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Koszul Determinantal Rings and
2 x e Matrices of Linear Forms

Hoprp D. NGUYEN, PHONG DINH THIEU, & THANH VU

ABSTRACT. Let k be an algebraically closed field of characteristic 0.
Let X be a 2 x e matrix of linear forms over a polynomial ring
k[X1,...,%y] (Where e,n > 1). We prove that the determinantal ring
R =k[xq,...,x41/1p(X) is Koszul if and only if in any Kronecker—
Weierstrass normal form of X, the largest length of a nilpotent block is
at most twice the smallest length of a scroll block. As an application,
we classify rational normal scrolls whose all section rings by natural
coordinates are Koszul. This result settles a conjecture of Conca.

1. Introduction

Let k be an algebraically closed field of characteristic 0, R a commutative, stan-
dard graded k-algebra. The last condition means that R is Z-graded, Ry =k, and
R is generated as a k-algebra by finitely many elements of degree 1. We say that R
is a Koszul algebra if k has linear resolution as an R-module. Denote by reg, M
the Castelnuovo—Mumford regularity of a finitely generated graded R-module M.
An equivalent way to express the Koszulness of R is the condition regp k = 0.
Effective techniques to prove Koszulness include Grobner deformation, Koszul
filtrations, computation of the Betti numbers of k for toric rings, among others.
For some survey articles on Koszul algebras, we refer to [11; 16].

In this paper, we study the Koszul property of linear sections of rational nor-
mal scrolls. By abuse of terminology, we use “rational normal scrolls” to refer to
the homogeneous coordinate rings of the corresponding varieties. These graded
algebras are defined by the ideals of 2-minors of some 2 x e matrices of linear
forms, where e¢ > 1. The homogeneous coordinate rings of the Segre embedding
P! x P¢ — P?¢*! and the Veronese embedding P! — P¢ are among the examples;
in fact, they are special instances of rational normal scrolls. The rational normal
scrolls are a classical and widely studied class of varieties with minimal multiplic-
ity, whose classification is known from works of Del Pezzo and Bertini; see [14].
See also, for example, [2; 3] for some recent works on this topic.

Let X be a 2 x e matrix of linear forms over a polynomial ring S =
k[x1,...,%,]. Let R = k[x1,...,%,]/12(X) be the determinantal ring of X. Al-
gebraic properties of such determinantal rings R were studied in the literature;
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see [7; 5], and [23]. The Kronecker—Weierstrass theory of matrix pencils (see
Section 2) played an important role in these works.

Concerning the Koszul property, any rational normal scroll is Koszul since it
has regularity 1. In fact, any rational normal scroll is also G-quadratic, namely its
defining ideal has a quadratic Grobner basis with respect to a suitable term order;
see [23] for a generalization. In this paper, we are able to classify the Koszul deter-
minantal rings of 2 x e matrices of linear forms using the Kronecker—Weierstrass
theory. The main technical result of the paper is the following:

THEOREM 1.1. Let X be a 2 x e matrix of linear forms (where e > 1), and R =
k[X1/1(X) the determinantal ring of X. Then R is Koszul if and only if m < 2n,
where m is length of the longest nilpotent block, and n is length of the shortest
scroll block in any Kronecker—Weierstrass normal form of X. (The last condition
holds if there is either no such nilpotent block or no such scroll block.)

Since k is algebraically closed and chark = 0, we may assume that X is already
in the Kronecker—Weierstrass normal form. Denote m the length of the longest
nilpotent block and 7 the length of the shortest scroll block of X. We deduce the
sufficient condition in Theorem |.1 by constructing a Koszul filtration for R given
that X satisfies the length condition m < 2n (Construction ). The construction
supplies new information even for rational normal scrolls.

As applications, we are able to characterize the rational normal scrolls that “be-
have like” algebras defined by quadratic monomial ideals. Let us introduce some
more notation. Let S = k[xy, ..., x,] be a standard graded polynomial algebra
that surjects onto the k-algebra R (not necessarily a determinantal ring). For any
finitely generated graded R-module M, we use reg M to denote regg M, which is
an invariant of M. Koszul algebras defined by quadratic monomial relations (see
Froberg [15]) have very strong resolution-theoretic properties. If R = S/1 where
1 is a quadratic monomial ideal of S, then for any set of variables Y C {xp, ..., X, }
of S, we have:

(i) regg R/(Y) <regR;
(i) R/(Y) is a Koszul algebra;
(iii) (see [20]) regr R/(Y) =0.

Thus, all the linear sections by natural coordinates of R have a linear resolution
over R and are Koszul algebras. In fact, (i) and (ii) are consequences of (iii) by
Lemma

For R being a rational normal scroll of type (ny,...,ny) wheret> 1,1 <n; <
-+- < ny, R is defined by the ideal of maximal minors of the matrix

yi,1 Y12 .- Yi,n y2,1 Y22 ... Y2m
Y12 Y13 --o Yin+l 0 Y22 Y23 ... Y2m+l

N o2 e Mn
P2 M3 e Vinert)]
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where y1.1, Y1,2, -+ .5 Y1,nj+15 ¥2,15 - - » Yt,m+1 are distinct variables. By the set of
natural coordinates of R we mean {y1,1, ¥1,2, .-, Y1,n+1> Y2,1 - - -» Ytmy+1}. The
main application of Theorem [.1 is the following:

THEOREM 1.2. Let R be a rational normal scroll of type (ny,...,ny) where 1 <

Ny <---<n. Let Y be a subset of the set of natural coordinates of R.

(1) reg R/(Y) <regR for every possible choice of Y if and only if R is balanced,
thatis, ny <ny + 1.

(i1) R/(Y) is a Koszul algebra for every possible choice of Y if and only if ny <
2n1.

Note that, under the same assumptions, we also have

(iii) (Conca [8]) regp R/(Y) = 0 for every possible choice of Y if and only if
n; = n;. Moreover, in that case, R is strongly Koszul in the sense of [20].

The last result was mentioned by Conca [8] without proof; we give an argument
here. Part (i) is proved by using a formula of Castelnuovo—-Mumford regularity
of linear sections of R by Catalano-Johnson [5] and Zaare-Nahandi and Zaare-
Nahandi [23]. This was conjectured in [8]. Part (ii) confirms a conjecture proposed
by Conca [8], which was made based on numerical evidences. Note that arguing
a little bit further, we do not have to put any restriction on k in Theorem 1.2;
see Remark 2.2. Studying Conca’s conjecture was the original motivation of this
project.

The paper is structured as follow. In Section 2, we recall Kronecker—
Weierstrass theory of matrix pencils, results about determinantal rings of [5; 7;

], and the notion of Koszul filtration [13]. In Section 3, particularly in Proposi-
tion and Lemma , we describe the changes in the Kronecker—Weierstrass
normal forms after going modulo certain linear forms. Section 4 is devoted to
the proof of the sufficiency part in Theorem using a Koszul filtration (Con-
struction ). To verify the validity of our Koszul filtration, we use the Hilbert
series formula of 2 x e matrices of linear forms discovered by Chun and a Grob-
ner basis formula for such matrices due to Rahim Zaare-Nahandi and Rashid
Zaare-Nahandi. In Section 5, the necessity part in Theorem is established
by using the monoid presentation of a rational normal scroll and a formula of
Herzog, Reiner, and Welker [2 1] for multigraded Betti numbers of k. We prove
Theorem in Section 6. As another application of Theorem 1.1, we classify
completely the rational normal scrolls whose all quotients by linear ideals are
Koszul algebras (Theorem ).

2. Background

2.1. Kronecker—Weierstrass Normal Forms

Let k be an algebraically closed field of characteristic zero. In this section, we
review the theory of Kronecker—Weierstrass normal forms. For a detailed discus-
sion, we refer to [17, Chapter XII]. For more recent treatment and algorithms
for finding the Kronecker—Weierstrass normal forms, we refer to [1; 22]. Let
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S =kl[xi, ..., x,] be apolynomial ring over a field k (where n > 1). Letx], ..., x;
be the basis for the dual vector space of the k-vector space V with basis x1, ..., X,.
Let X be a 2 x e matrix of linear forms in S (where to avoid triviality, we assume
that e > 2).

Each row of X can be identified with a matrix in M., in the following way:

letr=(,...,l.) be arow, then fori =1,...,n, the ith column of the matrix M,
is given by (x*(I1), ..., x*(l.))”. Thus,
i) x5 ..o xp(n)
* * *
M = i) x5(2) ... x;() € My,
XT(le) XZ(Ie) v X (le)

Now X can be identified with the vector subspace of V¢ generated by two rows
ri, rp of X. In turn, this vector subspace of V¢ can be identified with the vector
subspace Vx generated by two matrices My, , My, of M¢y,.

