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General Hilbert Stacks and Quot Schemes

Jack Hall & David Rydh

In memory of Dan Laksov

Abstract. We prove the algebraicity of the Hilbert functor, the
Hilbert stack, the Quot functor, and the stack of coherent sheaves on
an algebraic stack X with (quasi-)finite diagonal without any finite-
ness assumptions on X. We also give similar results for Hom stacks
and Weil restrictions.

Introduction

Let S be a scheme, and let f : X → S be a morphism between algebraic stacks
that is locally of finite presentation. If f is separated, then it is well known that the
Hilbert functor HilbX/S is an algebraic space, locally of finite presentation over S

[Art69; OS03; Ols05]. If f is not separated but has a quasi-compact and separated
diagonal with affine stabilizers, then one can instead prove that the Hilbert stack
H

qfin
X/S —parameterizing proper flat families with a quasi-finite morphism to X—

is an algebraic stack, locally of finite presentation over S [HR14; Ryd11]. The
first main result of this paper is a partial generalization of these two results to
stacks that are not locally of finite presentation.

Theorem A. Let S be a scheme, and let X be an algebraic stack over S.

(i) If X → S has a finite diagonal, then HilbX/S is a separated algebraic space,

and H
qfin

X/S is an algebraic stack with affine diagonal.
(ii) If X → S has a quasi-compact and separated diagonal with affine stabilizers,

then H
qfin

X/S is an algebraic stack with quasi-affine diagonal.

In particular, if X is any separated scheme, algebraic space, or Deligne–Mumford
stack, then HilbX/S is an algebraic space.

Our second result is about stacks of sheaves. Let us again first recall the clas-
sical situation. So, let f : X → S be a separated morphism between algebraic
stacks that is locally of finite presentation. Then C oh(X/S)—the stack of finitely
presented sheaves on X that are flat and proper over S—is an algebraic stack,
locally of finite presentation over S with affine diagonal [Lie06, Thm. 2.1],
[Hal14b, Thm. 8.1]. If we are also given a quasi-coherent sheaf F on X, then
Quot(X/S,F) is a separated algebraic space [Hal14b, Cor. 8.2]. Usually, it is
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also assumed that F is finitely presented. Then Quot(X/S,F) is locally of finite
presentation over S, and the result goes back to [Art69; OS03; Ols05]. Again, we
are able to remove the hypothesis that X → S is locally of finite presentation.

Theorem B. Let X be an algebraic stack with finite diagonal over S. Then the
stack C oh(X/S) is algebraic with affine diagonal. If F is a quasi-coherent OX-
module, then Quot(X/S,F) is a separated algebraic space over S.

When X → S is not locally of finite presentation, the definitions of C oh(X/S)

and Quot(X/S,F) are somewhat subtle. The objects are quasi-coherent OX-
modules G that are flat, intrinsically of finite presentation and intrinsically proper
over S (together with a surjective homomorphism F → G for Quot). Modules
intrinsically of finite presentation over S are of finite type as OX-modules. They
are, however, not necessarily of finite presentation as OX-modules, and not every
finitely presented OX-module is intrinsically of finite presentation.

There are two key ingredients in the proofs. The first is the approximation
result [Ryd15, Thm. D]: every algebraic stack with quasi-finite diagonal can be
approximated by algebraic stacks of finite presentation. The second is the repre-
sentability result [Hal14a, Thm. D]: if X → S is separated and locally of finite
presentation, and given F ,G ∈ QCoh(X) such that G is of finite presentation, flat
over S and with support proper over S, then HomOX/S(F ,G) is affine over S.

The first result shows that the morphisms f : X → S appearing in the main
theorems can be factored as X → X0 → S, where X → X0 is affine and X0 → S

is of finite presentation. If PX/S is one of the stacks figuring in the main theorems,
then we will describe natural morphisms PX/S → PX0/S . The second result will
show that these morphisms are affine.

