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New Examples of Proper Holomorphic Maps
among Symmetric Domains

Aeryeong Seo

1. Introduction

Let �r,s be a bounded symmetric domain of type I defined by

�r,s = {Z ∈ M(r, s,C) : Ir,r − ZZ∗ > 0}.
Here we denote by >0 the positive definiteness of square matrices, by M(r, s,C)

the set of r × s complex matrices, and by Ir,r the r × r identity matrix. Let Dr,s

be a generalized ball defined by

Dr,s = {[z1, . . . , zr+s] ∈ P
r+s−1 : |z1|2 + · · · + |zr |2 > |zr+1|2 + · · · + |zr+s |2}.

Definition 1.1. (1) Let f,g : �1 → �2 be holomorphic maps between do-
mains �1, �2. We say that f and g are equivalent if and only if f = A◦g ◦B

for some B ∈ Aut(�1) and A ∈ Aut(�2).
(2) Let g1, g2 : Pn → P

N be rational maps. We say g1 and g2 are rationally equiv-
alent if there is a rational map g : Pn → PN such that g is a common exten-
sion of g1 and g2.

The aim of this paper is presenting a simple way to generate proper monomial
rational maps between generalized balls and via the relations between generalized
balls and bounded symmetric domains of type I given in [4], giving new examples
of proper holomorphic maps between bounded symmetric domains of type I.

Consider a proper rational map g : Dr,s → Dr ′,s′ . In homogeneous coordi-
nate, put g([z1, . . . , zr+s]) = [g1, . . . , gr ′+s′ ]. Suppose that gi are monomials in
z1, . . . , zr+s for each i, 1 ≤ i ≤ r ′ + s′. Then we can define the homogeneous
polynomial P : Rr+s → R satisfying

P(|z1|2, . . . , |zr+s |2) =
r ′∑

k=1

|gk|2 −
r ′+s′∑

k=r ′+1

|gk|2. (1.1)

Since g is proper, P(x) = 0 whenever
∑r

j=1 xj = ∑r+s
j=r+1 xj . Hence, P should

be of the form ( r∑
j=1

xj −
r+s∑

j=r+1

xj

)m

QP (x) (1.2)

for some positive integer m and homogeneous polynomial QP (x).
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Theorem 1.2. Let g : Dr,r → Dr+1,r+1 (r ≥ 2) be a proper monomial rational
map. Then g is rationally equivalent to one of the following up to automorphisms
of Dr,r and Dr+1,r+1:

(1) In case of degree(g) = 1: g([z1, . . . , z2r ]) = [z1, . . . , zr , φ(z), zr+1, . . . , z2r ,

φ(z)], where φ(z) is a degree one homogeneous polynomial in z1, . . . , z2r ;
(2) In case of degree(g) = 2:

(a) g([z1, z2, z3, z4]) = [z2
1, z1z2, z2z3, z

2
3, z1z4, z3z4],

(b) g([z1, z2, z3, z4]) = [z2
1,

√
2z1z2, z

2
2, z

2
3,

√
2z3z4, z

2
4];

(3) In case of degree(g) ≥ 3; if QP (x) has degree 1 or the coefficients of the
polynomial QP (x) are nonnegative, then there is no proper monomial ratio-
nal map.

The condition in Theorem 1.2 on QP are due to combinatorial method counting
monomials in expansion of a multiplied polynomial.

The method to characterize proper monomial rational maps originally comes
from D’Angelo [1]. He studied proper monomial holomorphic maps from the unit
ball to the higher-dimensional unit ball via characterizing the polynomials that can
be obtained by taking Euclidean norm on proper maps. By characterizing these
polynomials he obtained a complete list of proper monomial holomorphic maps
from the two-dimensional unit ball to the four-dimensional unit ball. In this paper,
we modify this polynomial, which is appropriate to proper monomial rational
maps between generalized balls and characterize the polynomial by counting the
number of monomials in the polynomial.

For bounded symmetric domains of rank at least 2, properties of proper holo-
morphic maps are deeply related to special kind of totally geodesic subspaces
of given domains, which are called invariantly geodesic subspaces. These are
totally geodesic submanifolds with respect to the Bergman metric that are still
totally geodesic under the action of automorphisms of the compact dual of an
ambient domain. Invariantly geodesic subspaces first appeared in [3] as far as the
author knows. These subspaces play important roles to characterize proper holo-
morphic maps between bounded symmetric domains. Mok and Tsai [3; 6] proved
that proper holomorphic maps between irreducible bounded symmetric domains
preserve the maximal characteristic subspaces which are also invariantly geodesic
subspaces. Based on [3; 6], the rigidity of irreducible bounded symmetric domains
have been developed and incorporated by Tu [7; 8] and Ng [4; 5]. In particular, Ng
[4] found that generalized balls in the projective spaces parameterize the maximal
invariantly geodesic subspaces of bounded symmetric domains of type I, and we
use this relation to find several examples of proper holomorphic maps between
bounded symmetric domains of type I.