If dimVy <1, then ry, rp are linearly dependent, and I>(X) = 0. So let us as-
sume that dim Vy = 2. From the Kronecker—Weierstrass theory of matrix pencils,
there exist invertible matrices C € GL(k¢), C’' € GL(V) such that

C(M,, +vM,,)C’

T
Lm|—1
T
me—l
Ly,
Lnd
Jpl,kl
Jl’gv)“g
where v is a variable,
1 v 0 O
o1 v -
mel = : : .. .. : € M(m—l)xma
0 0 1 v
and
M +1 v 0 0
0 Aw+1 v 0
Jpi= EMpxp.
0 0 e Av+1 v
0 0 0 l+1

Since C and C’ are invertible, X defines the same determinantal ideal as the matrix
with rows corresponding to the matrices CM,,C’, CM,,C’. Concretely, the last
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matrix is a concatenation of the following three types of matrices:

x,-,l xi’z x,-,ml._l O
0 xi1 .. Xim—2 Xim—1)’
Vil Yji2 o Yin;
Yi2 Yi3 -ee Yinj+1)'
and
21 22 U pi—1 .
o+ Mz u3ztMu2 oo g FMAUp-1 Mip)’

where X, y, z are independent linear forms of S, 1 <i <c¢,1<j <d,and 1 <
| < g for some c,d, g > 0. We call these matrices nilpotent block, scroll block,
and Jordan block with eigenvalue A;, respectively. By definition, the length of
these blocks are m;, nj, and p;, respectively. The numbers ¢, d and the lengths of
nilpotent and scroll blocks m;, nj, where 1 <i <cand 1 < j <d, are invariants
of X, but A; are not. See [17], [5. Section 3] for more details.

For the convenience of our arguments, we write the columns of nilpotent
blocks with the reverse order and reindex. Hence, in our notation, nilpotent blocks

are of the form
0 xi1 xi2 ... Xim;i—=2  Xim;—1
Xil Xi2 Xi3 ... Xim—1 0

We call concatenation of such scroll blocks, nilpotent blocks (in our notation),
and Jordan blocks obtained from CM,,C’ and CM,,C’ a Kronecker—Weierstrass
normal form of X.

Fix a Kronecker—Weierstrass normal form of X. For our purpose, Jordan
blocks with different eigenvalues behave differently, so we will refine our no-
tation. We assume that the Jordan blocks of X are divided into g; Jordan blocks
with eigenvalues A; fori =1, ..., t. Here, the eigenvalues A1, A>, ..., A; are pair-
wise distinct. Concretely,

| | | |
X=<xnu:xsc:xl1 X, - XgiolXDOXy o Xiwt)’
I I I I
where
7 z 7
xi—[ it R Y J:Pij
J ‘ 7k L 78 ;7' '
ZJ’2+)»,Z],1 Z]’3+)\41ZJ’2 )\’Z]J?ij

Here Xpj, X denote the submatrices of X consisting of nilpotent blocks and
scroll blocks, respectively. In addition, we assume that p;; > pj2 > --- > pj,, for
1<i<t.

We call the sequence (m; <mp <--- <m¢,n| <np <---<ng, pj1 >+ >

Dlgis--+» Pil = =+ = Dyg,) the length sequence of X. We write the length se-
quence of (the given Kronecker—Weierstrass normal form of) X as follows:

(mi,...,me, N1, ..., 04, P11, .- Plgy» P21s -+ Prg,)-
—_— — ——
N S J
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ExampLE 2.1. Let R be the (2, 4) scroll defined by the matrix
Yiro Y12, Y21 Y22 Y23 Y24
YI2o Y131 Y2 Y23 Yu ys)

We show that R/(y»3) is defined by two Jordan blocks with eigenvalues 0 and 1
and a scroll block of length 2.
Changing variables for simplicity, clearly, R/(y23) is defined by the matrix

271 2 h o 0w
2 z3 0 wur uy)’
Adding the second row to the first row, we get
21+z22 22+z3 t1+t o our urtu
22 23 15 0 u uy ’

Multiplying the last column by —1 and then swapping it with the previous column,
we get
<Zl +z22 22+z3 ht+n B —up—u ul)

2 23 153 0 —u uj
Let w; = —u1 — uy; then the last matrix is nothing but
21+22 2+ ht+h B wi ui
22 3 1 B 0 wur+w; u)’

Adding the second column to the first one, we get

21+220+z23 22tz ih+h ) w u
22+23 23 13 0lur+w; u)’
which is a concatenation of a scroll block, a Jordan block with eigenvalue 0, and
another Jordan block with eigenvalue 1.

REMARK 2.2. Note that using arguments similar to that of Example 2.1, we can
show that if R is a rational normal scroll and Y is a set of natural coordinates, then
R/(Y) is defined by nilpotent, scroll, and Jordan blocks with eigenvalue O or 1.
There is no need to assume that & is algebraically closed of characteristic zero in
these arguments. We leave the details to the interested reader.

2.2. Hilbert Series and Castelnuovo—Mumford Regularity

Let R be a standard graded k-algebra. For a finitely generated graded R-module
M, we define the Castelnuovo—Mumford regularity of M by
regp M =sup{j —i: Torf(k, M); #0}.

The following result is well known; we state it for ease of reference.

LEMMA 2.3 [0, Proposition 2.1]. Let S — R be a surjection of standard graded
k-algebras, and M a finitely generated graded R-module. Then

(i) regg M <regg R +regp M;

(i) ifregg R <1, thenregp M <regg M.
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Let X be a Kronecker—Weierstrass matrix of length sequence

ML, .oy Moy ML,y ooy By PLLy s Plgys--os Prls -+ oy Dig -
—_— — —
N S J
Denote m = m, = max{m1, ..., m.}. For integers b, g, let N(ny,...,nq; b, q)

denote the cardinality of the set
d d

{(V],...,Vd): vjeZzo,anijb—land ZV,‘:L]—I}.

j=1 i=1
We immediately have the following:

LEmMA 2.4. Ifb <(q — 1) -min{ny,...,ng}, then N(ny,...,nq,b,q) =0.

Let R be the determinantal ring of X. Let R’ be the determinantal ring of the
submatrix of X consisting of Jordan and scroll blocks. We cite the following result
for later usage.

THEOREM 2.5 (Chun [7, Theorem 2.2.3]). The Hilbert series of R = k[X]/12(X)
is given by

Hg(v) = (Zm, — c)v

+Z<Z Z N@my,...,ng;m; — 1 —r,q))vq + Hg(v).

i=1 r=0

The regularity of the determinantal rings of 2 x e matrices of linear forms can be
computed as follows.

THEOREM 2.6 [5, Section 5; Theorem 4.2]. Let X be a 2 x e matrix of linear
forms such that I,(X) # 0. If in a Kronecker—Weierstrass normal form of X, m is
the length of the longest nilpotent block and n is the length of the shortest scroll
block, then regk[ X1/ (X) = 1 if either m <1 or n =0, and (mT_I] otherwise.

2.3. Koszul Filtrations

We recall the following notion introduced by Conca, Trung, and Valla [13], which
is implicit in [4].
DEerINITION 2.7 (Koszul filtration). Let R be a standard graded k-algebra with
graded maximal ideal m. Let F be a set of ideals of R such that
(i) every ideal in F is generated by linear forms;
(i) 0 and m belong to F;
(iii) (colon condition) if I # 0 and I € F, then there exist an ideal J € F and a
linear form x € Ry \Osuchthat / =J + (x)and J : I € F.
Then F is called a Koszul filtration of R.
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In the same paper, the authors proved that if such a Koszul filtration exists, then
regp R/I =0 for every I € F. In particular, choosing / =m, R is Koszul. Fur-
thermore, for I € F, the quotient ring R/I is Koszul by applying Lemma 2.3(ii)
toM =k.

2.4. Grobner Bases in the Absence of Nilpotent Blocks

We need of the following result on Grobner basis, which is crucial to our argu-
ments in the sequel. Let X be a Kronecker—Weierstrass matrix with the length
sequence

(my <+ <mMeny < SNG PILZ = Plgrsees Pil = > Prg,)

N S J

and order the blocks of X according to its length sequence. For our purpose, we
have chosen a different order of blocks than that of [23, Proposition 3.1]. On
the other hand, for the next result, the method of proving loc. cit. carries over
verbatim.

LeEMMA 2.8 [23. Proposition 3.1]. Assume that X has no nilpotent block. Order
the variables in k[X] such that they are decreasing on the first row and the last
variable of a block is larger than the first variable of its adjacent block on the
right. Then in the induced degree reverse lexicographic order, the 2-minors of X
form a Grobner basis for [(X).

3. Kronecker—Weierstrass Normal Forms of Certain Section Rings

Let X be a 2 x e matrix of linear forms in a polynomial ring S = k[xi, ..., X,]
(where e,n > 1 and I5(X) # 0). Let A, B € M,, be the matrix corresponding to
the rows of X as in Section 2. Consider the matrix pencil A + vB, where v is an
indeterminate. The largest number  such that there exists an r-minor of A + vB
with nonzero determinant is called the rank of A 4+ vB.

By [17, p. 30, Theorem 4] and its proof we have the following criterion for the
existence scroll blocks and information about their lengths.