Independently, Di Brino used similar methods to prove that Quot(F) is a
scheme when F is a quasi-coherent sheaf on a projective scheme [DB12]. Ap-
proximation for the Quot and Hilbert functors is somewhat complicated since
a homomorphism Fλ → F only gives rise to a rational map Quot(F) ���
Quot(Fλ). We apply the approximation step to Hom(F ,G), C oh(X/S) and
the Hilbert stack HX/S where this inconvenience is absent. The algebraicity
of Quot(F) and HilbX/S then follows from the algebraicity of Hom(F ,G),
C oh(X/S) and HX/S . For zero-dimensional families, our results have appeared
in [Ryd11] and [GLS07a; GLS07b; Skj11] using étale localization and explicit
equations in the affine case.

The last two decades have witnessed an increased interest in the usage of ob-
jects that are not of finite type—particularly in non-Archimedean and arithmetic
geometry. That being said, this paper was not written with a particular applica-
tion in mind. Rather, it was the startling realization that recent techniques implied
the existence of parameter spaces in such a great generality—in contrast to the
preconceptions of the authors—that led to this paper.
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1. Approximation

Let S be an affine scheme (or more generally a pseudo-Noetherian stack). Recall
that an algebraic stack X → S has an approximation if there exists a factoriza-
tion X → X0 → S where X → X0 is affine and X0 → S is of finite presenta-
tion [Ryd15, Def. 7.1]. Equivalently, there is an inverse system {Xλ} of algebraic
stacks of finite presentation over S with affine bonding maps and inverse limit X

[Ryd15, Prop. 7.3].
We say that a morphism X → S is locally of approximation type if there exist

a faithfully flat morphism S′ → S that is locally of finite presentation and an
étale representable surjective morphism X′ → X ×S S′ such that X′ → S′ is a
composition of a finite number of morphisms that are either affine or locally of
finite presentation and quasi-separated.

The condition of being locally of approximation type is clearly (i) stable un-
der base change, (ii) stable under precomposition with morphisms that are either
affine or locally of finite presentation and quasi-separated, (iii) fppf-local on the
base, and (iv) étale-local on the source.

Lemma 1.1. Let f : X → S be a quasi-compact and quasi-separated morphism
of algebraic stacks. The following are equivalent:

(i) f is locally of approximation type.
(ii) There exists an fppf-covering {Si → S} such that Si is affine and Xi = X ×S

Si → Si has an approximation.

Proof. Clearly (ii) implies (i). For the converse, we may assume that S is affine
and that there exists an étale representable surjective morphism X′ → X such
that X′ → S is a composition of morphisms that are either affine or locally of fi-
nite presentation and quasi-separated. Since X is quasi-compact, we may further
assume that these morphisms are quasi-compact. Then X′ → X is of finite pre-
sentation, and X → S is of approximation type [Ryd15, Def. 2.9]. It then has an
approximation by [Ryd15, Thm. 7.10]. �

2. Stacks of Spaces

In this section we prove Theorem A and some related algebraicity results for
Hom-stacks and Weil restrictions.

Definition 2.1. Let f : X → S be a morphism of algebraic stacks. The Hilbert
stack HX/S is the category where:

• objects are pairs of morphisms (p : Z → T ,q : Z → X), where T is an S-
scheme, such that p is flat, proper, and of finite presentation and the induced
morphism (q,p) : Z → X ×S T is representable;
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• morphisms are triples (ϕ,ψ, τ) fitting into a 2-commutative diagram

Z1
ϕ

p1

q1

τ

Z2

p2

q2
X

T1
ψ

T2

�

such that the square is Cartesian.

The category HX/S is fibered in groupoids over Sch/S , and by étale descent it
follows that HX/S is a stack. We call HX/S the Hilbert stack of X.

The substack of objects such that (q,p) : Z → X ×S T is locally quasi-finite
(resp. unramified, resp. a closed immersion) is denoted H

qfin
X (resp. H unram

X ,
resp. HilbX/S ). The first two substacks are always open substacks, and the
third substack—the Hilbert functor—is an open substack if X → S is separated
[Ryd11, Prop. 1.9]. When X → S has a quasi-compact and separated diagonal,
then (q,p) is quasi-finite and separated for every object of H

qfin
X/S . Thus, the stack

H
qfin

X/S coincides with the Hilbert stack figuring in [HR14].

