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Srinivas’ Problem for Rational Double Points

John Brevik & Scott Nollet

Abstract. For the completion B of a local geometric normal domain,
V. Srinivas asked which subgroups of ClB arise as the image of the
map ClA → ClB on class groups as A varies among normal geomet-
ric domains with B ∼= Â. For two-dimensional rational double point
singularities, we show that all subgroups arise in this way by apply-
ing Noether–Lefschetz theory to linear systems with nonreduced base
loci. By a similar technique we also show that in any dimension, ev-
ery local ring of a normal hypersurface singularity has completion
isomorphic to the completion of a geometric UFD.

1. Introduction

V. Srinivas posed several interesting problems about class groups of Noetherian
local normal domains in his survey paper on geometric methods in commutative
algebra [21, §3]. Recall that if A is such a ring with completion Â, then there
is a well-defined injective map on divisor class groups j : ClA → Cl Â [19, §1,
Proposition 1] arising from valuation theory. For geometric local rings, that is,
localizations of C-algebras of finite type, Srinivas asks about the possible images
of the map j [21, Questions 3.1 and 3.7].

Problem 1.1. Let B be the completion of a local geometric normal domain.

(a) What are the possible images of ClA ↪→ ClB as A ranges over all geometric
local normal domains with Â ∼= B?

(b) Is there a geometric normal local domain A with Â ∼= B and ClA = 〈ωB〉 ⊂
ClB?

While we are mainly interested in (a), let us review the progress on Prob-
lem 1.1 (b). Since the dualizing module ωB is necessarily in the image of
ClA ↪→ ClB whenever A is a quotient of a regular local ring [15], part (b) asks
whether the image that is a priori the smallest possible can be achieved. Moreover,
if B is Gorenstein, then ωB is trivial in ClB , and part (b) asks whether ClA = 0
is possible; in other words, whether B is the completion of a unique factorization
domain (UFD). For arbitrary rings, Heitmann [9] proved that B is the comple-
tion of a UFD if and only if B is a field, a discrete valuation ring, or dimB ≥ 2,
depthB ≥ 2, and every integer is a unit in A, but for dimA ≥ 2, his constructions
produce rings that are far from geometric.

Received February 17, 2014. Revision received June 14, 2014.

155

http://www.lsa.umich.edu/math/outreach/michiganmathematicaljournal


156 John Brevik & Scott Nollet

For Problem 1.1 (b) as stated, perhaps the most famous result is Grothendieck’s
solution to Samuel’s conjecture [6, XI, Corollaire 3.14], which says that if B is a
complete intersection that is factorial in codimension ≤ 3, then ClB = 0, so that
B is already a UFD. In particular, any complete intersection ring B of dimen-
sion ≥ 4 with an isolated singularity is a UFD. Parameswaran and Srinivas [16]
showed that such rings B of dimension d = 2,3 are completions of UFDs, extend-
ing the earlier result of Srinivas for rational double points [20]. Hartshorne and
Ogus [8] proved that any ring B with an isolated singularity and depth ≥ 3 having
codimension ≥ 3 in a regular local ring is a UFD. Parameswaran and van Straten
[17] answered Problem 1.1 (b) positively for arbitrary normal surface singulari-
ties, the only result that discusses nontrivial subgroups. We offer the following.

Theorem 1.2. Let B be a completed normal hypersurface singularity. Then there
exist a hypersurface X ⊂ P

n
C

and a point p ∈ X such that A = OX,p is a UFD

and Â ∼= B .

Unlike the results mentioned before for isolated singularities, our proof is very
short (about a page) and uniformly handles all dimensions, though it only ad-
dresses rings B of the form C[[x1, . . . , xn]]/(f ) where f defines a variety V

normal at the origin. We expect to extend our method to all normal local complete
intersection singularities.

On the other hand, we have seen no work addressing the more difficult Prob-
lem 1.1 (a) since it appeared ten years ago. Noting an example of a ring B

for which ClB ∼= C but the images ClA are finitely generated [21, Exam-
ple 3.9], Srinivas seems pessimistic about the chances, saying that Problem 1.1 (b)
is “probably the only reasonable general question in the direction of Prob-
lem 1.1 (a)”, but his example at least suggests the following.

Question 1.3. For B as before, is every finitely generated subgroup H ⊂ ClB
containing 〈ωB〉 the image of ClA for a local geometric normal domain A with
Â ∼= B?

Our first result is a positive answer for the best understood surface singularities.

Theorem 1.4. Let B be the completion of the local ring of a rational double point
on a surface. Then for any subgroup H ⊂ ClB , there is a local geometric normal
ring A with B ∼= