satisfying

r/ r/+sl
Pzl s =) lal> = Y el (1.1)
k=1 k=r'+1

Since g is proper, P (x) =0 whenever Z;’=1 xXj= :

"L +1%;. Hence, P should
be of the form

r r+s m
(Zx,-— > x,-) Qr() (1.2)
j=1 j=r+1

for some positive integer m and homogeneous polynomial Q p(x).
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THEOREM 1.2. Let g : Dy, — Dyi1,r41 (r = 2) be a proper monomial rational
map. Then g is rationally equivalent to one of the following up to automorphisms
OfDr,r and Dyy1r+1:

(1) In case of degree(g) = 1: g([z1,...,22-)) =21, .-+, 2, (D), T4 15 -+ o5 20r,
¢ (2)], where ¢ (2) is a degree one homogeneous polynomial in 71, ..., 22r;
(2) In case of degree(g) = 2:
@) g(z1,22,23,24)) = [23, 2122, 2223, 23, 2124, 2324],
(b) g([z1.22. 23, 24]) = [z}, V22122, 23, 23, V22324, 231
(3) In case of degree(g) = 3; if Qp(x) has degree 1 or the coefficients of the
polynomial Q p(x) are nonnegative, then there is no proper monomial ratio-
nal map.

The condition in Theorem on Qp are due to combinatorial method counting
monomials in expansion of a multiplied polynomial.

The method to characterize proper monomial rational maps originally comes
from D’ Angelo [1]. He studied proper monomial holomorphic maps from the unit
ball to the higher-dimensional unit ball via characterizing the polynomials that can
be obtained by taking Euclidean norm on proper maps. By characterizing these
polynomials he obtained a complete list of proper monomial holomorphic maps
from the two-dimensional unit ball to the four-dimensional unit ball. In this paper,
we modify this polynomial, which is appropriate to proper monomial rational
maps between generalized balls and characterize the polynomial by counting the
number of monomials in the polynomial.

For bounded symmetric domains of rank at least 2, properties of proper holo-
morphic maps are deeply related to special kind of totally geodesic subspaces
of given domains, which are called invariantly geodesic subspaces. These are
totally geodesic submanifolds with respect to the Bergman metric that are still
totally geodesic under the action of automorphisms of the compact dual of an
ambient domain. Invariantly geodesic subspaces first appeared in [3] as far as the
author knows. These subspaces play important roles to characterize proper holo-
morphic maps between bounded symmetric domains. Mok and Tsai [3; 6] proved
that proper holomorphic maps between irreducible bounded symmetric domains
preserve the maximal characteristic subspaces which are also invariantly geodesic
subspaces. Based on [3; 6], the rigidity of irreducible bounded symmetric domains
have been developed and incorporated by Tu [7; 8] and Ng [4; 5]. In particular, Ng
[4] found that generalized balls in the projective spaces parameterize the maximal
invariantly geodesic subspaces of bounded symmetric domains of type I, and we
use this relation to find several examples of proper holomorphic maps between
bounded symmetric domains of type 1.

Consider the subspaces in €2, of the form

L[A,B] = {Z (S Qr,s: AZ = B},

where A € M(1,r,C) and B € M (1, s, C) satisfy [A, B] € D, s, which are totally
geodesic under the action of SL(r 4 s, C). These are the maximal invariantly
geodesic subspaces. For X =[A, B] € D, ,, denote X #=Lx.
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For a proper holomorphic map f : Q,, — Q,41,4+1 (r > 2) that preserves
the maximal invariantly geodesic subspaces, there is a proper holomorphic map
g : Dyr — Dy4q r41 such that f(x*) c g(X)* for generic X € D, .

THEOREM 1.3. Let f: Q. = Qp41.,+1 (r > 2) be a proper holomorphic map.
Suppose that [ preserves the maximal invariantly geodesic subspaces and an
induced proper holomorphic map g : D, — D,+1 41 satisfies the conditions in
Theorem 1.2. Then f is equivalent to one of the following:
(1
z 0
f(Z) - (O h(Z)) for Z € Qr,r

and for some holomorphic map h : Q,, - A={ze€C: |z] <1}.