Theorem 2.2. Let f : X → S be a morphism of algebraic stacks that is quasi-
separated and locally of approximation type. If f is separated (resp. has quasi-
finite and separated diagonal), then H

qfin
X/S is an algebraic stack with affine (resp.

quasi-affine) diagonal.

Theorem A is a consequence of Theorem 2.2 and the following two facts:

(i) an algebraic stack with quasi-finite and separated diagonal is locally of ap-
proximation type [Ryd15, Thm. D]; and

(ii) if X has affine stabilizers, then H
qfin

X/S = H
qfin

Xqfin/S
where Xqfin ⊆ X denotes

the open locus where X has finite stabilizers [HR14, Pf. of Thm. 4.3].

Before we prove Theorem 2.2, we will state a result on the algebraicity of Weil
restrictions.

Theorem 2.3. Let f : Z → S be a proper and flat morphism of finite presentation
between algebraic stacks. Let g : W → Z be a morphism of algebraic stacks, and
let f∗W = RZ/S(W) = SecZ/S(W/Z) be the Weil restriction of W along f .

(i) If g : W → Z is affine, then f∗W → S is affine.
(ii) If g : W → Z is quasi-affine, then f∗W → S is quasi-affine.

(iii) If g : W → Z is a quasi-compact open immersion, then so is f∗W → S.
(iv) If g : W → Z is a closed immersion, then so is f∗W → S.
(v) If f : Z → S has a finite diagonal and g : W → Z has a finite diagonal,

then f∗W → S is algebraic with affine diagonal.
(vi) If f : Z → S has a finite diagonal and g : W → Z has a quasi-finite and

separated diagonal, then f∗W → S is algebraic with quasi-affine diagonal.
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Proof of Theorems 2.2 and 2.3. We begin with Theorem 2.3 (i). Let g : W → Z

be affine. Recall that the functor HomOZ/S(g∗OW,OZ) is affine over S [Hal14a,
Thm. D]. There is a functor f∗W → HomOZ/S(g∗OW,OZ) taking a section
s : Z → W of g to the corresponding OZ-module homomorphism. This func-
tor is represented by closed immersions. To see this, let ϕ : g∗OW → OZ be an
OZ-module homomorphism. This gives a section of g : W → Z if and only if the
following maps vanish:

idOZ
− ϕ ◦ η : OZ → OZ,

ϕ ◦ μ − ϕ ⊗ ϕ : g∗OW ⊗OZ
g∗OW → OZ,

where η : OZ → g∗OW is the unit homomorphism, and μ defines the multiplica-
tion on g∗OW . These conditions are closed since HomOZ/S(F ,OZ) is affine, and
hence separated, for all quasi-coherent OZ-modules F [Hal14a, Thm. D].

For Theorem 2.3 (ii), the question easily reduces to (iii): if W → Z is a quasi-
compact open immersion, then so is f∗W → S. Since f∗W = S \ f (Z \ W) is
open and constructible, it is quasi-compact and open.

For Theorem 2.3 (iv), we first assume that g : W → Z is a closed immersion
of finite presentation. Then f∗W → S is affine, of finite presentation [Hal14a,
Thm. D], and a monomorphism. To show that f∗W → S is a closed immersion,
it is thus enough to verify the valuative criterion for properness. This is readily
verified since if S is the spectrum of a valuation ring with generic point ξ , then
Zξ is schematically dense in Z by flatness of Z → S.

Now suppose that W → Z is a closed immersion merely of finite type. Work-
ing locally on S, we may assume that S is affine. Then W → Z can be written as
an inverse limit W = lim←−Wλ of finitely presented closed immersions Wλ → Z. It
follows that f∗W = lim←−f∗Wλ is a closed immersion.