Consider the subspaces in �r,s of the form

L[A,B] = {Z ∈ �r,s : AZ = B},
where A ∈ M(1, r,C) and B ∈ M(1, s,C) satisfy [A,B] ∈ Dr,s , which are totally
geodesic under the action of SL(r + s,C). These are the maximal invariantly
geodesic subspaces. For X = [A,B] ∈ Dr,s , denote X# = LX .
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For a proper holomorphic map f : �r,r → �r+1,r+1 (r ≥ 2) that preserves
the maximal invariantly geodesic subspaces, there is a proper holomorphic map
g : Dr,r → Dr+1,r+1 such that f (X#) ⊂ g(X)# for generic X ∈ Dr,r .

Theorem 1.3. Let f : �r,r → �r+1,r+1 (r ≥ 2) be a proper holomorphic map.
Suppose that f preserves the maximal invariantly geodesic subspaces and an
induced proper holomorphic map g : Dr,r → Dr+1,r+1 satisfies the conditions in
Theorem 1.2. Then f is equivalent to one of the following:

(1)

f (Z) =
(

Z 0
0 h(Z)

)
for Z ∈ �r,r

and for some holomorphic map h : �r,r → � = {z ∈C : |z| < 1}.
(2)

f

((
z1 z2
z3 z4

))
=

⎛
⎝ z2

1 z1z2 z2
z1z3 z2z3 z4
z3 z4 0

⎞
⎠ for

(
z1 z2
z3 z4

)
∈ �2,2.

(3)

f

((
z1 z2
z3 z4

))
=

⎛
⎜⎝

z2
1

√
2z1z2 z2

2√
2z1z3 z1z4 + z2z3

√
2z2z4

z2
3

√
2z3z4 z2

4

⎞
⎟⎠ .

Here is the outline of the paper. Section 2 introduces some basic terminology,
well-known facts, and the invariantly geodesic subspaces. In Section 3, we modify
D’Angelo’s method to proper monomial maps between generalized balls and clas-
sify the maps that are needed to sort proper holomorphic maps between bounded
symmetric domains of type I. We count the number of monomials in a homoge-
neous polynomial that is multiplied by two homogeneous polynomials. In Sec-
tion 4, we present a way to generate proper holomorphic maps from �r,s to �r ′,s′
and prove Theorem 1.3. Furthermore, we give more interesting examples.

2. Preliminaries

2.1. Basic Facts and Terminology

First, we introduce terminology and some facts. For more detail, see [4; 3]. Let
Gr,s be the Grassmannian of r-planes in (r + s)-dimensional complex vector
space C

r+s , which is the compact dual of �r,s . For X ∈ M(r, r + s,C) of rank r ,
denote by [X] the r-plane in C

n that is generated by row vectors of X. For each
element Z in �r,s , there corresponds the r-plane [Ir,r ,Z] ∈ Gr,s . This is the
Borel embedding of �r,s into Gr,s . It is clear that SL(r + s,C) acts holomor-
phically and transitively Gr,s . Denote by SU(r, s) the subgroup of SL(r + s,C)

satisfying M
(−Ir,r 0

0 Is,s

)
M∗ = (−Ir,r 0

0 Is,s

)
for all M ∈ SU(r, s). Then SU(r, s) is

the automorphism group of �r,s . If we put M = (
A B
C D

)
, where A ∈ M(r, r,C),

B ∈ M(r, s,C), C ∈ M(s, r,C), and D ∈ M(s, s,C), then M acts on �r,s by
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Z �→ (A + ZC)−1(B + ZD). From now on, if we write M = (
A B
C D

) ∈ SU(r, s),
then, without ambiguity, A,B,C,D are block matrices of the indicated form.

2.2. Invariantly Geodesic Subspaces in �r,s

Consider a complex submanifold S in �r,s . For every g ∈ SL(r + s,C) such
that g(S) ∩ �r,s 
= ∅, if the submanifold g(S) ∩ �r,s is totally geodesic in �r,s

with respect to the Bergman metric of �r,s , then S is called invariantly geo-
desic subspace of �r,s . In particular, for W ∈ �r ′,s′ with r ′ ≤ r and s′ ≤ s, the
image of the embedding i : W �→ (

0 0
0 W

) ∈ �r,s is an invariantly geodesic sub-
space of �r,s . The totally geodesic subspaces that are equivalent under the action
of SU(r, s) to i(�r,s) in �r,s are called (r ′, s′)-subspaces of �r,s . Among these
(r ′, s′)-subspaces, the maximal invariantly geodesic subspaces are parameterized
by the generalized ball in Pr+s−1.