2
2 un
f((zl Zz)) =\|zizz 2223 za| for <Z1 Zz) € Q.
3 4 3 24
23 z4 0
3
22 V22122 23
f((zl ZZ)) =| V22123 ziza+ 23 V222
3 4 5 5
23 V22324 zy

Here is the outline of the paper. Section 2 introduces some basic terminology,
well-known facts, and the invariantly geodesic subspaces. In Section 3, we modify
D’ Angelo’s method to proper monomial maps between generalized balls and clas-
sify the maps that are needed to sort proper holomorphic maps between bounded
symmetric domains of type I. We count the number of monomials in a homoge-
neous polynomial that is multiplied by two homogeneous polynomials. In Sec-
tion 4, we present a way to generate proper holomorphic maps from €2, s to €2, ¢
and prove Theorem |.3. Furthermore, we give more interesting examples.

2. Preliminaries
2.1. Basic Facts and Terminology

First, we introduce terminology and some facts. For more detail, see [4; 3]. Let
G, s be the Grassmannian of r-planes in (r + s)-dimensional complex vector
space C"**, which is the compact dual of @, ;. For X € M(r, r + s, C) of rank r,
denote by [X] the r-plane in C” that is generated by row vectors of X. For each
element Z in €2, there corresponds the r-plane [/, ,, Z] € G,. This is the
Borel embedding of €2, into G, . It is clear that SL(r + s, C) acts holomor-
phically and transitively G, ;. Denote by SU(r, s) the subgroup of SL(r + s, C)
satisfying M(_(I)’" ISS)M* = (_(I)’" I?.s) for all M e SU(r, s). Then SU(r, s) is
the automorphism group of Q.. If we put M = (4 B), where A € M(r,r,C),
Be M(r,s,C), C e M(s,r,C), and D € M(s,s,C), then M acts on 2, by
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Z+ (A+ ZC)~ (B + ZD). From now on, if we write M = (é g) e SU(r, s),
then, without ambiguity, A, B, C, D are block matrices of the indicated form.

2.2. Invariantly Geodesic Subspaces in 2y g

Consider a complex submanifold S in 2, ;. For every g € SL(r + s, C) such
that g(S) N Qs # ¥, if the submanifold g(S) N €2, ; is totally geodesic in 2, ¢
with respect to the Bergman metric of €2, , then S is called invariantly geo-
desic subspace of 2, ;. In particular, for W € Q,/ ¢ with r' <r and s’ <s, the
image of the embedding i: W — (8 V(‘),) € Qs is an invariantly geodesic sub-
space of €2, ;. The totally geodesic subspaces that are equivalent under the action
of SU(r, s) to i(2,5) in Q.5 are called (', s")-subspaces of Q, ;. Among these
(r’, s")-subspaces, the maximal invariantly geodesic subspaces are parameterized
by the generalized ball in P'+5~1,

PrOPOSITION 2.1 [4]. The subspaces of the form
L={ZeQ,s: AZ =B}, 2.1

where A€ M(1,r,C) and B € M(1,s,C) satisfy [A, Bl € D, are (r — 1, s)-
subspaces.

For example, in case of invariantly geodesic subspaces

0
{(W) € Qr,s: W e Qr—l,s} ,

A=(,0,...,00eM(1,r,C)and B=(0,...,0) e M(1,s,C).
For Q, s and D, s, consider the two surjective maps

¢ Pl x Qs — Q. (X1, 2)~ Z, (2.2)
VP T x Q= Dy, (X1,Z)— [X, XZ). (2.3)

For Z € Q, 5, denote zZ* = W(qﬁ_l(Z)) C D, ;. Similarly for X € D, ;, denote
xX* = ¢(1//_1(X)) C £2,5. The subspaces Z* and X* are called fibral images of
Z and X, respectively. Then for Z € @, and X =[A, B] € D,; where A €
M(,r,C)and Be M(1,s,C),

Z* ={[A,AZ)e D,,: [AleP " lyz=P !, (2.4)
xX*=(ze Q,s: AZ =B} = (r — 1, s)-subspace. 2.5)

PrOPOSITION 2.2 (cf. [4]). Let [ : Q2 — Q241.,+1 be a proper holomorphic
map. Suppose that there is a meromorphic map g : D, , — D,41 41 such that
f(X*) c g(X)* for generic point X € D,... Then g is a proper map, or f(Z) =
(% h(oz))for some holomorphic function h : Q,, — A.
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3. Proper Monomial Rational Map from D, ; to D, ¢