Now, we prove Theorem 2.2. The question is fppf-local on S, so we may as-
sume that S is affine. Given a representable morphism g : X → Y of algebraic
stacks over S, there is a natural functor g∗ : HX/S → HY/S taking Z → X to
Z → X → Y . If Z → X → Y is a representable morphism, then so is Z → X.

Now assume that g is quasi-affine. If Y → S is separated or has a quasi-
finite and separated diagonal, then we obtain an induced morphism g∗ : H

qfin
X/S →

H
qfin

Y/S . Indeed, let Z → S be a proper morphism together with a quasi-finite
S-morphism Z → X. If Y → S is separated, then Z → X is finite, so that
Z → X → Y is proper and quasi-affine, hence finite. If instead Y → S has a
quasi-finite and separated diagonal, then Z → X → Y is quasi-affine, of finite
type, and has proper fibers. The last fact follows from the observation that the
residual gerbe Gy is separated for every y ∈ |Y |. It follows that Z → Y is quasi-
finite, so g∗ is well defined.

Also, if g is quasi-affine (resp. affine, resp. a quasi-compact open immersion),
we note that g∗ : HX/S → HY/S and g∗ : H

qfin
X/S → H

qfin
Y/S are quasi-affine (resp.

affine, resp. quasi-compact open immersions). Indeed, given a morphism T →
H

qfin
Y/S corresponding to maps Z → T and Z → Y , then the pull-back of g∗ to
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T is RZ/T (X ×Y Z/Z), which is quasi-affine (resp. affine, resp. a quasi-compact
open immersion), by Theorem 2.3 (i)–(iii).

It is now readily deduced that H
qfin

X/S = ⋃
U H

qfin
U/S , where the union is over all

open quasi-compact substacks U ⊆ X. We can thus assume that X → S is quasi-
compact. As the question of algebraicity is fppf-local on S, we can also assume
that X → S has an approximation X → X0 → S. If X → S is separated (resp. has
a quasi-finite and separated diagonal), then it can be arranged so that X0 → S is
also separated (resp. has a quasi-finite and separated diagonal) [Ryd15, Thm. C].
The stack H

qfin
X0/S

is thus algebraic and has an affine (resp. quasi-affine) diagonal
[Hal14b, Thm. 9.1] and [HR14, Thm. 2]. As we have seen before, the morphism
H

qfin
X/S → H

qfin
X0/S

is affine. This proves Theorem 2.2.
Parts (v)–(vi) of Theorem 2.3 follow from Theorem 2.2 since the morphism

RZ/S(W/Z) → H
qfin

W/S , taking a section to its graph, is an open immersion. �

Corollary 2.4. Let f : Z → S be a proper and flat morphism of finite presen-
tation between algebraic stacks, and let g : X → S be a morphism of algebraic
stacks.

(i) If Z → S has a finite diagonal and X → S has a quasi-finite and separated
diagonal, then HomS(Z,X) is an algebraic stack with quasi-affine diagonal.

(ii) If X → S has a finite diagonal, then HomS(Z,X) is an algebraic stack with
affine diagonal.

Proof. Note that there is an isomorphism HomS(Z,X) → RZ/S(X ×S Z/Z) tak-
ing a morphism h : Z → X to the section (h, idZ) : Z → X ×S Z. Thus, in the
first case, the corollary follows immediately from Theorem 2.3. In the second
case, we reduce as before to the case where S is affine and X → S is quasi-
compact, so there is an approximation X → X0 → S. As before, HomS(Z,X) →
HomS(Z,X0) is affine since for any T → HomS(Z,X0), the pull-back is the
Weil restriction RZ×ST /T (X ×X0 Z ×S T ). Finally, HomS(Z,X0) is algebraic
with affine diagonal by [Hal14b, Cor. 9.2]. �

Remark 2.5. Let Z → S be as in Theorem 2.3, and let h : W1 → W2 be a
morphism between stacks over Z such that either Wi → Z are quasi-affine or
Z → S and Wi → Z have quasi-finite and separated diagonals. Then f∗W1

and f∗W2 are algebraic by Theorem 2.3. If h has one of the properties: affine,
quasi-affine, closed immersion, open immersion, quasi-compact open immersion,
monomorphism, Deligne–Mumford, representable, representable and separated,
locally of finite presentation, locally of finite type, unramified, étale; then so
has f∗W1 → f∗W2. These are routine verifications. Indeed, first reduce to the
case W2 = Z and then apply Theorem 2.3 or argue by functorial characteriza-
tions and diagonals; cf. [Ryd11, Props. 3.5 and 3.8]. The only exception is “lo-
cally of finite type”. In this case, one first easily reduces to the situation where
W1 = W → W2 = Z is of finite type. Then W → Z has an approximation by
[Ryd15, Prop. 7.6 or Thm. D]. This means that we can write W ↪→ W0 → Z with
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W ↪→ W0 a closed immersion and W0 → Z of finite presentation, and the result
follows.

Similarly, if Z → S and X → S are as in Corollary 2.4 and in addition X → S

has one of the properties: affine, quasi-affine, Deligne–Mumford, representable,
representable and separated, locally of finite presentation, locally of finite type,
unramified, étale; then so has HomS(Z,X).

Remark 2.6 (Smoothness). If W → Z is smooth, then this does not imply that
f∗W → S is smooth unless Z → S is finite. The proof of [Ryd11, Prop. 3.5
(iv)] does not apply since formal smoothness only implies that the infinitesimal
lifting property holds for thickenings of affine schemes. For a counterexample,
let Z → S be a one-parameter family of twisted cubics degenerating to a nodal
plane curve with an embedded component. Then HomS(Z,A1

S) = RZ/S(A1
Z) is

an affine scheme over S with generic fiber A
1 and special fiber A

2, hence not
smooth. We thank the referee for making us aware of this fact.

Remark 2.7 (Boundedness). If W → Z is quasi-compact, then it is nontrivial to
show that f∗W → S is quasi-compact. Some results are available, however, such
as [Ols07], [AOV11, App. C], and [Ryd11, Prop. 3.8]. These results imply corre-
sponding boundedness results for Hom-stacks and have, for example, been used
to deduce that the stack of twisted stable maps has quasi-compact components
under mild hypotheses.

Remark 2.8. The proof of Theorem 2.2 also shows that if X = lim←−λ
Xλ, where

{Xλ}λ is an inverse system of algebraic stacks of finite presentation over S with
affine bonding maps, then H

qfin
X/S = lim←−λ

H
qfin

Xλ/S , and this inverse system has affine
bonding maps.

3. Intrinsic Finiteness for Sheaves

In this section, we introduce the relative finiteness notion—intrinsically of finite
presentation—referred to in the introduction. This notion is needed in the defi-
nition of the stack C oh(X/S) and the sheaf Quot(X/S,F) when X → S is not
locally of finite presentation. To motivate this definition, note that if q : Z → X

is a finite morphism and p : Z → X → S is of finite presentation, then q∗OZ is
of finite type but not necessarily of finite presentation. Conversely, if q∗OZ is of
finite presentation, then this does not imply that p is of finite presentation. The
new finiteness notion fixes this: q∗OZ is intrinsically of finite presentation over S

exactly when p is of finite presentation. Moreover, this notion is also defined for
sheaves of OX-modules. We begin with the affine case.

Definition 3.1. Let A be a ring, let B be an A-algebra, and let M be a B-
module. We say that M is intrinsically of finite presentation over A if there exist
a polynomial ring A[x1, x2, . . . , xn] and a homomorphism A[x1, x2, . . . , xn] → B

such that M is of finite presentation as an A[x1, x2, . . . , xn]-module.
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Although quite natural, we have not been able to find this definition in the liter-
ature except in the special case where B is of finite type [SP, 0659] under the
name “finitely presented relative to A”. The following lemma is of fundamental
importance.

Lemma 3.2. Let A be a ring, let B be an A-algebra, and let M be a B-module.

(i) If M is finitely generated as an A-module, then M is finitely generated as
a B-module, and B/AnnB M is integral over A. In particular, the image of
SuppB M along SpecB → SpecA is SuppA M .