LEMMA 3.1. Some (equivalently, every) Kronecker—Weierstrass normal form of X
has a scroll block if and only if rank(A 4+ vB) < min{n, e}. Moreover:

(1) If some Kronecker—Weierstrass normal form of X contains a scroll block
of length s > 1, then there exist (s + 1) linearly independent vectors

wo, Wi, ..., Wy in k" such that
Awg =0, Bwy = Aw, e 31
Bw;_1 = Awy, Bw, =0. G.D
(ii) Assume that there exist (s + 1) vectors wg, wy, ..., wy in k" such that not all

of them are zero and (3.1) holds. Then every Kronecker—Weierstrass normal
form of X contains a scroll block of length < s.
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The following result about the lengths of the scroll blocks in Kronecker—
Weierstrass normal forms is crucial in the proofs of Theorem and Theo-
rem

PrOPOSITION 3.2. Let X be a Kronecker—Weierstrass matrix, and R its deter-
minantal ring. Let R' = R/(ly,...,l;) be a quotient ring of R by linear forms
l,...,1,. Then R’ is the determinantal ring of some 2 x ¢ matrix of linear
forms X'. Moreover, if some Kronecker—Weierstrass normal form of X' has a
scroll block of length s, then X has a scroll block of length at most s.

Proof. By induction, we may assume that R’ = R/(I) for some linear form /. We
use the notation of Section 2: the set of variables of S is {xp, ..., x,} with dual
basis {x},...,x}}.

Assume that [ =x; — Zj>i ajx;. We call i the leading variable of /. We ob-
serve that X’ is obtained from X by deleting x; and replacing it by Y i @jXj-
Then R’ is clearly the determinantal ring of the matrix X’ just described. Let A,
B be the matrices corresponding to rows of X as in Section 2. Also, let A’, B’ be
the matrices corresponding to rows of X’.

Step I:1If X is just one block, we show that X’ cannot contain any scroll block.

Case la: X is one scroll block

(x1 X2 ... Xe—l Xy )
X2 X3 ... Xy Xsy1) '
Now X’ is the matrix
X1 X2 ... Xi—1 Z;:%Jr]ajxj' Xg
X2 X3 ... Z‘;Z}Hajxj Xi+1 e Xep1)
Hence, in the new coordinates X1, ..., Xj—1,Xj+1, ..., Xs+1, A’ is the following

matrix:

E;_ 0
A/:< 101 A//>,

where E;_; is the unit matrix of size (i — 1) x (i — 1), and

di+1 di+2 - ds syl
1 o --- 0 0
A'=]| 0 Lo 00 0 e Mi—ittyx(s—it1)-
0 0 1 0
Similarly,
F 0
B/ = (0 B,/> )
where
01 0 0
o0 1 -
F=1. . . . . |e€Mi-2xi-n
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and
ai+1 diy2 - 4s ds4]
1 0 0 0
o 1 .. 0 o0
B =] . S - | € M—it2)x(s—i+1)-
0 0 1 0
0 0 - 0 1

Therefore, the pencil A" + vB’ is

1 v 0 ... 0 0 0

o1 v - 0 0 0 0

SRR S : . 0 0

0 0 1 v 0 0 0
A +vB'=|0 0 0 1 wair1 vajtp - vas+l | € Mgxs.

0 0 0 0 ar1+v aiy2 - aspl

0 0 0 0 1 v 0

o o0 --- 0 O 0 1 v

The determinant of A’ + vB’ is a polynomial of degree (s — i) in v with leading
coefficient 1. Therefore, rank(A’ + vB’) = 5. By Lemma any Kronecker—
Weierstrass normal form of X’ has no scroll blocks.

Case 1b: X is one nilpotent block or one Jordan block. In this case, it is
easy to see that A’ has independent columns. By Lemma every Kronecker—
Weierstrass normal form of X’ has no scroll blocks.

Step 2: Now assume that X consists of at least two blocks. By induction on
the number of blocks we may assume that the leading variable of / is in the set of
variables of the first block of X. We note that A, B € M, are block matrices of
the following form:

(A O _(Bi1 O
A_<O Azz)’ B_<0 322>'
Hence, A’, B’ € M, z—1) are upper block matrices of the form
A A B, B
[ 11 12 [ 11 12
A_<0 Azz)’ B_<0 Bzz)'

Assume that some canonical form of X’ has a scroll block. Let s be the shortest
length of such a scroll block of X’. By Lemma 3.1(i) there exist (s + 1) indepen-

dent vectors wy, ..., w; € k"~ such that
r.o.7 r../ r.o.7 I r..7 I !
A'wy =0, A'w| = B'wy, e Awg =B w,_, B'w, =0.
Foreachi =0, ...,s, write

/
(Y
wi _— vl{ )

where u] is a column vector of size equal to the number of columns of A/, and
vlf is a column vector of size equal to the number of columns of Ay;.
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w; = (3) Ekn,
i

where 0 is the zero vector of size equal to the number of columns of A;. From
the form of the matrices A, B, A’, B’ we have

Let

Awg =0, Awq = Bwy, e

3.2

Aws; = Bw;_1, Bw; =0. (3-2)
If not all the vectors wy, ..., wy are zero vectors, by Lemma 3.1(ii) X has a scroll
block of length at most s. Assume that all the vectors wy, ..., wy are zero vectors.
From equation (3.2) we have

/ Vi / / Vi

HMOZO, HMIZBUM(), ey

/ / / U / U

Ayug = Bjug_, Bjuy =0.

Moreover, the vectors ué), e ug are linearly independent. By Lemma the

pencil A}, 4+ vBj, has a scroll block. This pencil is obtained by replacing x; by
> i<j<m@;jXj, Where m is the last index of the variables appearing in the first
block. The last condition contradicts with the case of X consisting of just one
block. O

We will also need the information about lengths of nilpotent blocks of linear sec-
tions of rational normal scrolls. This will be important for the proofs of Theo-
rem |.2(i) and (ii) in Section

LeEmMA 3.3. Let R = R(ny,...,n) be a rational normal scroll where 1 <n; <
-+~ < ni. Let Y be a subset of the set of natural coordinates of R. Then in any
Kronecker—Weierstrass normal form of the matrix defining R/(Y), every nilpotent
block has length at most ny.

Proof. Let X be the matrix defining R/(Y). The pencil corresponding to X is
a block matrix whose each block is obtained by deleting certain columns cor-
responding to the variables in Y from the matrix pencil of R. Since k is al-
gebraically closed of characteristic 0, each block in the matrix of R modulo
some variables has a Kronecker—Weierstrass normal form. Since the Kronecker—
Weierstrass normal form of a block matrix is the concatenation of normal forms
of these blocks, it is clear that each nilpotent block in any normal form of X has
length at most ny. O

4. The Sufficient Condition

In this section, we prove the sufficient condition in Theorem [.1. This is done in
the following:

THEOREM 4.1. Let X be a concatenation of nilpotent blocks, scroll blocks, and
Jordan blocks. Assume that X satisfies the length condition m < 2n, where m is
the maximal length of a nilpotent block, and n is the minimal length of a scroll
block. Then the ring R = k[ X]/12(X) has a Koszul filtration.
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Although the construction will not be straightforward, the idea behind is quite
simple. We start by constructing a Koszul filtration for the submatrix of nilpotent
and scroll blocks in Section and for the submatrix of Jordan blocks in Sec-
tion 4.2. Then “concatenating” these two filtrations in a suitable way, we get a
Koszul filtration for the original matrix. The proof of Theorem will be given
in Section

We assume that X has the length sequence

(mlv‘~~7m09n19'-’9nd7p117-"7p1g17p21’~'-1pl‘gl)'
——— —
N S T

To simplify the matter, we still use the notation of Section 2 for the blocks and
entries of X. By abuse of notation, we use x; ;, y; j, and z’j , to denote the class

of x; j, yi,j, and z;,r in the quotient ring k[X]/I>(X), respectively. To verify the
colon condition in the proof of Theorem 4.1, the following simple identities are
useful.

LEMMA 4.2. We have the following identities in R = k[X]/1>(X):

(i) x..z..=0and (x1,1,..., Xem—1)*>=0.

(ii)) Forall1 <i<c,1<r=<m;—1,1<j<d,and 1 <s <nj+1, if either
r+s>m;j+lorr+s<nj+1,thenx;,y;s=0.

(i) Foralll1 <i<d,1<r<s<n;+1,

(Z:’.) - (yi,r) c Vi
(iv) Forall1 <i <d,2<r <n; +1,

d
Z(yj,l, s Vi) © Oir=1) © i
j=1
(v) Foralll <i<d,1<r <n;,
d
Z(yj,z, v Yimj+1) © Yir41) & Yire
j=1

(vi) Forall1 <i < j<t,

Proof. (1) For ease of notation, assume that we have a Jordan block and a nilpotent
block of X of the form

21 22 prl Zp
2+ AL ... ZpFAZpo1l Ay
and
0 X1 x2 ... Xm_2 Xm—1
X1 X2 X3 ... Xm—1 0 ’

respectively.
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We have that x1(z1, ..., zp) = 0. Then since the 2-minors
X X
1 Zr and 1 Zp
X2 Zp4l +AzZy X2 AZp
are zero, we get that x2(z1,...,z,) = 0. Continuing in this manner, we get

x.z. = 0. This gives the first part of (i). The second part is proved similarly.
(i) In addition to the considered Jordan and nilpotent blocks, consider a scroll

block of X of the form
<y1 Y2 e Ynel Yn )
Y2 ¥ .o Yn Yutt)'

We want to show that x;y; =0if i + j <n+1ori + j >m + 1. First, we have

xiy1=x1y2=---=x1y, =0.