Let g: D,y — D, ¢ be a proper monomial rational map, and P, Qp be ho-
mogeneous polynomials defined by (1.1) and (1.2). Then Qp has the following
properties:

(1) Qp(x) is a homogeneous polynomial, which is not identically zero on

r r+s
{X:(Xl,...,xr+s)€Rr+si ij: Z xj}

j=1 j=r+1

(2) Op(x) > 0 whenever x; > 0 for all i, and Z;:l Xxj > Z;frﬂ Xj.

3.1. Classifying Proper Monomial Rational Map from D, to D41 41

A situation of classifying proper rational maps between generalized balls is
different from that of classifying proper holomorphic maps between unit balls
in [2] since there are an infinite number of proper rational maps that are
same in an open dense subset. For example, g: D> — D33, [21,...,24]
[z1h, z2h, 0, 23k, 74k, 0] for any holomorphic function & of C* that is not identi-
cally zero on D, » are same in an open dense subset depending on the zero set of 4.
On the other hand, proper rational maps which are same in an open dense subset
induce the same proper holomorphic map between corresponding bounded sym-
metric domains of type I. Hence, we consider an equivalence relation on proper
monomial rational maps to incorporate these infinite number of rational maps.

DEFINITION 3.1. Let g1, g2 : P¥~! — P?"*! be rational maps. We say that g;
and g, are rationally equivalent if there is a rational map g : P¥~! — P2+ such
that g is a common extension of g and g».

‘We may assume that all components of g : D, ; — D,/ ¢ have no common factor.
In the rest of this section, we characterize the induced polynomial P (x) and

the proper monomial rational maps from D, to D,41 41 to prove Theorem

For this aim, we will count the number of monomials of P for suitable Q p. For

a polynomial A, denote by n;(A) the number of monomials with maximal degree

in x; of A and by n(A) the number of monomials in A.

LEMMA 3.2. For a polynomial A = (bix1 + -+ - + byxp)™ A with nonzero poly-
nomial A, positive integer m, and nonzero b; for all i, 1 <i <k, we have

n(A) = Yk ni(A).

Proof. The term (b;x;)" times the monomial with the maximal degree of x; in A
cannot be canceled. O

LEMMA 3.3. Let P(x) be a homogeneous polynomial on R¥ of the form

(bix1+ -+ brxp)" Qp(x)
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for some positive integer m, nonzero b; for all i, 1 <i <k, and homogeneous
polynomial Q p(x) with nonnegative coefficients. Then if m > 2, then n(P) >
2k — 1.

Proof. Without loss of generality, we may assume that Q p(x) contains the x|
variable with b; > 0 and n(Qp) > 2. Let Qp(x) = Ag + A1x1 + Apx? + -+ +
Agx{ be the expansion of Qp(x) with respect to the degree of the x; variable
where « is the maximal degree of x; in Qp(x), A; is a homogeneous polyno-
mial without the x| variable having nonnegative coefficients, and Ag and A, are
nonzero. Denote B = byxy + - - - + brx. Then

P(x) = AoB™ +x1B" ' (mb1Ag + A1B) + - +x8T" A,

Note that there are at least kK — 1 monomials in AgB™ and one monomial in
xi”’"Aa. Notice that the second term x; B"~!(mb; Ag + A B) does not vanish
and has at least k — 1 monomials. Hence, summing up, there are at least 2k — 1
monomials in P when m > 2. O

LEMMA 3.4. Let P(x) be a homogeneous polynomial on R* of the form

1+ +x— X401 — - —X2,)0p(X)

for some homogeneous polynomial Q p(x) with nonnegative coefficients and
n(Qp)>2.Then

(M) n(P)=3r—1ifr=2;

) n(P)=9ifr=3.