(ii) If B is finitely generated as an A-algebra and M is finitely presented as an
A-module, then M is finitely presented as a B-module.

Proof. If M is finitely generated as an A-module, then clearly M is finitely gener-
ated as a B-module. To see that B/AnnB M is integral over A, we may replace B

with B/AnnB M , so B → EndA M becomes injective. Now Cayley–Hamilton’s
theorem [Eis95, Thm. 4.3] shows that every b ∈ B satisfies an integral equation
with coefficients in A.

To prove the second statement, choose a surjection An � M and note that the
kernel K is a finitely generated A-module. The kernel KB of Bn � M ⊗A B is
thus also finitely generated. Let L be the kernel of the surjective homomorphism
Bn � M ⊗A B � M , and let N be the kernel of the surjective homomorphism
M ⊗A B → M . Then L is an extension of N by KB , so it is enough to show
that N is a finitely generated B-module. If b1, b2, . . . , bn are generators of B

as an A-algebra and m1,m2, . . . ,mr are generators of M as an A-module, then
mj ⊗ bi − (bimj ) ⊗ 1 are generators of N as a B-module. �

Let A be a ring, let B be an A-algebra, and let M be a B-module. Then from the
previous lemma we obtain that

M is i.f.p. over A 
⇒ M is f.g. as a B-module.

If B is an A-algebra of finite type, then

M is i.f.p. over A 
⇒ M is f.p. as a B-module,

and the converse holds if B is an A-algebra of finite presentation. Finally, if C is
a B-algebra, then

C is i.f.p. over A ⇐⇒ C is f.g. as a B-module and f.p. as an A-algebra.

Lemma 3.3. If B = lim−→λ
Bλ is a direct limit of A-algebras of finite presentation

and M is a B-module, then the following are equivalent:

(i) M is intrinsically of finite presentation over A,
(ii) M is a finitely presented Bλ-module for all sufficiently large λ,

(iii) M is a finitely presented Bλ-module for some λ.

Proof. This follows from Lemma 3.2 and the observation that every homomor-
phism A[x1, x2, . . . , xn] → B factors through Bλ for all sufficiently large λ. �

http://stacks.math.columbia.edu/tag/0659
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From the characterization in Lemma 3.3 we easily obtain that the property “intrin-
sically of finite presentation over the base” is stable under base change, fpqc-local
on the base, stable on the source under pull-back by finitely presented morphisms,
and fppf-local on the source:

• Let A′ be an A-algebra. If M is i.f.p. over A, then M ⊗A A′ is i.f.p. over A′.
The converse holds if A ↪→ A′ is faithfully flat.

• Let B ′ be a finitely presented B-algebra. If M is i.f.p. over A, then M ⊗B B ′ is
i.f.p. over A. The converse holds if B ↪→ B ′ is faithfully flat.

In particular, the property is fppf-local on source and target, so we may extend the
definition to algebraic stacks as follows.

Definition 3.4. Let f : X → S be a morphism of algebraic stacks. A quasi-
coherent OX-module F is intrinsically of finite presentation over S if fppf-locally
on X and S, it is intrinsically of finite presentation. If, in addition, SuppF is
universally closed, quasi-compact and separated over S, then we say that F is
intrinsically proper over S.

Proposition 3.5. Let f : X → S be a morphism of algebraic stacks. Let F be a
quasi-coherent OX-module.

(i) If f is of finite presentation, then F is intrinsically of finite presentation over
S (resp. intrinsically proper over S) if and only if F is of finite presentation
(resp. has proper support over S).

(ii) Stability under base change: if F is intrinsically of finite presentation over
S (resp. intrinsically proper over S) and S′ → S is any morphism, then so is
the base change F ′ over S′.