X1 Ys—1
X2 Vs

is zero, we get x2y;—1 = 0. Continuing in this manner, we get x;y; =0ifi + j <
n + 1. Similarly, starting with

For 2 < s < n, since the minor

Xm—1Y2 =Xm—1Y3 ="+ =Xpm-1Ynt+1 =0,

we obtain the remaining claim.
(iii) Looking at the 2-minors of the form

4 Ys—1
Ziv1+Azi Y )]

we immediately have ys(z1,...,2p) € ¥s—1(21, ..., 2Zp). The conclusion follows.
We leave the details of (iv) and (v) to the readers. For (vi), consider another
Jordan block of X of the form

uj u» . Ug—1 Ug
up+Puyr uzs+Puy ... ug+Pug1 Puy)’
where 8 # A. We wish to show that u;z; =0 forall i, j.

Since the minor
ip  Uq
AzZp  PBuy
is zero and B — A # 0, we get zpu, = 0. Looking at the minor
Zp Ug—1
Azp PBug_1+uy)’
we then obtain z ,u, 1 = 0. Continuing in this manner, we get z,, (41, ..., uq) =0.
By reverse induction on 1 < j < p we obtain that z; (uy, ..., u,) =0. O
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4.1. Matrices of Nilpotent and Scroll Blocks

First, note that the length condition in Theorem involves only nilpotent and
scroll blocks. Hence, it is natural to start building a Koszul filtration for the case
where X contains only such blocks. In this subsection, we assume that X is a
concatenation of nilpotent blocks and scroll blocks with length sequence

(mla s, Me, Ny, ’nd)
— e ——
N S
Moreover, assume that m. < 2n;.

The following special case is enough to illustrate the construction of a Koszul
filtration.

ExampLE 4.3. Let X be the matrix of one nilpotent and one scroll block satisfying
the length condition. Hence,

X — 0 x1 x2 ... Xm—1!Y1 Y2 - I
X1 X2 X3 ... 0 }yz y3 ... Yn+l ’

where 2 <m < 2n. We have

LX) = (X1, X))+ (iyj: i+ j<ntlori+jzm+1)
+ Xy —Xiy1yj-1: n+2=<i+j<m)
+iyj —yir1yj-1: 1<i<j<n+1).

Then R = k[X]/I>(X) has a Koszul filtration as follows. Let s = max{m — n, 1}.
Define F ={Ho, ..., Hu—1}U{lyp: b>0,1<a<n+1— b}, where

Hyp = (0), Hy = (x5), Hy = (x5-1, x), cees Hy = (x1, ..., Xs),
HS+1:(-x11"'1-xS7-xS+l)’ ] HIn71:(-xlv""xS9"°9xl’I17l)s

Ia,b =Huy_1+ 01,2+, Yas Yn+42—bs Yn+3—bs -5 Yn>» yn+1)-

Then F is a Koszul filtration for R.
To be more precise, note that 1,1 o = m. For the required colon condition, we
can check the following identities:

() Ho: Hi=1i41-51.

(i) Hy: Hy=-=Hs_1: Hy=Hs: Hyy1 = =Hpy—2: Hy—1 =m.
(ifi) Ifb > 2, then Iy p_i : Ipp =m.

@iv) If a = 2, then

m ifb>1,

ILi_1p:1,p=
abb b = ifb=0.

(v) Ifa=1,b=0,then Hy—1 : I1,0=Hpn-1.
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(vi) Ifa=1,b=1,then 1 o: 11,1 =11 0.

These identities will be justified by the forthcoming lemmas of this section.

Let us comeback to the general case of matrices with only nilpotent and scroll
blocks. To facilitate the presentation, it is useful to introduce the following notion.

DEFINITION 4.4. We say that a sequence b = (b1, by, ..., by) of nonnegative in-
tegers has no gap if forany 1 <i <s, b; =0 implies that b; ;| =--- = by =0.

Our Koszul filtration for R = k[X]/I>(X) consists of the ideals of the following
types.

CONSTRUCTION 4.5 (Koszul filtration for matrices of nilpotent and scroll blocks).
Foreachi =1,...,c, denote s; = max{m; — ny, 1}. Consider ideals of the fol-
lowing types:

1) Hymo—1 = (0) (where my is used just for systematic reason),
,mg ] y
(i1) H;,,wherel <i <c,1<r <m; — 1, given recursively by
Hi1=Hi—1m;_ -1+ (Xis;),
Hi>=Hi_1m;_ -1+ (Xis;—1, Xi,5;)»
Hi,s,' = j—1,mj_1—1 +(xi,19'--,xi,s,'),
Hi,S,'+] = Hi*l,m,',lfl + (xi,l’ s Xisis xi,si+1)7 ceey
Himi—1=Hi—1m;_ -1+ Xi1,Xi2, ..., Xim—1), and

(iii) Is.ap, Where 1 <s <d,a=(aj,...,as) and b= (b1, ..., bs) are such that
1<aj<n;+1-b; for 1 < j <s, and b has no gap, given by

Is;a,b = Hc,mc—l

s
+ Z[()’j,l,y,j,z, v Vi) F Vjonj=bj+2 Yjinj—bj+3s -5 YVjinj+D1
j=1

Of course, if there is no nilpotent block, then there is only one ideal of type H,
which is Hy ;,—1 =0, and similar convention works if there is no scroll block.

REMARK 4.6. If X consists only of scroll blocks, namely X defines a rational
normal scroll, then we obtain from the construction a Koszul filtration for that
scroll. This gives new information about the Koszul property of rational normal
scrolls.

The fact that the ideals H; ,, and I;.5 1 form a Koszul filtration for R follows from
the following series of lemmas.

First, for 1 <i <c¢, 1 < j <d, define a; j, b; j as follows: a; j =n; +1 —s;
and b; j =min{n; +1+s; —m;, s;}. Concretely,
1) if m; >n; +2, thenb,-)j =n; + 145 —m;,
(i) if m; < nj—+ 1, then bi,j =j.
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In any case, wehave b; ; > 1and 1 <a; ; <n;+1—0b; ;. Indeed, since m. < 2ny,
we gets; =max{m; —ny, 1} <ni,s0aq;; > 1. Also,n;+1+m; —ny)—m; > 1,
and hence b; ; > 1.

LemMA 4.7 (Colon condition for the ideals H; j). The following equalities hold
foreach 1 <i <c:
() Hi—1mi_y—1: Xi,s; = la;a; b, where a; = (a;1,...,aiq), b = (bi1,...,
bi.q).
(ii) H,',j . Hi,j—H =m,f0rj = 1,...,m,' —2.

Proof. (i) First, the left-hand side contains the right-hand side. Indeed, take
l<j<dand1=<s=<n;+1.Ifs<nj+1-s,thens+s <n;+1,
S0 yjsXis; = 0 by Lemma (ii). Now we show that if 0 < s < b; ;, then
Vinj+2—s € Hi—1,m; -1 Xis;.

Ifm;>n;j+2ands <b; j=n;+1+s; —m;,thenn; +2—s+s5; >m; +1,
andnj +2—s>mj —si+1>2,50 yjn;42-5Xi; =0 by Lemma 4.2(ii). On
the other hand, if m; <nj+1lands <b; j=s;,thenn; +2—s+s; >n; +2>
m; + 1, 80 again yj n;+2-sXi,;; = 0 by Lemma 4.2(ii).

For the reverse inclusion, working modulo H;_1 ;; ,—1, we can assume that
i = 1. Denoting a =a; and b =b;, we need to show that

0:x1,5; =1g:ap- 4.1
To establish (4.1), we will show the equality of the Hilbert series of the two sides.
Consider the short exact sequence
0— R/(0: x1,5)(— 1) R—)R/(x“l)—>0

Denote m = max{mi, ..., m.}. Let R’ be the determinantal ring of the submatrix
of X consisting of scroll blocks. By Theorem 2.5 we have

HR(U)_(m1+"‘+mc_C)v

m ¢ mi—

+ZZ Z N@ny,...,ng,mj — 1 —r;g)v? + Hg (v).

q=2i=1 r=0
The length sequence of R/(x1,) is
S1, M1 —S81,M2, ..., M, N1, ..., 04
[ —
N S

A small remark here is that s = max{m{ —ny, 1} <m; —s;. Now from m < 2n;
it is clear that s1,m; — 51 < n;. Therefore, by Lemma and Theorem we
get

HR /() () = (m1 + - +me —c—1v
c mj—

m
—I—Z Z N@ny,...,ng,m; — 1 —r;q)v? + Hg (v).
q=2i=2 r=0
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Together with the formula for Hg (v), we infer

m mi—2

HR () — HR /(x5 (V) = U+Z Z Ny, ...,ng,my —1—r;g)f.
qg=2 r=0

Note that if g > 3, then N(ny,...,nqg,m; — 1 —r;g) =0 for all » > 0. Indeed,
we have m; — 1 —r <2ny < (¢ — 1)ny, so the conclusion holds because of
Lemma

CLAM. If g =2, then

mp—2
ZN(nl,...,nd,ml—1—r;2)v2:< Z (ml—nj—l)>v2.
r=0 Jiomiznj+2
Proof. 1f a sequence (vy, ..., Vy) of nonnegative integers satisfies Z?:l njvj <
m; —2 —r and Z’;:l vj =2 —1=1, then exactly one of vy, ..., vy equals to 1,

and the others are zero. Fix 1 < j < d, then the equality v; = 1 happens if and
onlyif nj <m; —2—r, namely if and only if m| > n; + 2, and there are exactly
(m1 —nj —1) values of r such that this is the case. Therefore, the claim is proved.