Proposition 2.1 [4]. The subspaces of the form

L = {Z ∈ �r,s : AZ = B}, (2.1)

where A ∈ M(1, r,C) and B ∈ M(1, s,C) satisfy [A,B] ∈ Dr,s are (r − 1, s)-
subspaces.

For example, in case of invariantly geodesic subspaces{(
0
W

)
∈ �r,s : W ∈ �r−1,s

}
,

A = (1,0, . . . ,0) ∈ M(1, r,C) and B = (0, . . . ,0) ∈ M(1, s,C).
For �r,s and Dr,s , consider the two surjective maps

φ : Pr−1 × �r,s → �r,s, ([X],Z) �→ Z, (2.2)

ψ : Pr−1 × �r,s → Dr,s, ([X],Z) �→ [X,XZ]. (2.3)

For Z ∈ �r,s , denote Z# = ψ(φ−1(Z)) ⊂ Dr,s . Similarly for X ∈ Dr,s , denote
X# = φ(ψ−1(X)) ⊂ �r,s . The subspaces Z# and X# are called fibral images of
Z and X, respectively. Then for Z ∈ �r,s and X = [A,B] ∈ Dr,s where A ∈
M(1, r,C) and B ∈ M(1, s,C),

Z# = {[A,AZ] ∈ Dr,s : [A] ∈ P
r−1} ∼= P

r−1, (2.4)

X# = {Z ∈ �r,s : AZ = B} ∼= (r − 1, s)-subspace. (2.5)

Proposition 2.2 (cf. [4]). Let f : �r,r → �r+1,r+1 be a proper holomorphic
map. Suppose that there is a meromorphic map g : Dr,r → Dr+1,r+1 such that
f (X#) ⊂ g(X)# for generic point X ∈ Dr,r . Then g is a proper map, or f (Z) =(

Z 0
0 h(Z)

)
for some holomorphic function h : �r,r → �.
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3. Proper Monomial Rational Map from Dr,s to Dr ′,s′

Let g : Dr,s → Dr ′,s′ be a proper monomial rational map, and P , QP be ho-
mogeneous polynomials defined by (1.1) and (1.2). Then QP has the following
properties:

(1) QP (x) is a homogeneous polynomial, which is not identically zero on{
x = (x1, . . . , xr+s) ∈R

r+s :
r∑

j=1

xj =
r+s∑

j=r+1

xj

}
.

(2) QP (x) > 0 whenever xi > 0 for all i, and
∑r

j=1 xj >
∑r+s

j=r+1 xj .

3.1. Classifying Proper Monomial Rational Map from Dr,r to Dr+1,r+1

A situation of classifying proper rational maps between generalized balls is
different from that of classifying proper holomorphic maps between unit balls
in [2] since there are an infinite number of proper rational maps that are
same in an open dense subset. For example, g : D2,2 → D3,3, [z1, . . . , z4] �→
[z1h, z2h,0, z3h, z4h,0] for any holomorphic function h of C4 that is not identi-
cally zero on D2,2 are same in an open dense subset depending on the zero set of h.
On the other hand, proper rational maps which are same in an open dense subset
induce the same proper holomorphic map between corresponding bounded sym-
metric domains of type I. Hence, we consider an equivalence relation on proper
monomial rational maps to incorporate these infinite number of rational maps.

Definition 3.1. Let g1, g2 : P2r−1 → P
2r+1 be rational maps. We say that g1

and g2 are rationally equivalent if there is a rational map g : P2r−1 → P
2r+1 such

that g is a common extension of g1 and g2.

We may assume that all components of g : Dr,s → Dr ′,s′ have no common factor.
In the rest of this section, we characterize the induced polynomial P(x) and

the proper monomial rational maps from Dr,r to Dr+1,r+1 to prove Theorem 1.2.
For this aim, we will count the number of monomials of P for suitable QP . For
a polynomial A, denote by ni(A) the number of monomials with maximal degree
in xi of A and by n(A) the number of monomials in A.

Lemma 3.2. For a polynomial A = (b1x1 + · · · + bkxk)
mÃ with nonzero poly-

nomial Ã, positive integer m, and nonzero bi for all i, 1 ≤ i ≤ k, we have
n(A) ≥ ∑k

i=1 ni(Ã).