(iii) Suppose that X = lim←−Xλ is the limit of an inverse system of finitely presented
S-stacks {Xλ → S} with affine bonding maps Xλ → Xμ and let hλ : X →
Xλ denote the canonical morphism. Then the following are equivalent:
(a) F is intrinsically of finite presentation over S.
(b) There exists an index α such that (hα)∗F is of finite presentation.
(c) There exists an index α such that (hλ)∗F is of finite presentation for all

λ ≥ α.

(iv) Given an approximation X
h→ X0 → S, with X0 → S separated, the follow-

ing are equivalent:
(a) F is intrinsically of finite presentation and intrinsically proper over S.
(b) h∗F is of finite presentation with proper support over S.

Proof. (i)–(iii) follow directly from the affine case, so it remains to prove (iv).
If h∗F is of finite presentation, then F is intrinsically of finite presentation by
(iii). Also, F is finitely generated, and SuppF ↪→ X → X0 is integral with image
Supph∗F (Lemma 3.2). It follows that F is intrinsically of finite presentation and
intrinsically proper over S.

For the converse, we may work locally on S and assume that S is affine. Then
X0 is pseudo-Noetherian, so we may write X = lim←−Xλ where gλ : Xλ → X0

is affine of finite presentation. Let hλ denote the induced map X → Xλ. The
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push-forward (hλ)∗F is of finite presentation for sufficiently large λ by (iii).
Let Zλ ↪→ Xλ denote the closed substack defined by the zeroth Fitting ideal of
(hλ)∗F . Since (hλ)∗F is finitely presented, the Fitting ideal is finitely generated,
so j : Zλ ↪→ Xλ is of finite presentation. The Fitting ideal is contained in the an-
nihilator of (hλ)∗F and contains a power of the annihilator [Eis95, Prop. 20.7].
Thus, (hλ)∗F = j∗j∗(hλ)∗F and |Zλ| = SuppF . Moreover, since X0 → S is
separated, it follows that Zλ → X0 is proper and affine, hence finite. We conclude
that h∗F = (gλ)∗(hλ)∗F is of finite presentation with proper support. �

4. Stacks of Sheaves

In this section, we prove Theorem B and related results on Hom-spaces of
sheaves.

Definition 4.1. Let f : X → S be a separated morphism of algebraic stacks.

• The stack of coherent sheaves C oh(X/S) is the category with objects (T ,G)

where T is an S-scheme and G is a quasi-coherent sheaf of OX×ST -modules
that is flat over T , intrinsically of finite presentation over T and intrinsically
proper over T .

• The stack of coherent algebras C ohalg(X/S) is the analogous category with
finite algebras instead of modules.

• Let F be a quasi-coherent OX-module. The functor Quot(X/S,F) takes an S-
scheme T to the set of quotients FX×ST � G (up to isomorphism) such that G
is flat over T , intrinsically of finite presentation over T , and intrinsically proper
over T .

There are natural isomorphisms HilbX/S = Quot(X/S,OX) and H
qfin

X/S =
C ohalg(X/S) that take a family (p : Z → T ,q : Z → X) to the OX×ST -module
(q,p)∗OZ , noting that (q,p) is finite since X → S is separated. Moreover, the
natural forgetful morphism C ohalg(X/S) → C oh(X/S) is represented by affine
morphisms. This follows as in [Lie06, Prop. 2.5] and [Ryd11, Lem. 4.2] using
Theorem 4.2 below. Thus, in the separated case, Theorem A follows from Theo-
rem B.

Theorem 4.2. Let f : X → S be a morphism of algebraic stacks that is sepa-
rated and locally of approximation type. Let F ,G ∈ QCoh(X) and assume that
G is flat, intrinsically of finite presentation, and intrinsically proper over S. Then
HomOX/S(F ,G) is affine. If, in addition, F is intrinsically of finite presentation,
then HomOX/S(F ,G) is of finite type.