Proof. As in the proof of Lemma 3.3, consider
P(x) = AgB +x1 (Ao + A1 B) + X3 (A1 + A2B) + - - + Agx®TL

Suppose that A; =0 but A;;1 # 0 for some i, 1 <i <« — 1. Then the coefficient
of xi“ is A;+1B, and then there exist at least 2r — 1 monomials that cannot be
canceled. This implies that in this case, n(P) > 4r — 1. Hence, it is enough to
consider the case where A; # 0 for any i, 0 <i < «. In this case, there are at least
2r — 1 monomials in AgB, r — 1 monomials in x; (A9 + A1 B), r — 1 monomials
in xlz(Al + A, B), and one monomial in Aax‘f“H. Hence, n(P) > 3r — 1.
Consider r = 3. We may assume that A; # 0 for all i. Since n(A; + A;j4+1) > 2
for all 7, it is enough to consider the case @ = 1. Then P(x) = AgB + x1(Ao +
A1B)+ A1x3.If Ag = Ay (x4 + x5+ X6), then n(AgB) > 9, and if Ag # Aj (x4 +
x5 + x¢), then n(x1(Ag + A1 B)) > 3. Hence, n(P) > 9. U

LEMMA 3.5. Let P(x) be a nonzero homogeneous polynomial on R* (k > 1) of
the form

(brx1 + -+ bpxp)" (arxy + -+ - + agxg)
for some positive integer m, a; € R for i, 1 <i <k, and nonzero b; for all i,
1<i<k.Then
(1) ifm>2, thenn(P)>2k —1;
(2) ifm=1and n(a1x1 +--- + aixy) =2, then n(P) > 2k — 2.
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Proof. We will prove (1). The proof of (2) is similar.
If n(ajxy+---+agxy) = 1, then there are ("+%—1) > 2k — 1 monomials in P.
Suppose that n(ajxy + - - - + agxx) > 2. We may assume that a; # 0. Put A =
arxy + -+ agxi and B = byxy + - - - + brxi. Then

P(x)=B"A+x;B" '(mbjA+aB)+--- +a1x’1"+1.

Consider the case mb1 A + a; B # 0. Let x be the number of g; that are zero,
and y be the number of g; that are nonzero. Then n(B"A) >y —1+x(y —1) =
—y2 4+ (k+2)y—1—kfory,2<y<k. At y =2, the minimum k — 1 appears.
Hence, n(P) > n(B™A) +n(B" =" (mb1 A + a1 B)) + n(a;x" 1) > 2k — 1.

If mb1A + a1 B =0, then n(B"A) =n(B"+) = (kj,g’”) >2k — 1. O

LEMMA 3.6. Let P(x) = (x1 +x2 —x3 —x4)Qp(x) for Qp(x) =aix) +axx> +
azxz +aaxa,a; €R, i =1,2,3,4. Suppose that n(P) <6 and

Qp(x) > 0 whenever x| + x3 > x3+ x4 and x; > O foralli,1 <i <4. (3.1)
Then the Q p(x) is one of the following up to multiplication of constants:

X1, X2, X3, X4, X1 + X3, X1 + X4, X2 + X3, X2 + X4, X1 + X2 + x3 + x4.

Proof. We prove the lemma case by case. Write
P(x) = a1x12 + azx% — a3x32 — a4x3 + (ap + ap)xix2 + (a3 — ay)x1x3
+ (a3 — az2)xax3 + (a4 — a1)x1x4 + (a4 — a2)x2x4 — (a3 + a4)x3x4.
(3.2)

(1) If only one q; is zero and the others are nonzero, then Qp is x; for 1 <i <4.

(2) If a; =0 and a; # 0 where 2 <i <4, then there are monomials xx; and xl.z
for 2 <i < 4 that cannot be canceled. Hence, ay = a3, ap = a4, a4 + a3 =0,
and this is a contradiction. If a; = 0 and a; # 0O for k # j, by the same way,
this cannot happen.

3) Ifa; =a> =0, a3 #0, a4 # 0, then a3 + a4 = 0. This contradicts condition
(3.1). Similarly, there isno Q p for a3 =a4 =0, a; #0, a» #0.

@) Ifa =a4=0, a1 #0, a3 #0, then a; = a3 and a; > 0. This case corre-
sponds to Q p(x) = x| + x3. Similarly, the cases {a; = a3 =0,a; #0, a4 #
0}, {a1 =a4=0,a3 #0,a, # 0}, {a3 =a, =0, a; # 0, as # 0} correspond
to xp + x4, X3 + X2, X1 + x4, respectively.

(5) If all a; are nonzero, then, by (3.1), a; > 0, a» > 0. Hence, at least three
monomials among (a3 —aj)x1x3, (a3 —az)x2x3, (@a —ay)x1x4, (a4 —az)xaxq
should be zero. This implies that a; = a» = az = aa. O

Proof of Theorem 1.2. Let

G+ X =X — = x2)" Qp(x)
be the homogeneous polynomial induced by g for some positive integer m and
homogeneous polynomial Q p(x). Then P satisfies n(P) <2r+2.Ifn(Qp) =1,
then g is rationally equivalent to (1). Hence, we only need to consider the case

n(Qp)=2.
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Suppose m > 2. Then, by Lemmas 3.3 and 3.5, n(P) > 4r — 1 > 2r +2. Hence,
m = 1. On the other hand, by Lemmas and 3.4, n(P) >2r + 2 forall r > 3.
Form =1and r =2, by Lemma 3.6,

X1 4 X2 — X3 — X4, X7 + XX + X2X3 — XF — X[ X4 — X3X4,
x% G+ X1X2 +X1X4 — xf — X2X3 — X3X4, x% + X1X2 + X2Xx4 — xf — X1X3 — X3X4,
x% + x1x2 + x1x3 — x% — X2X4 — X3X4, x12 +2x1x2 + x% — x% —2x3Xx4 — xi.

Then the first one induces (1), and the last one induces the map (2b). The remain-
ing induce the map equivalent to (2a). O

4. Proper Holomorphic Maps between Bounded Symmetric Domains
4.1. Construction of Proper Holomorphic Maps from Qs to Q2 g

In this section, using the relations between (r — 1, s)-subspaces in €2, s and pro-
jective subspaces (= P” _1) in D, given in [4], we describe the construction of
proper holomorphic mapping between bounded symmetric spaces of type 1. To
consider the boundary behavior of g, extend ¢ and i to

‘5 : Pr_l X §r,s - §r,Sa (X, 2)~ Z,

VP x Qg > Drs,  ([X1,2) - [X, XZ].
For the boundary points, consider the fibral image with respect to this extended
map. Let z € 92, 5. This implies that z satisfies /., — zz' > 0 and there is a € C”
such that a ([, — zz')a’ = 0. Hence, z* may not be contained in 3 D, ;, and

NoD.s ={la,az]€D,y: [aleP ' al,., —zZHa =0}. (4.1)

On the other hand, for [a, b] € D, where a € M(1,r,C) and b € M(1,s,C),
if 7 € [a, b]*, then a@' = bb' = az(az) = azz'a’. Hence, for [a,b] € 3D,
la, b]* C 0R2,.

DEFINITION 4.1. For arational map g : D,y — D,/ ¢, we say that a rational map
g is proper if for any point x € 9D, s and open neighborhood U of x that does
not intersect the indeterminacy of g, g is proper on U N D, ;.

PROPOSITION 4.2. Let f: Q.5 — Q. ¢ be a holomorphic map. Suppose that
there is a proper rational map g : Dy — D,/ ¢ satisfying

f(X#) C g(X)# for generic point X € D, ;. “4.2)
Then f is proper.
Proof. Let {Z;} be a sequence in £, ; such that Z; — z € 3R, ;. Choose points

X; € Zif and x € D, N z* such that X; — x. Then since g(X;) — g(x),
f(Zp) e f(Xh Ce(X)* — gx)* CaQ . Hence, f is proper. O

Let f : ©,; — Q, ¢ be a proper holomorphic map that is provided from a proper
rational map g : D, — D, g satisfying the condition in Proposition 4.2. Let
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g = [g1, g2] where g1 has r’-components and g has s’-components. Let X =
[A,Ble D, and Z € X*, thatis, B = AZ. Then f([A, AZ]*) C g([A, AZ))¥,
and this implies that

S1([A, AZ) f(Z) = g2([A, AZ]) forall AeP L. (4.3)

REMARK 4.3. For a meromorphic map g : D, s — D, ¢ and a holomorphic map
[ Qrs = Qp g satisfying (4.2), put g’ a meromorphic map h o g o A’ for
some h' € Aut(D,;) and h € Aut(D, ). Then there are H € Aut(2,) and
H' € Aut(2,/ ¢) such that ¢’ and f’':= H' o f o H satisfy (4.2). This is due
to the construction of (2.2), and for more detail, see [4].