O
From these facts we obtain
Hr () = HR)(x, (V) =v + ( Z (my—nj— 1)>v2.
Jji mpznj+2
The Hilbert series is additive along short exact sequences, so
HR/0: x5 =1+ ( Z (my —nj — 1))1}. “4.2)
Jromi=nj+2
Note that
Vjils oo Yinjtl=sis Yjsnj+2=by s Yinj+3=by j» -+ Yinj+1)

=j1s Yj2s oo Yinj+1)

unless nj + 1 —s1 <n; — by j, namely by ; <s; — 1, which is nothing but m >
n;j + 2. Therefore, R/1y;a p has the length sequence

my—nj: wherem;>nj;+2.

N

Applying Theorem 2.5, we infer
HR/Id;ayb(v)zl‘i_( Z (ml—n]—1)>v
Jiomyznj+2

Therefore, combining with (4.2), we have Hgyi,.,, () = Hg/o: ml)(v), and
thus (4.1) is true.
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(ii) Modulo H; ; one reduces to the case where the first nilpotent block of X
has length m <ni. We have to prove that
0:xp1=m
This follows from part (i) since, in this case, a = (n1,...,ng) andb=(1,...,1).
O

In the following two lemmas, working modulo H. ,,.—1, we assume that X has no
nilpotent blocks. For simplicity, for each s, 1 <s < d, we denote

Iy=(,..., 1), 0;,=(0,...,0).
— ——

s times s times

LeMMA 4.8 (Colon condition for the ideals /.55 where max<;<s{a;, bi} > 2).

Assume that 1 <s <d and leta= (ay,...,as) and b= (by,...,bs) be such that

ai,...,as > 1 andb has no gap.

@) Ifb,' > 2 for some 1 <i <s, denote f): b1,...,bi—1,b; — 1,b,‘+1, ..., by).
Then Is;a,b =1 ab + (yi,n,-—b,--‘rZ) and

5,
Is,a,f) D Yini—bj4+2 =M.
(i) If b1,...,bs <1 and a; > 2 for some 1 <i <s, denote 4 = (ai, ..., a;_1,
ai — 1,ai41,...,a5). Then Iy.ap = Is a5 + (Vig;) and
Iyap: {"‘ ifbi=1,
s;ab - Vi = Id;(ai"""’Llﬂfwwa(',),od if b =0,
where a/ = n;, and for j #1,

, n;j ifnj—ajzni—ai—f—l,
nj+1 otherwise.

Proof. (i) By Lemma 4.2(iii)—(v) we have

d
D G2 Vet 1) S Gl Yiomi—bi13) © Vioni—bit2-
r=1

Therefore, it is enough to show that y, | € Is,a,lS D Yinj—bi42 forall 1 <r <d.
Since a; > 1 for 1 <i <s, we only need to prove that y, | € Is,a,f) * Yin—b;+2 for
s+ 1 <r <d. This is true since n; — b; +2 < n; <n, and hence

Ve 1 Yini—bi+2 = Yrni—bi+2Yi,1 € (Vi,1)-

(ii) First, assume that b; = 1 and hence y; n;+1 € I;.3p. By Lemma 4.2(iii)—
(iv), we only need to check that y; ;11 € Iap @ Yig foral 1 < j <d. For
each j < i, since b has no gap, b; =1, so Yinj+1 € Iy3p. For j >i+1,
Yi,a; Yjnj+1 = Yini+1Yj.nj+aj—n;> hence yjn;+1 € (Vin+1) © Yi,q;- This gives us
the desired equality.

Second, assume that b; = 0. We wish to prove that

Is;ﬁ,b S Via = Id;(ai ..... a;fl,n,-,alfﬂ,...,a(’j),od' 4.3)



Matrices of Linear Forms 367

If nj —aj <ni —a; for some j # i, then yjn;+1 € Ijap: yiq; because
Yinj+1Yiai = Yj.a;Yaj+nj—aj+1 € (yj,aj). Combining this with Lemma 4.2, we
see that the left-hand side contains the right-hand side. Working modulo the ideal

Z (Ve,1s s Yene+1)s
LH£i: ng—ag<n;—aj
we can assume thatn; —a; >n; —a; +1forall j #1i,1 < j <s. Equation (4.3),
which we have to prove, becomes
IS;ﬁ,Os D Yia = Ldiny,ng 04

To prove this, we use the monoid presentation of a rational normal scroll. Thus, we
can identify y; , with x5 "1y =5, e k[x, y,s1,...,50] forall 1 < j <d, 1<
r<nj+1. Herex,y,si,...,sq are distinct variables. Assume that there exists a
polynomial f in the variables yi n 41, ..., Yd,nys+1 such that fy; 4 € I.30,. Us-
ing the monoid grading, we can assume that f is a monomial ]_[4 "/ where
g g 8 J=1Yjn+1
m j > 0. In the monoid presentation, we have that ]_[‘;:1 (y"i s./)m/‘x"i*’l_”i y4i~lg;
belongs to the ideal

Z(x”’sr, T L P S L S L A M A I
r#i

This is a contradiction since in the monoid ring k[x"!s1, x™! ’1ys1, co, Ysq], the
element ]_[?:1 (s j)’"fx”i+1_“i y%~ls; is not divisible by any monomial gener-
ator of the above ideal (by looking at the power of x). We conclude the proof of
the lemma. O

LEMMA 4.9 (Colon condition for Is.5 , where maxi<;<s{a;, b;} < 1). Assume that
1<s<d,andleta= (ay,...,a5) and b= (by,...,bs) be suchthata; = --- =
ag=1and b; <1 for all 1 < j <s. Denote by i the largest index such that
b =1.

() Ifi = 1,letb=(b1,...,bi—1,0,...,0). Then Iy.1, b = L., j+ (Yin+1) and
Loy b5 Yi+l = Ldsny 1, cnis i+ 1 L —nitLcong—ni+1),04 (4.4)

(11) Ul = O’ then IS;IS‘;OS = 1571;1371,0571 + ()’x,l) and
s ;11,001 2 Ys,1 = L 1:(n1 41,y 41),05_; - 4.5)

Proof. (1) First, we prove that the left-hand side of (4.4) contains the right-hand
side. Foreach 1 < j <i —landeach 1 <r <nj; + 1, we have

Yioni+1Yjr = Vi Yjr+1 =" = Yinj—nj+rYjnj+1 S Is;lx,f)’

and hence y; , € Is;ls,f) D YVini+1-
Foreachi < j<d,andeach1<r <nj+1—n;, we have

Yiai+1Yjr = Vi Yjr+1 ="+ = Yi1Vjm+r € I §
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SO yjr € IS,IS b Vimi+1- Combining this with Lemma 4.2(iii), we see that the
left-hand side contains the right-hand side. Working modulo the ideal
i-1

Z(yj,la ey yj,l’l,+1)7
j=1

we may assume that i = 1. Equation (4.4), which we have to prove, becomes

Ls;15,0, © Yim+1 = ld;c045 (4.6)

where ¢ = (1,n —ny +1,...,ny —ny + 1). Modulo I4.¢,, after reindexing
the variables, X is a concatenation of Jordan blocks with eigenvalue 0 and length
sequence

(n,...,n1),
[ —
J
and we need to prove that z}_ | is a nonzero divisor on k[X]/1>(X). This follows
from Lemma since, in this case, the 2 x 2 minors of X form a quadratic

Grobner basis for 1> (X) with respect to the graded reverse lexicographic order. In
particular, z%’l is a nonzero divisor.

(i1) First, we prove that the left-hand side of (4.5) contains the right-hand side.
Foreach1 <£ <s—1andeach?2 < j <ny+ 1, we have

Vs, 1V0,j = Ys,2Ye,j—1 ="+ =Ys,jye,1 € Ly_1:1,_,,0,_;-

Note that the assumption that n; <np <--- < ny is essential here since we need
¥s,j to be in our set of variables.