Proof. The question is fppf-local on S, so we assume that S is affine. We may
replace X with the closed substack defined by AnnOX

G and assume that X → S

is quasi-compact and universally closed. After replacing S with an fppf-covering,

we may then assume that X → S has an approximation X
h→ X0 → S with X0 →

S separated. Then h∗G is of finite presentation with proper support over S.
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The natural morphism HomOX/S(F ,G) → HomOX0 /S(h∗F , h∗G) is a mono-
morphism since h is affine. As we will see, this monomorphism is represented by
closed immersions. Since HomOX0 /S(h∗F , h∗G) is affine [Hal14a, Thm. D], this
will prove that HomOX/S(F ,G) is affine.

Let K be the kernel of the surjection h∗h∗F → F . A homomorphism h∗F →
h∗G induces a homomorphism h∗h∗F → G, which factors uniquely through F if
and only if the composition K → G is zero. This happens if and only if h∗K →
h∗G is zero. This is a closed condition since HomOX0/S(h∗K, h∗G) is separated
(even affine by [Hal14a, Thm. D]).

If F is also intrinsically of finite presentation, then h∗F is of finite presenta-
tion. It follows that HomOX0/S(h∗F , h∗G) is of finite presentation, and we con-
clude that HomOX/S(F ,G) is of finite type. �

Corollary 4.3. Let f : X → S be a morphism of algebraic stacks that is sepa-
rated and locally of approximation type. Let A be a quasi-coherent OX-algebra.
Let G ∈ QCoh(X) be flat, intrinsically of finite presentation, and intrinsically
proper over S. Then the sheaf RG/S(A), which takes a morphism h : T → S to
the set of h∗A-module structures on h∗G, is affine over S.

Note that RG/S(A) = RSpecG→S(Spec(A ⊗OX
G)/SpecG) when G is a quotient

sheaf of OX , explaining the notation. Corollary 4.3 generalizes [Skj11, Thm. 3.5]:
if f : X → S is affine, then G ∈ QCoh(X) is intrinsically of finite presentation
and intrinsically proper over S if and only if f∗G is of finite presentation (Propo-
sition 3.5). Thus, RG/S(A) equals the module restriction functor M odM

B→R , and
we recover [Skj11, Thm. 3.5].

Proof of Corollary 4.3. The question is local on S, so we can assume that S is
affine and X → S is quasi-compact and admits an approximation X → X0 → S.

Consider HomOX/S(A ⊗OX
G,G), which is an affine S-scheme by Theo-

rem 4.2. Let ϕ : A ⊗OX
G → G denote the universal homomorphism (after

replacing S with the Hom-space). The Weil restriction RG/S(A) is then the sub-
functor given by the conditions that the maps

idG − ϕ ◦ (η ⊗ idG) : G → G,

ϕ ◦ (μ ⊗ idG) − ϕ ◦ (idA ⊗ ϕ) : A⊗OX
A⊗OX

G → G
vanish, where η : OX → A is the unit, and μ : A ⊗OX

A → A is the multipli-
cation. This is a closed subfunctor since HomOX/S(F ,G) is affine for any quasi-
coherent OX-module F . �

Theorem 4.4. Let f : X → S be a morphism of algebraic stacks that is separated
and locally of approximation type. The stack C oh(X/S) is algebraic with affine
diagonal. If F ∈ QCoh(X), then Quot(X/S,F) is a separated algebraic space.

Proof. We argue almost exactly as in the proof of Theorem 2.2. First, we reduce
to the case where S is affine and X quasi-compact. Next, we further reduce to

the case where there is an approximation X
h→ X0 → S. Then there is a natural
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morphism h∗ : C oh(X/S) → C oh(X0/S) that takes a sheaf G to h∗G. The stack
C oh(X0/S) is algebraic, locally of finite presentation over S, and has affine diag-
onal [Hal14b, Thm. 8.1]. The morphism h∗ is represented by affine morphisms:
given a morphism T → C oh(X0/S), corresponding to a finitely presented sheaf
G on X0 ×S T , the liftings to C oh(X/S) correspond to the h∗OX-module struc-
tures on G. Thus, h∗ is represented by RG/T (h∗OX), which is affine by Corol-
lary 4.3. �
If f has a finite diagonal, then f is locally of approximation type. Thus, Theo-
rem B is an immediate consequence of Theorem 4.4.
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