Proof. The term (bixi)
m times the monomial with the maximal degree of xi in Ã

cannot be canceled. �

Lemma 3.3. Let P(x) be a homogeneous polynomial on R
k of the form

(b1x1 + · · · + bkxk)
mQP (x)
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for some positive integer m, nonzero bi for all i, 1 ≤ i ≤ k, and homogeneous
polynomial QP (x) with nonnegative coefficients. Then if m ≥ 2, then n(P ) ≥
2k − 1.

Proof. Without loss of generality, we may assume that QP (x) contains the x1
variable with b1 > 0 and n(QP ) ≥ 2. Let QP (x) = A0 + A1x1 + A2x

2
1 + · · · +

Aαxα
1 be the expansion of QP (x) with respect to the degree of the x1 variable

where α is the maximal degree of x1 in QP (x), Al is a homogeneous polyno-
mial without the x1 variable having nonnegative coefficients, and A0 and Aα are
nonzero. Denote B = b2x2 + · · · + bkxk . Then

P(x) = A0B
m + x1B

m−1(mb1A0 + A1B) + · · · + xα+m
1 Aα.

Note that there are at least k − 1 monomials in A0B
m and one monomial in

xα+m
1 Aα . Notice that the second term x1B

m−1(mb1A0 + A1B) does not vanish
and has at least k − 1 monomials. Hence, summing up, there are at least 2k − 1
monomials in P when m ≥ 2. �

Lemma 3.4. Let P(x) be a homogeneous polynomial on R
2r of the form

(x1 + · · · + xr − xr+1 − · · · − x2r )QP (x)

for some homogeneous polynomial QP (x) with nonnegative coefficients and
n(QP ) ≥ 2. Then

(1) n(P ) ≥ 3r − 1 if r ≥ 2;
(2) n(P ) ≥ 9 if r = 3.

Proof. As in the proof of Lemma 3.3, consider

P(x) = A0B + x1(A0 + A1B) + x2
1(A1 + A2B) + · · · + Aαxα+1

1 .

Suppose that Ai = 0 but Ai+1 
= 0 for some i, 1 ≤ i ≤ α − 1. Then the coefficient
of xi+1

1 is Ai+1B , and then there exist at least 2r − 1 monomials that cannot be
canceled. This implies that in this case, n(P ) ≥ 4r − 1. Hence, it is enough to
consider the case where Ai 
= 0 for any i, 0 ≤ i ≤ α. In this case, there are at least
2r − 1 monomials in A0B , r − 1 monomials in x1(A0 + A1B), r − 1 monomials
in x2

1(A1 + A2B), and one monomial in Aαxα+1
1 . Hence, n(P ) ≥ 3r − 1.

Consider r = 3. We may assume that Ai 
= 0 for all i. Since n(Ai + Ai+1) ≥ 2
for all i, it is enough to consider the case α = 1. Then P(x) = A0B + x1(A0 +
A1B) + A1x

2
1 . If A0 = A1(x4 + x5 + x6), then n(A0B) ≥ 9, and if A0 
= A1(x4 +

x5 + x6), then n(x1(A0 + A1B)) ≥ 3. Hence, n(P ) ≥ 9. �

Lemma 3.5. Let P(x) be a nonzero homogeneous polynomial on R
k (k ≥ 1) of

the form
(b1x1 + · · · + bkxk)

m(a1x1 + · · · + akxk)

for some positive integer m, ai ∈ R for i, 1 ≤ i ≤ k, and nonzero bi for all i,
1 ≤ i ≤ k. Then

(1) if m ≥ 2, then n(P ) ≥ 2k − 1;
(2) if m = 1 and n(a1x1 + · · · + akxk) ≥ 2, then n(P ) ≥ 2k − 2.



New Examples of Proper Holomorphic Maps among Symmetric Domains 441

Proof. We will prove (1). The proof of (2) is similar.
If n(a1x1 +· · ·+akxk) = 1, then there are

(
k+m−1

m

) ≥ 2k −1 monomials in P .
Suppose that n(a1x1 + · · · + akxk) ≥ 2. We may assume that a1 
= 0. Put A =

a2x2 + · · · + akxk and B = b2x2 + · · · + bkxk . Then

P(x) = BmA + x1B
m−1(mb1A + a1B) + · · · + a1x

m+1
1 .

Consider the case mb1A + a1B 
= 0. Let x be the number of ai that are zero,
and y be the number of ai that are nonzero. Then n(BmA) ≥ y − 1 + x(y − 1) =
−y2 + (k + 2)y − 1 − k for y, 2 ≤ y ≤ k. At y = 2, the minimum k − 1 appears.
Hence, n(P ) ≥ n(BmA) + n(Bm−1(mb1A + a1B)) + n(a1x

m+1
1 ) ≥ 2k − 1.