Working modulo the right-hand side, it remains to prove the statement in the
case where X is arational normal scroll and s = 1, that is, y; 1 is a nonzero divisor.
This is obvious since the corresponding determinantal ring is a domain. O

4.2. Matrices of Jordan Blocks

The second step is to find Koszul filtrations for concatenations of Jordan blocks.
Assume that X is a concatenation of g; Jordan blocks with eigenvalues A; for
i=1,...,t. Here, we assume that A1, A, ..., A, are the pairwise distinct eigen-
values of blocks of our matrix. The Jordan blocks with the same eigenvalues A;
are arranged in the order of decreasing length. Concretely,

I I
_— 1 l “ e 1 | .. | [ t .. t
X= (Xl X} Xy i1 X X Xgl),
where
4 z 7
X = ( Ji1 J:2 JsPij )
J—\.i i i i .l :
Lo TAiZyy ythiziy o iz,

CoNsTRUCTION 4.10 (Koszul filtration for matrices of Jordan blocks). Our Koszul
filtration will consist of the ideals of the following types:

G J 0.80.P0gy — (0) (where go, pog, are used just for systematic reason),
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(i) J/", where 1 <i<t,1<j<g,and1<r <pjj,

ijor i i i i i
JbJ —(Z]’lvz],2""7zl,p“’""Zj,l”"’zj,r)’ and

(iii) K%"/" where 1 <£<t,1<i<{1<j<g,andl<r<p,
Kﬁ,i,j,r — Z J¥-8u> Pugy + Ji,j,r.

1<u<t

Ui
By convention, JiiT =01ifi =0, and
Kesiyjsr — Z ]usguvl)ugu

1<u<t

ui
if j=0.

ExaMpLE 4.11. Let X be the following concatenation matrix (where p,q > 1,
rek\O0):

X — 21 22 .- Zp—1 Zp, Ui un Ug—1 Ug

2 23 ... Zp O luadAiur uz+ruz ... owug+Aug_y Aiug)’
Then [(X) = I(z) + L (w) + (21, ..., 2p) (U1, ..., uy). Here I>(z) is the ideal of
2-minors of the first Jordan block of X, and similarly for 7> (u), which is also the
ideal of 2-minors of

<u1 Uy .. Ug—i uq)

Uz U3 ... Uy 0/

In this case, t =2 and g1 = g» = 1. Consider the following ideals of k[ X]/[>(X):
10 = (0).
J”:(zl,...,zr), JZ’SZ(Ml,...,uS),

K2V = (uy, v ttg) + (2055 T)s
K225 = (z1,...,2p) + (u1, ..., uy),
where 1 <r < p, 1 <s <g. Then the collection
VOO U U UK U (K22

is a Koszul filtration for the ring in question.
In more details, we have K>!» = m. The colon condition is verified by the

following equalities:

(i) JOO: gt = 2,

i) JOO: g2 =Jtp,
Gii) JUr=t g = g2s=le g2 —miif s > 1,
(iv) J29: K20 = g24,

(V) Jl,p . KZ,Z,] — Jl,p’
(vi) K2br=b. g21r — g22s=1 . K225 —if p 5 > 1.

These identities will be justified by the next result.
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The fact that the ideals {J*/"} U {K ©"/"} in Construction form a Koszul fil-
tration for the determinantal ring k[ X]/1>(X) follows from the following lemma.
Note that (i), (ii), (iii) give the colon condition for J*/" with either r = j = 1,
orr=1and j > 1, or r > 1, respectively; hence, we obtain the colon condition
for all ideals of type J. Similarly, thanks to (iv), (v), (vi), we obtain the colon
condition for all ideals of type K.

LEMMA 4.12 (Colon condition for the ideals J/" and K%"/"). For each 1 <
£<t,1<i=<t{2=<j<gi,and2 <r < p;j, we have the following equalities:
(i) Jl—l,gi—l»[)(i—l)gi_| . Za,l — Kt,i,O,O,
SN 7 j=1piGio) . i i j—1,pigi—
(11) JLI—LPiG-1 - le,l = KitJ Pi(j n,
(i) JEIr—1 2, =m,
(iv) Kl—l,l_l,gi—lv[’(i—l)g,-_l . Zli = Kt,i,O,O,
L j—1,piGi—1) » i 1,6, j=1,pi(j—
(V) K ) sPi(j—1) : le,l =K 2%} Pi(j l)’

. i1 i
(Vl) K(,l,],r . sz’r =m.

Proof. (i) By Lemma 4.2(v) the left-hand side contains the right-hand side. Work-
ing modulo the right-hand side, we may assume that X consists of Jordan blocks
with the same eigenvalue A (which can be taken to be 0) and i = 1. We need to
prove that

0:2z;,=0. 4.7)

This follows from the same Grobner basis argument as in the proof of Lem-
ma 4.9(1).

By the same arguments we obtain (ii), (iv), and (v).

(iii) This is a consequence of Lemma 4.2(iii) and the following analogue of
Lemma 4.2(iv):

8
D G@ite o zip) S Gir1) ¢ Zir
=1

By the same arguments, we obtain (vi). The lemma follows. ]

4.3. Koszul Filtration for Theorem

Let X be a Kronecker—Weierstrass matrix satisfying the length condition. The
final step to get a Koszul filtration for the determinantal ring of X is “concatenat-
ing” the filtration for Jordan blocks in Section with the Koszul filtration for
the matrix of nilpotent and scroll blocks in Section 4.1. The result is our desired
filtration for any Kronecker-Weierstrass matrix satisfying the length condition.

ConsTrUCTION 4.13 (Koszul filtration). For each i = 1,..., ¢, denote s; =
max{m; — ni, 1}. With the notation from Sections and , our Koszul fil-
tration consists of the ideals of the following types:

() Home—1=(0),
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(i1) H;, (where 1 <i <c¢, 1 <r <m; — 1) with generators as in Construc-
tion 4.5,

(iii) I.ap (Where 1 <s <d,and a= (aj,...,as) and b= (b1, ..., bs) are such
that b; >0, 1 <aj <n;+1—>bjfor1 <j<s,and b has no gap) with
generators as in Construction 4.5,

>iv) J;:{)’r, where 1 <i <t,1<j<g,1=<r=<pi,anda=(ay,...,aq) and
b= (by,...,bg) aresuchthatb, >0,1<a, <n,+1—b, forr=1,...,d,
and b has no gap, given by

i,j,r i,
Ja,{) =1g.ap+ JHIT

Here J¥/" have generators as in Construction

\2) K:::)’j’r,where I<i<t=<t,1<j=<g,1<r=<pjj,anda=(a,...,aq)
and b= (by,...,by) are such that b, >0, 1 <a, <n, +1 — b, for r =
1,...,d, and b has no gap, given by

Li,jr i, j
Koy = Loap + K“7.

Here K %/ have generators as in Construction

REMARK 4.14. (1) Construction generalizes Construction and Construc-
tion

(2) Note that if 7 is an ideal in a Koszul filtration of R, then necessarily R//
is Koszul. This can be used as a test for our Koszul filtration: we can check that
modulo ideals of type H, I, J, or K, we again get determinantal rings of matri-
ces satisfying the length condition. Therefore, such quotient rings should also be
Koszul by Theorem 4.1, giving support to the correctness of our filtration

ExAMPLE 4.15. Consider the matrix (where A € k \ 0)

¥ — 0 x1 x2 x3!'»m y»'!z1 22! u U2
X1 X2 X3 Olyz y3:Z2 0 iur+rur Auz)’

In this example, c=d =1,t=2,and g; = g = 1. Moreover, s; = 2. Denote

1, 3 il
Ho,my—1 by Ho, Hir by Hy, It (ap).b1) BY Lay by T o DY I3y sand K o0
by Kﬁ;"brl . Construction gives the following filtration:
Hy = (0), Hy = (x2), Hy = (x1, x2), Hz = (x1, x2, x3),
110 = (x1, x2, X3, y1), b0 = (x1,x2, X3, Y1, ¥2),
111 = (x1,x2, %3, y1, ¥3), Ir1 = (x1, %2, X3, Y1, Y2, ¥3)s
11 12
Jio = (e, x2,x3, y1,21), Jio = (1, x2,x3, y1, 21, 22),
11 2.1
Jo1 = (1, x2, X3, Y1, ¥2, ¥3, 21), Jio = (1, x2, x3, y1, u1),

2.2
Jy'p = (X1, X2, X3, Y1, ¥2, ¥3, U1, U2),

2,11
Ko = (x1,x2, X3, y1,u1, u2, 21),

222
K7™ = (o1, %2, X3, Y1, ¥3, 21, 22, U1, U2),
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2,2,2
KZ,O = (xl’x25x31 yl,y2,Z1,12:u17M2), ey
2,2,2
K517 = (x1, %2, X3, Y1, ¥2, ¥3, 21, 22, U1, Up) =M.

For example, we can check by Macaulay?2 [18] that:

. 2,2,2
(i) Hp: I‘]1=K1’1 ,Hy: Hy=Hy: H3y =m,
(ii) Hs: I1,0= H3,
. 2,2,2
(i) ho: o= K2’0 ,
. 2,2,2
(v) Lo h1=K54",
1,1 2,2
V) Ly =Jy7-
Let us now prove Theorem 4.1 by showing that Construction indeed gives a

Koszul filtration.