4.2. Proof of Theorem

Note that two rationally equivalent proper monomial rational maps from D, , to
Dy 41,r+1 induce the same proper holomorphic map from €2, , to 2,41 ,+1. By
Theorem there are three possibilities to be g. Moreover there exists a holo-
morphic map g satisfying (4.2) for any proper holomorphic map f : Q,, —
Q41,041 (r = 2). We will only induce the proper map (2a) since calculation
of map (2b) is similar. A proper rational map is given by g([x1, x2, X3, x4]) =
[xlz, X1X2, X0X3, x%, X1X4,x3x4]. Let Z = (2 ﬁ) € Q2. Then

Z#* = {[x1, x2, X121 + %223, X122 + X224] € D22 [x1, x2] € P},
g([x1,x2, X121 + X223, X122 +x224]) = [A, B], where
A= (x7,x1x2, X2 (X121 + %223)),

B = ((x121 +x223)%, x1(x122 + X224), (X121 + X223) (X122 + X224)).

Denote
Ly My N
(D)=L M, N
L3 Mz N3
Then

x12L1 4+ x1x2L2 4+ x2(x121 + x223) L3 = (x121 +X2Z3)2,
x12M1 + x1x0M>o + x2(x121 + x223) M3 = x1(x1220 + X224), and

x12N1 + x1X2N2 + x2(x121 + x223) N3 = (X121 + x223) (X122 + X224)

for all [x1, x2] € P!. Hence, we obtain 2).

Consider case (1) in Theorem |.2. Suppose for simplicity that g : Dy » — D33
is g(x) = [x1, x2, x1, x3, x4, x1]. This method can be applied to general r and
homogeneous monomial linear map g. The induced map f : €222 — €233 has the
form

L zp—-M 1—-N

z z 1 —
f<( ! 2>> = 23 24 0
3 4 L M N
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for some holomorphic functions L, M, N on €2, ». Notice that f is equivalent to

2z oz L

- V2 V2 2
(ESE
73 24 < ~ ~

L M N

for some suitable holomorphic functions Z, M and N on €272. Since the map
Ao 1

(G2 (ﬁ V2 \(/)i) is a proper holomorphic map from Q. to 53, it is
3 24

equivalent to the embedding Z — (Z 0) and hence, f is equivalent to

z 0
Z <k(Z) h(Z))

for some holomorphic functions k1, k2, h on €22 » where k = (ki, k2). Then by the
maximum principle and homogeneity of the domains, k should be zero. Hence, f
should be of the form (1) in Theorem

REMARK 4.4. Note that, in general, for one g, there could be several f. However,
in case of D; 2, D33 and €2, Q23 3, there is a unique f for each g since the
number of equations and the number of unknowns are same.

4.3. More Examples

ExaMPpLE 4.5. If the difference of dimension gets greater, then there are an infinite
number of proper holomorphic maps that are not rationally equivalent up to the
automorphisms. Consider the proper holomorphic maps from D> to D4 4. By
the same method, let P;(x) = (x1 + x2 — x3 — x4) Q p(x) where Qp, (x) = x1 +
X2+ x3+x4 —t(x2+x4),0<rt<1.Then
Py(x) = x{ 4+ (2 — Dx1x2 + (1 — 1)x3 + tx2x3 — x3
—2—=0Dx3xg— (11— t)xi —1X1X4,
and the induced proper holomorphic maps are

&r([z1, 22, 23, 24])
=[], V2 —tz120, V1 = 123, V12223, 23, V2 — tz324, V1 — 123, V121 24).

Then g; induces an infinite number of proper holomorphic maps from f; : €222 —
€24 4, which are defined by

i1 22
i3 24

22 V212122 V=13 Vi
21—
V2—tnzz B Puu+znn 2 Hon [s5u
> . 44
2
V1 —1z3 2 2 7=r2324 3

Viz3 ‘/ﬁm 0 0
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REMARK 4.6. (2) and (3) are homotopic to each other by (4.4).