If mb1A + a1B = 0, then n(BmA) = n(Bm+1) = (
k+m
m

) ≥ 2k − 1. �

Lemma 3.6. Let P(x) = (x1 + x2 − x3 − x4)QP (x) for QP (x) = a1x1 + a2x2 +
a3x3 + a4x4, ai ∈R, i = 1,2,3,4. Suppose that n(P ) ≤ 6 and

QP (x) > 0 whenever x1 + x2 > x3 + x4 and xi > 0 for all i,1 ≤ i ≤ 4. (3.1)

Then the QP (x) is one of the following up to multiplication of constants:

x1, x2, x3, x4, x1 + x3, x1 + x4, x2 + x3, x2 + x4, x1 + x2 + x3 + x4.

Proof. We prove the lemma case by case. Write

P(x) = a1x
2
1 + a2x

2
2 − a3x

2
3 − a4x

2
4 + (a2 + a1)x1x2 + (a3 − a1)x1x3

+ (a3 − a2)x2x3 + (a4 − a1)x1x4 + (a4 − a2)x2x4 − (a3 + a4)x3x4.

(3.2)

(1) If only one ai is zero and the others are nonzero, then QP is xi for 1 ≤ i ≤ 4.
(2) If a1 = 0 and ai 
= 0 where 2 ≤ i ≤ 4, then there are monomials x1xi and x2

i

for 2 ≤ i ≤ 4 that cannot be canceled. Hence, a2 = a3, a2 = a4, a4 + a3 = 0,
and this is a contradiction. If aj = 0 and ak 
= 0 for k 
= j , by the same way,
this cannot happen.

(3) If a1 = a2 = 0, a3 
= 0, a4 
= 0, then a3 + a4 = 0. This contradicts condition
(3.1). Similarly, there is no QP for a3 = a4 = 0, a1 
= 0, a2 
= 0.

(4) If a2 = a4 = 0, a1 
= 0, a3 
= 0, then a1 = a3 and a1 > 0. This case corre-
sponds to QP (x) = x1 + x3. Similarly, the cases {a1 = a3 = 0, a2 
= 0, a4 
=
0}, {a1 = a4 = 0, a3 
= 0, a2 
= 0}, {a3 = a2 = 0, a1 
= 0, a4 
= 0} correspond
to x2 + x4, x3 + x2, x1 + x4, respectively.

(5) If all ai are nonzero, then, by (3.1), a1 > 0, a2 > 0. Hence, at least three
monomials among (a3 −a1)x1x3, (a3 −a2)x2x3, (a4 −a1)x1x4, (a4 −a2)x2x4
should be zero. This implies that a1 = a2 = a3 = a4. �

Proof of Theorem 1.2. Let

(x1 + · · · + xr − xr+1 − · · · − x2r )
mQP (x)

be the homogeneous polynomial induced by g for some positive integer m and
homogeneous polynomial QP (x). Then P satisfies n(P ) ≤ 2r +2. If n(QP ) = 1,
then g is rationally equivalent to (1). Hence, we only need to consider the case
n(QP ) ≥ 2.
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Suppose m ≥ 2. Then, by Lemmas 3.3 and 3.5, n(P ) ≥ 4r −1 > 2r +2. Hence,
m = 1. On the other hand, by Lemmas 3.5 and 3.4, n(P ) ≥ 2r + 2 for all r ≥ 3.

For m = 1 and r = 2, by Lemma 3.6,

x1 + x2 − x3 − x4, x
2
1 + x1x2 + x2x3 − x2

3 − x1x4 − x3x4,

x2
2 + x1x2 + x1x4 − x2

4 − x2x3 − x3x4, x
2
1 + x1x2 + x2x4 − x2

4 − x1x3 − x3x4,

x2
2 + x1x2 + x1x3 − x2

3 − x2x4 − x3x4, x
2
1 + 2x1x2 + x2

2 − x2
3 − 2x3x4 − x2

4 .

Then the first one induces (1), and the last one induces the map (2b). The remain-
ing induce the map equivalent to (2a). �

4. Proper Holomorphic Maps between Bounded Symmetric Domains

4.1. Construction of Proper Holomorphic Maps from �r,s to �r ′,s′

In this section, using the relations between (r − 1, s)-subspaces in �r,s and pro-
jective subspaces (∼= P

r−1) in Dr,s given in [4], we describe the construction of
proper holomorphic mapping between bounded symmetric spaces of type I. To
consider the boundary behavior of g, extend φ and ψ to