Proof of Theorem 4.1. We show that the list of ideals

F={Hij}Ulsap) VUL VUKL

in Construction gives a Koszul filtration for R.
From the definition of F, the first two conditions of the definition of Koszul
filtration follow immediately. For the colon condition, the following equalities

hold.

®

(ii)

(iii)

@iv)

For the ideal H; ; where 1 <i <c, we have
1,t,8¢,

Hi vmi 1 Hiv=Hi i 1cxig = Ky g7
where a; and b; are as in Lemma 4.7(i): The left-hand side contains the right-
hand side because of Lemma 4.2(ii) and Lemma 4.7(i). Working modulo
K"":8:Prg we may assume that X has no Jordan blocks. The equality now
follows from Lemma 4.7(i).
For the ideal H; ; where 1 <i <cand 2 < j <m; — 1, we have

Hij—1: H;j=m.

This follows from Lemma 4.7(ii) and Lemma 4.2(i).

For the ideal I; 5 where 1 <s <d and b is such that b; > 2 for some
i: denote b = (b1,...,bi—1,bi — 1,biy1,...,bs). Then Igap =1, +
(Yi,nj—b;+2) and

Lot Vimj—bj+2 =M.
This follows from Lemma 4.2(iii) and Lemma 4.8(i).
For the ideal I5 5 p where 1 <s <d, by, ...,bs <1, and ais such thata; > 2

for some i, denote & = (a1, ...,ai—1,a; — 1,ai41,...,ds). Then Izap =
g5 + (Vig) and

m ifh =1,
Is;ﬁ,b Via = Kl»l,gz,ng, b =0
i =Y,

(@),....a_y.a.,....a}).0q
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p ..

where a; = n; and, for j #1,
, {I’lj ifnj—ajzn,-—a,-+1,
a;=

nj+1 otherwise.

This follows from Lemma 4.8(ii) and Lemma 4.2(iii).

(v) For the ideal I 5 where 1 <s <d,a=15,and b=1; forsome 1 <i <,

we have [j;1;1;, = L0 + Wing+1) and

. _ b8P
L0,y 2 Yin+1= K(nl—&-l,..i’n,-_]+l,l,n,-+1—nl-+l ..... ng—n;i+1),04°

This follows from Lemma 4.2(iii) and Lemma 4.9(i).
(vi) For the ideal I; 5pb Where 1 <s <d, a= 1, and b = 0Oy, we have I 1, o, =

Is—1,1,_,,0,_; + (¥s,1) and

L1105 1,01 ¢ Vs, 1 = Ls— 100141, cccmg 1 +1),05 s -

The left-hand side contains the right-hand side by Lemma 4.9(ii). Working
modulo the right-hand side, we may assume that X has no nilpotent blocks
and s = 1. We need to prove that y; 1 is a nonzero divisor. This follows from
Lemma

(vii) Finally, for J and K series, the similar equalities hold as in Lemma

This completes the proof of Theorem 4.1. (]

5. The Necessary Condition

For m > 1 and n > 1, consider the scroll of type (m, n). It is given by the matrix

X = X1 X2 ... Xm Y1 Y2 ... Yn
X2 X3 .. Xmgl 1 Y2 Y3 oo-.. Yag1)'

THEOREM 5.1. Foranyn > 1 andm > 2n+ 1, the ring R(m, n)/(x1, Xpm+1) is not
Koszul.

Proof. Denote T = R(m, n)/(x1, Xm+1). We introduce some notation. Let x, y,
s1, and sp be variables. Identify N* with the multiplicative monoid (x, y, s1, 52)
by mapping a sequence of natural numbers (g, &, p, q) to x& yhsf7 sg . Recall that
R(m,n) is the monoid ring k[A] where A is the following affine submonoid
of N*:

(x™s1, x’"_lysl, oY s, X s, x"_lysz, L Ys).

Note that R(m, n) is a standard graded k-algebra by giving each of the minimal
generators of A the degree 1.

Observe that T has an induced A-grading and k is a A-graded module. Denote
a=[m/n] and p = x*"y™s|s5, an element of degree a + 1 > 4 of A.

CrLam. We always have ,33T’ M (k) > 1.
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This implies that g7, (k) # 0, and hence T is not Koszul.

We will use a result of Herzog, Reiner, and Welker [2 1, Theorem 2.1], which
gives the multigraded Betti numbers of k over 7. Denote by A, the simplicial
complex whose faces are sequences o] < -+ < & in (0, u) with; € A. Let J be
the submonoid generated by x"s, y"s; of A. Note that T = k[A]/(x"s1, y"'s1).
Denote by A, ; the subcomplex of A, consisting of sequences o] < --- < o
such that for some 0 <i <, we have a;41/a; € J, where g =0 and o541 =
by convention.

By [21, Theorem 2.1] we have

B3, (k) = dimyg Hy (A, Ay gi k),

where the left-hand side is the reduced, relative simplicial homology of the pair
Ay, Ay, . There is an exact sequence

Hi (A k) — Hi(Ay, Ay s k) — Ho(Ap g3 k) — Ho(Aus k).

Since k[A] = R(m, n) is Koszul, by the same result cited before, the two terms on
two sides of the sequence are zero. Thus, it is enough to show that Ho(A w,Ji k) #
0 or, equivalently, that A, ; is disconnected.

There are two types of facets of A, ;: the sequences 1 < --- < o; such that
ajr1/a; € (y"s1)A for some 0 <i < s and such that oj11/a; € (x"s1)A for
some 0 < j <s. These two classes of facets are disjoint since w is not a multiple
of s7 in N*,

Now p = y™si(x"s2)4, so if @) < --- < a5 is a facet of the first type, then
the sequence (o;+1/a;);_ is (up to permutation) the sequence (y™ sy, x"s2, x"s2,
x"s2,...,x"sy) (there are a elements x"s;). Therefore, the only facets of the first
type are of the form

(x"s2, (x"52)%, ..., (x"s52)", Y51 (x"s2)", Y51 (x"s2) T Ly sy (xs2) 0T

forsome 0 <t <a.
The following diagram illustrates the case n = 1, m = 3:

wd Vs Snm? s
| N
(xs52)* yis1xs2 x3s1ys) (ys2)?

T BN

In the diagram, the arrows signify divisibility of upper elements to the corre-
sponding lower elements. The facets of A, ; are maximal chains of arrows in the
diagram.
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Fix 1 <t < a. We show that no facet of second type may contain (x"s,)’. In-
deed, otherwise, we have a facet ) < - - - < o of second type, where a; = (x"57)’
for some 1 <i <s. None of the quotient «j/acj | where j <i can be x"s
since x™s is not a divisor of (x"s3)". Now g1 1/a; = (sy1/0ts) -+ (@ir1/ti) =
x(“”)”ymslsg_’. One of the quotients o jy1/o; (Where j =i,i +1,...,5) is
x™s1, and hence the product of the remaining ones is x(@~)7— ymsgf’. The last
element does not belong to A since (a — #)n < (a — 1)n < m, a contradiction.

Similarly, one can prove that no facet of second type may contain one of the

elements y”'sy, y"s1xs2,..., y"s] (xs2)? L.
It is immediate that (y"sy, yzns%, e y(a_l)”sg_l,x“"_mymsg) is a facet of

second type. Therefore, A, ; has at least two connected components. (In fact, it
has exactly two components since the interested reader can check that the facets
of second type generate a connected complex.) Hence, the claim is true, and the
proposition is established. U

We are ready for the following:

Proof of the necessary condition in Theorem [.1. If m > 2n + 1, then the deter-
minantal ring A of the submatrix consisting of a nilpotent block of length m and
a scroll block of length n is not Koszul by Theorem 5.1. Since A is an algebra
retract of R, by [19, Proposition 1.4] R is also not Koszul. This is a contradiction,
and hence m < 2n. O

REMARK 5.2. Let R be a rational normal scroll, and Y a set of natural coordi-
nates. Using Theorem 1.1, we can determine all Y such that the quotient ring
R/(Y) is Koszul. Indeed, R/(Y) is defined by a matrix consisting of scroll blocks
with certain variables replaced by zero. By the proof of Lemma we can find
a Kronecker—Weierstrass normal form of R/(Y) by first finding the normal form
for each of these blocks. Such normal forms exist by Remark 2.2. Then by Theo-
rem |.| we easily determine whether R/(Y) is Koszul or not.

6. Applications to Linear Sections of Rational Normal Scrolls

We start this section by proving that all the linear sections of a scroll have a linear
resolution if and only if the scroll is of type (ng, ..., ny).

DEFINITION 6.1. Let R be a standard graded k-algebra with rq, ..., r, being min-
imal homogeneous generators of m. We say that R is strongly Koszul if for every
sequence 1 <iy <ip <--- <iy <n,theideal (r;,...,r;,_,) : r;, is an ideal gen-
erated by a subset of {ry,...,7r,}.

REMARK 6.2. Another notion of strongly Koszul algebras was introduced in [
Definition 3.1]. The two notions are equivalent when R = k[A], where A is an
affine monoid, and ry, ..., r, are the minimal generators of A.