ExAMPLE 4.7. There is a proper holomorphic map f : 222 — €244 that has a
degree 3 polynomial in components. Let Q p(x) = xlz + x1x3 + x32. Then P(x) =
x13 + xlzxz + x1x2x3 + xzxg — x33 — x12x4 — X1X3X4 — x§x4 and hence

3 .2 2.3 .2 2
g([x1, x2, x3, x41) = [x7, X{ X2, X1X2X3, X2X3, X3, X{ X4, X1X3X4, X3X4].

The corresponding proper holomorphic map f : Q22 — €24 4 is

zf 22 2122 z%zz
<Z1 Zz)}_} z%zz 24 22723 712223
3 4 7123 0 z4 2223
23 0 0 z4

ExAMPLE 4.8 (Generalized Whitney map). Consider

P@) =144 xr = X1 — - = X)) (X1 + X 41).
This polynomial induces the proper meromorphic map g : D,y — Day—1 25—1
defined by
2
glzt, . vz wr, ..., ws]) = [27, 2122, ..., 2127, W1Z2, ..., WIZr,
wi, wiwa, ..., wiws, Z1wa, . .. 2 wyl.

The map g induces the proper holomorphic map f% : @, — Q2,-12,—1 defined
by

3, nziz ... s 22 .. Zls

721211 221212 ... 22121 222 ... Z2s
A T AP : : : : :
: . el zazn o zaziz oo ZelZls 2 --- Zes |- (4D)
Zrl ... Zrs 221 k%) 22¢ o ... 0

Zr1 Zr Zrs o ... 0

This is a generalized proper holomorphic map of (2): if r =5 =2, then f¥ is
same with (2) in Theorem

ExaMPLE 4.9. Consider the proper holomorphic maps from D, to D3 4. Let
Pr(x) = (x1 +x2 — x3 — x4)Q p(x) where Qp,(x) =x; +1x3,0 <t < 1. Then
the proper rational map g; : Dy 2 — D34 is given by
g ([x1, x2, x3, x41) = [x], x1x02, Vixoxs, Vix3, Vixsxa, V1 — tx1x3, x1x4].
The induced proper holomorphic maps f; : €222 — Q3 4 is given by
Vizi Vi JT—1u 2
21 2
(Z; zi) = | Vizizs Vi S1—1z3 . (4.6)
23 24 0 0
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Furthermore, we can generalize the proper holomorphic map (
Q0,125 given, for Z = (z;j)1<i<r,1<j<s» DY

Yto Fr 1 Q5 —

\/;Z%l Viziizia Viziizis 1=tz zi2 ... s
Viziizor Wtz iz S1—tz1 720 ... 22
Z | Viznizen Vizazi Viznzs 1=tz 22 oo Zs
221 722 20¢ 0 o ... 0
Zr1 Zr2 Zrs 0 0 0
4.7
ExaMpLE 4.10. Consider
P)=@1+-+x =y = =y) @+ +x +yr 4+ ys)

and the induced rational map g : D, — D, ¢, where r’ = %r(r +1) and s’ =
1s(s + 1), defined by

-»ys]):[x]zsu-y ,\/Exi.xj',...,\/ixr_lxr,
y12ys2 V2y1y2. N2y, ---A/Eys—lys],

2
g([-xls"'s-xrsyl»-- .xr, 2x1x2,...

where i, j, k,and [ traceover 1 <i < j <r and 1 <k <[ <s. Then the induced
proper holomorphic map f : Q,; — @,/ ¢ is

211 oo 2ls
f : U =(M,N), where
irl -+ Zrs
2 2
i s
2 2
21 Lrs
V2211201 V2215205
M = . )
x/zzilzj'] «/Eziszj's
V2211251 V221525
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V2z11212 e V2zikzu
\/EZrIZrZ cee \/Ezrkzrl
N— 211222 + 212221 21k221 + 22k 21
Zi1Zj2 + Zj1Zi2 ZikZjl + ZjkZil
Zr—112r2 + 2r12r =12 ++-  Zr—1kZrl t ZrkZr—11
\/EZIA‘fIZIS
\/zzrs—lzrs

Z1s—122s + 225—121s

Zis—1Zjs + Zjs—1Zis

Zr—1s—12rs + Zrs—12r—1s

Here i, j, k,l traceover | <i < j<rand1<k<I<r.
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