φ̃ : Pr−1 × �r,s → �r,s, ([X],Z) �→ Z,

ψ̃ : Pr−1 × �r,s → Dr,s, ([X],Z) �→ [X,XZ].
For the boundary points, consider the fibral image with respect to this extended
map. Let z ∈ ∂�r,s . This implies that z satisfies Ir,r − zzt ≥ 0 and there is a ∈ C

r

such that a(Ir,r − zzt )at = 0. Hence, z# may not be contained in ∂Dr,s , and

z# ∩ ∂Dr,s = {[a, az] ∈ Dr,s : [a] ∈ P
r−1, a(Ir,r − zzt )at = 0}. (4.1)

On the other hand, for [a, b] ∈ ∂Dr,s where a ∈ M(1, r,C) and b ∈ M(1, s,C),

if z ∈ [a, b]#, then aat = bb
t = az(az)

t = azztat . Hence, for [a, b] ∈ ∂Dr,s ,
[a, b]# ⊂ ∂�r,s .

Definition 4.1. For a rational map g : Dr,s → Dr ′,s′ , we say that a rational map
g is proper if for any point x ∈ ∂Dr,s and open neighborhood U of x that does
not intersect the indeterminacy of g, g is proper on U ∩ Dr,s .

Proposition 4.2. Let f : �r,s → �r ′,s′ be a holomorphic map. Suppose that
there is a proper rational map g : Dr,s → Dr ′,s′ satisfying

f (X#) ⊂ g(X)# for generic point X ∈ Dr,s . (4.2)

Then f is proper.

Proof. Let {Zj } be a sequence in �r,s such that Zj → z ∈ ∂�r,s . Choose points
Xj ∈ Z#

j and x ∈ ∂Dr,s ∩ z# such that Xj → x. Then since g(Xj ) → g(x),

f (Zj ) ∈ f (X#
j ) ⊂ g(Xj )

# → g(x)# ⊂ ∂�r ′,s′ . Hence, f is proper. �

Let f : �r,s → �r ′,s′ be a proper holomorphic map that is provided from a proper
rational map g : Dr,s → Dr ′,s′ satisfying the condition in Proposition 4.2. Let
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g = [g1, g2] where g1 has r ′-components and g2 has s′-components. Let X =
[A,B] ∈ Dr,s and Z ∈ X#, that is, B = AZ. Then f ([A,AZ]#) ⊂ g([A,AZ])#,
and this implies that

g1([A,AZ])f (Z) = g2([A,AZ]) for all A ∈ P
r−1. (4.3)

Remark 4.3. For a meromorphic map g : Dr,s → Dr ′,s′ and a holomorphic map
f : �r,s → �r ′,s′ satisfying (4.2), put g′ a meromorphic map h ◦ g2 ◦ h′ for
some h′ ∈ Aut(Dr,s) and h ∈ Aut(Dr ′,s′). Then there are H ∈ Aut(�r,s) and
H ′ ∈ Aut(�r ′,s′) such that g′ and f ′ := H ′ ◦ f ◦ H satisfy (4.2). This is due
to the construction of (2.2), and for more detail, see [4].

4.2. Proof of Theorem 1.3

Note that two rationally equivalent proper monomial rational maps from Dr,r to
Dr+1,r+1 induce the same proper holomorphic map from �r,r to �r+1,r+1. By
Theorem 1.2 there are three possibilities to be g. Moreover there exists a holo-
morphic map g satisfying (4.2) for any proper holomorphic map f : �r,r →
�r+1,r+1 (r ≥ 2). We will only induce the proper map (2a) since calculation
of map (2b) is similar. A proper rational map is given by g([x1, x2, x3, x4]) =
[x2

1 , x1x2, x2x3, x
2
3 , x1x4, x3x4]. Let Z = (

z1 z2
z3 z4

) ∈ �2,2. Then

Z# = {[x1, x2, x1z1 + x2z3, x1z2 + x2z4] ∈ D2,2 : [x1, x2] ∈ P
1},

g([x1, x2, x1z1 + x2z3, x1z2 + x2z4]) = [A,B], where

A = (x2
1 , x1x2, x2(x1z1 + x2z3)),

B = ((x1z1 + x2z3)
2, x1(x1z2 + x2z4), (x1z1 + x2z3)(x1z2 + x2z4)).

Denote

f (Z) =
⎛
⎝L1 M1 N1

L2 M2 N2
L3 M3 N3

⎞
⎠ .

Then

x2
1L1 + x1x2L2 + x2(x1z1 + x2z3)L3 = (x1z1 + x2z3)

2,

x2
1M1 + x1x2M2 + x2(x1z1 + x2z3)M3 = x1(x1z2 + x2z4), and

x2
1N1 + x1x2N2 + x2(x1z1 + x2z3)N3 = (x1z1 + x2z3)(x1z2 + x2z4)

for all [x1, x2] ∈ P
1. Hence, we obtain (2).