See [20] for a detailed discussion of strongly Koszul algebras.
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PROPOSITION 6.3. For a homogeneous affine monoid A andry, ..., r, the minimal
generators of A, the following are equivalent:

(i) R =k[A] is strongly Koszul,

(ii) regp R/(Y) =0 for every subset Y of {r1, ..., rn}.

Proof. (i) obviously implies (ii): the ideals generated by subsets of {ry,...,r,}
form a Koszul filtration for k[ A]. Now assume that (ii) is true. For each subset Y
of {r1,...,ry} and r; ¢ Y, consider the short exact sequence

O—-MNE)—> X)® )~ (Y,rj) — 0.

By the hypothesis, regp((Y) @ (r;)) = reggr(Y,r;) = 1. Hence, regp((¥Y) N
(rj)) <2.By [20, Proposition 1.4] this implies that R is strongly Koszul. U

An immediate corollary is the following result due to Conca.

PropoSITION 6.4 (Conca [8]). The scroll R = R(ny, ..., ny) has the property that
regp R/(Y) =0 for every set of variables Y if and only if ny =ny =--- =n.

Proof. We prove that R is strongly Koszul if and only if ny =ny =--- =n.
The “if” direction is clear: if n =ny =--- =n, then R is the Segre product of
k[s1, ..., st] and the nith Veronese of k[x, y]. Therefore, R is strongly Koszul by
[20, Proposition 2.3].

The “only if” direction: assume that the contrary is true, for example, n; > nj.
Since R is strongly Koszul, moding out the variables of the blocks of lengths
ta, ..., th—1, we see that the scroll of type (ny, ny) is also strongly Koszul. We will
deduce a contradiction. For simplicity, we can assume that t = 2.

Denote a =nj and b =nj. Let r = [b/a]. The ring R is also an affine monoid
ring, R = k[x“sl,x“flysl, el y”sl,xbsz,xb’lym, e, ybsz] C k[x,y,s1,s]
where x, y, 51, 57 are variables. By [20, Proposition 1.4] the ideal (x%sy) : y%sy is
generated by a subset of

{x%s1, x“_lysl, e, y”sl,xhsz, e, ybsz}.

However, x? y””bsg is clearly a minimal generator of (x“sy) : y?s1, and it does

not belong to the before-mentioned set since it has degree » > 2 in R. This is a
contradiction. O

DEFINITION 6.5. Let R be a standard graded k-algebra with graded maximal

ideal m. Let R = S/ be a presentation of R where S = k[xi, ..., X,] is a standard
graded polynomial ring and / a homogeneous ideal of S. The algebra R is called
linearly Koszul (with respect to the sequence Xp, ..., X,) if R/(Y) is a Koszul
algebra for every subsequence Y of x =X1, ..., X;,.

We say that R satisfies the regularity condition if reg R/(Y) <reg R for ev-
ery subsequence Y of x, where reg denotes the absolute Castelnuovo—Mumford
regularity.

REMARK 6.6. (i) Any algebra defined by quadratic monomial relations is Koszul
by the result of Froberg [ 5], and consequently it is also linearly Koszul.
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(ii) If R is linearly Koszul, then so is the quotient ring R/(Y) for every subse-
quence Y of x.

(iii) If R is strongly Koszul with respect to the sequence X, then it is also
linearly Koszul. The reverse implication is not true, even if R is defined by all
monomial relations except one binomial relation. For example, let R be the deter-
minantal ring of the matrix

x 0 z
(y 2 t) '

Concretely, R = k[x, y,z,t]/(xz, 72, xt — vz). Then y is an R-regular element,
and R/(y) = k[x, z,t]/(xz, 72, xt) is Koszul, so R is also Koszul, for example, by
Lemma 2.3. It is also easy to check that each of the quotient rings R/(x), R/(z),
R/(t) is a Koszul algebra defined by monomial relations. Therefore, R is linearly
Koszul. On the other hand, 0 : t = (xz), and hence R is not strongly Koszul (with
respect to the natural coordinates).

Note that if R is a rational normal scroll, then reg R = 1. In this case, we have the
following:

LEmMA 6.7. If reg(R) = 1 and R satisfies the regularity condition, then R is
linearly Koszul.

Proof. Take any standard graded polynomial ring S that surjects onto R. From
regg R =1 we getregg k <reggk =0 by Lemma

Denote by x the sequence of natural coordinates of R. For every subse-
quence Y of x, we haveregp R/(Y) <reg R/(Y) < 1. By Lemma 2.3 this implies
regr /vy k <regg k =0. Hence, R/(Y) is Koszul. g

We are ready for Theorem [.2(i), which characterizes balanced scrolls [12] in
terms of the regularity condition. This was predicted by Conca [8].

THEOREM 6.8. A rational normal scroll satisfies the regularity condition if and
only if it is balanced.

Proof. Assume that the scroll is balanced, that is, R = R(ny,...,n;,n; +
1,...,n1 4+ 1). For every set of variables Y, the quotient ring R/(Y) is the de-
terminantal ring of a 2 x e matrix X of linear forms, which can assumed to be in
Kronecker—Weierstrass form. By Proposition 3.2 the length of any scroll block of
X (if exists) is at least n;. By Lemma each nilpotent block of X has length at
most ny + 1. Therefore, reg R/(Y) < 1 by Theorem 2.6, as desired.

The necessary condition is immediate from Theorem 2.6. In our case,

R(ny,...,n n— 1

reg (ny t):’7t —‘22
(Xt,1, Xt,n+1) N

if ng>np +2. O

Now we prove Theorem 1.2(ii), which characterizes linearly Koszul scrolls.
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THEOREM 6.9. The scroll R = R(ny, ..., n) is linearly Koszul if and only if ny <
2n1.

Proof. For the sufficient condition, assume that n; < 2n;. Take any set of natural
coordinates Y. Let X be the matrix of linear forms defining R/(Y). By Proposi-

tion and Lemma any canonical form of X satisfies the length condition.
By Theorem 4.1 we conclude that R/(Y) is Koszul.
The necessary condition follows from Theorem 5.1. O

Next, we consider the following class of linearly Koszul algebras, first introduced
in [8] under a different name.

DEeFINITION 6.10. Let R be a standard graded k-algebra. We say that R is univer-
sally linearly Koszul (abbreviated ul-Koszul) if R/(Y) is a Koszul ring for every
set of linear forms Y.

REMARK 6.11. We know that every Koszul algebra defined by quadratic monomial
relations are linearly Koszul. However, a Koszul algebra defined by quadratic
monomial relations need not be universally linearly Koszul. Indeed, let

klx,y,z,t,u,v]

- (x2, xy, ¥2, xz, yt, uv)

and/ =(x+y—u,z—t—v). Then R/l =kl[x, v, z, t]/(xz,xy, yz, Xz, yt, xt —
yz) is not Koszul: it is defined by the matrix

0 x y z
x y 0 t)°
and by Theorem R/1 is not Koszul.

In [9], the author defines R to be universally Koszul if regp R/(Y) = 0 for ev-
ery sequence of linear forms Y. Clearly, every universally Koszul algebra is ul-
Koszul. In the same paper, the universally Koszul rational normal scrolls of type
(n1, ..., n) are completely classified: either t = 1 (a rational normal curve), or
t =2 and n; = n,. Using the classification of the Kronecker—Weierstrass normal
forms of linear sections of rational normal scrolls in Section 2, we prove the fol-
lowing:

THEOREM 6.12. The rational normal scroll R(ny, ..., n) is ul-Koszul if and only
if eithert=1,0ort=2and ny <2ny,ort=3 and ny =ny; =n;3.

Proof. If the necessary condition is not true, then ny + - -- 4+ ny > 2n; + 1. Mod-
ing out a suitable sequence of binomial linear forms Y, we arrive at the ring
R(ni,ny +--- 4+ ny). By Theorem we get that R/(Y) is not linearly Koszul.
Hence, R is not ul-Koszul.

The converse follows from Theorem and Proposition 3.2: for any quotient
ring by a linear ideal of R, any of its corresponding Kronecker—Weierstrass ma-
trices satisfies the length condition. (]
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Conca [10] discovered the classification of universally Koszul algebras defined
by monomial relations. It would be interesting to classify all universally linearly
Koszul algebras defined by monomial relations.

Finally, similarly to Theorem , we can classify scrolls that satisfy the “uni-
versal” version of the regularity condition.

THEOREM 6.13. The rational normal scroll R = R(ny, ..., nt) has the property
that reg R/(Y) <regR for any set of linear forms Y if and only ift <1,o0rt=2
andny <ni+1l,ort=3andni=n;=n3=1.

Proof. 1f the necessary condition is not true, then ny + - - - +ny > ny + 2. Moding
out suitable linear forms, we arrive at the determinantal of a scroll block of length
n; and a nilpotent block of length ny + - - - + ny. The regularity of that ring is at
least 2 by Theorem 2.6. This is a contradiction.

For the sufficient condition: we only have to use Proposition and Theo-
rem 2.6. U
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