Consider case (1) in Theorem 1.2. Suppose for simplicity that g : D2,2 → D3,3

is g(x) = [x1, x2, x1, x3, x4, x1]. This method can be applied to general r and
homogeneous monomial linear map g. The induced map f : �2,2 → �3,3 has the
form

f

((
z1 z2
z3 z4

))
=

⎛
⎝z1 − L z2 − M 1 − N

z3 z4 0
L M N

⎞
⎠
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for some holomorphic functions L,M,N on �2,2. Notice that f is equivalent to

f̃

((
z1 z2
z3 z4

))
=

⎛
⎜⎝

z1√
2

z2√
2

1√
2

z3 z4 0

L̃ M̃ Ñ

⎞
⎟⎠

for some suitable holomorphic functions L̃, M̃ and Ñ on �2,2. Since the map(
z1 z2
z3 z4

) �→
( z1√

2

z2√
2

1√
2

z3 z4 0

)
is a proper holomorphic map from �2,2 to �2,3, it is

equivalent to the embedding Z �→ (Z 0) and hence, f̃ is equivalent to

Z �→
(

Z 0
k(Z) h(Z)

)
for some holomorphic functions k1, k2, h on �2,2 where k = (k1, k2). Then by the
maximum principle and homogeneity of the domains, k should be zero. Hence, f

should be of the form (1) in Theorem 1.3.

Remark 4.4. Note that, in general, for one g, there could be several f . However,
in case of D2,2,D3,3 and �2,2,�3,3, there is a unique f for each g since the
number of equations and the number of unknowns are same.

4.3. More Examples

Example 4.5. If the difference of dimension gets greater, then there are an infinite
number of proper holomorphic maps that are not rationally equivalent up to the
automorphisms. Consider the proper holomorphic maps from D2,2 to D4,4. By
the same method, let Pt (x) = (x1 + x2 − x3 − x4)QP (x) where QPt (x) = x1 +
x2 + x3 + x4 − t (x2 + x4), 0 ≤ t ≤ 1. Then

Pt(x) = x2
1 + (2 − t)x1x2 + (1 − t)x2

2 + tx2x3 − x2
3

− (2 − t)x3x4 − (1 − t)x2
4 − tx1x4,

and the induced proper holomorphic maps are

gt ([z1, z2, z3, z4])
= [

z2
1,

√
2 − tz1z2,

√
1 − tz2

2,
√

tz2z3, z
2
3,

√
2 − tz3z4,

√
1 − tz2

4,
√

tz1z4
]
.

Then gt induces an infinite number of proper holomorphic maps from ft : �2,2 →
�4,4, which are defined by(

z1 z2
z3 z4

)

�→

⎛
⎜⎜⎜⎜⎜⎜⎝

z2
1

√
2 − tz1z2

√
1 − tz2

2

√
tz2

√
2 − tz1z3

2(1−t)
2−t

z1z4 + z2z3 2
√

1−t
2−t

z2z4

√
t

2−t
z4

√
1 − tz2

3 2
√

1−t
2−t

z3z4 z2
4 0

√
tz3

√
t

2−t
z4 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

. (4.4)
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Remark 4.6. (2) and (3) are homotopic to each other by (4.4).

Example 4.7. There is a proper holomorphic map f : �2,2 → �4,4 that has a
degree 3 polynomial in components. Let QP (x) = x2

1 + x1x3 + x2
3 . Then P(x) =

x3
1 + x2

1x2 + x1x2x3 + x2x
2
3 − x3

3 − x2
1x4 − x1x3x4 − x2

3x4 and hence

g([x1, x2, x3, x4]) = [x3
1 , x2

1x2, x1x2x3, x2x
2
3 , x3

3 , x2
1x4, x1x3x4, x

2
3x4].

The corresponding proper holomorphic map f : �2,2 → �4,4 is

(
z1 z2
z3 z4

)
�→

⎛
⎜⎜⎝

z3
1 z2 z1z2 z2

1z2

z2
1z3 z4 z2z3 z1z2z3

z1z3 0 z4 z2z3
z3 0 0 z4

⎞
⎟⎟⎠ .

Example 4.8 (Generalized Whitney map). Consider

P(z) = (x1 + · · · + xr − xr+1 − · · · − xr+s)(x1 + xr+1).

This polynomial induces the proper meromorphic map g : Dr,s → D2r−1,2s−1
defined by

g([z1, . . . , zr ,w1, . . . ,ws]) = [z2
1, z1z2, . . . , z1zr ,w1z2, . . . ,w1zr ,

w2
1,w1w2, . . . ,w1ws, z1w2, . . . z1ws].

The map g induces the proper holomorphic map f w : �r,s → �2r−1,2s−1 defined
by

⎛
⎜⎝

z11 . . . z1s

...
. . .

...

zr1 . . . zrs

⎞
⎟⎠ �→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

z2
11 z11z12 . . . z11z1s z12 . . . z1s

z21z11 z21z12 . . . z21z1r z22 . . . z2s

...
...

. . .
...

...
. . .

...

zr1z11 zr1z12 . . . zr1z1s zr2 . . . zrs

z21 z22 . . . z2s 0 . . . 0
...

...
. . .

...
...

. . .
...

zr1 zr2 . . . zrs 0 . . . 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (4.5)

This is a generalized proper holomorphic map of (2): if r = s = 2, then f w is
same with (2) in Theorem 1.3.

Example 4.9. Consider the proper holomorphic maps from D2,2 to D3,4. Let
Pt(x) = (x1 + x2 − x3 − x4)QP (x) where QPt (x) = x1 + tx3, 0 ≤ t ≤ 1. Then
the proper rational map gt : D2,2 → D3,4 is given by

gt ([x1, x2, x3, x4]) = [
x2

1 , x1x2,
√

tx2x3,
√

tx2
3 ,

√
tx3x4,

√
1 − tx1x3, x1x4

]
.

The induced proper holomorphic maps ft : �2,2 → �3,4 is given by

(
z1 z2
z3 z4

)
�→

⎛
⎜⎝

√
tz2

1

√
tz1z2

√
1 − tz1 z2√

tz1z3
√

tz2z3
√

1 − tz3 z4

z3 z4 0 0

⎞
⎟⎠ . (4.6)
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Furthermore, we can generalize the proper holomorphic map (4.6) to Ft : �r,s →
�2r−1,2s given, for Z = (zij )1≤i≤r,1≤j≤s , by

Z �→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
tz2

11

√
tz11z12 . . .

√
tz11z1s

√
1 − tz11 z12 . . . z1s√

tz11z21
√

tz21z12 . . .
√

tz21z1r

√
1 − tz21 z22 . . . z2s

...
...

. . .
...

...
. . .

...√
tz11zr1

√
tzr1z12 . . .

√
tzr1z1s

√
1 − tzr1 zr2 . . . zrs

z21 z22 . . . z2s 0 0 . . . 0
...

...
. . .

...
...

...
. . .

...

zr1 zr2 . . . zrs 0 0 . . . 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(4.7)

Example 4.10. Consider

P(x) = (x1 + · · · + xr − y1 − · · · − ys)(x1 + · · · + xr + y1 + · · · + ys)

and the induced rational map g : Dr,s → Dr ′,s′ , where r ′ = 1
2 r(r + 1) and s′ =

1
2 s(s + 1), defined by

g([x1, . . . , xr , y1, . . . , ys]) = [
x2

1 , . . . , x2
r ,

√
2x1x2, . . . ,

√
2xixj , . . . ,

√
2xr−1xr ,

y2
1 , . . . , y2

s ,
√

2y1y2, . . . ,
√

2ykyl, . . . ,
√

2ys−1ys

]
,

where i, j , k, and l trace over 1 ≤ i < j ≤ r and 1 ≤ k < l ≤ s. Then the induced
proper holomorphic map f : �r,s → �r ′,s′ is

f

⎛
⎜⎝

⎛
⎜⎝

z11 . . . z1s

...
. . .

...

zr1 . . . zrs

⎞
⎟⎠

⎞
⎟⎠ = (M,N), where

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

z2
11 . . . z2

1s
...

...

z2
r1 . . . z2

rs√
2z11z21 . . .

√
2z1sz2s

...
...√

2zi1zj1 . . .
√

2ziszjs

...
...√

2zr−11zr1 . . .
√

2zr−1szrs

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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N =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
2z11z12 . . .

√
2z1kz1l

...
...√

2zr1zr2 . . .
√

2zrkzrl

z11z22 + z12z21 . . . z1kz2l + z2kz1l

...
...

zi1zj2 + zj1zi2 . . . zikzjl + zjkzil

...
...

zr−11zr2 + zr1zr−12 . . . zr−1kzrl + zrkzr−1l

. . .
√

2z1s−1z1s

...

. . .
√

2zrs−1zrs

. . . z1s−1z2s + z2s−1z1s

...

. . . zis−1zjs + zjs−1zis

...

. . . zr−1s−1zrs + zrs−1zr−1s

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Here i, j , k, l trace over 1 ≤ i < j ≤ r and 1 ≤ k < l ≤ r .
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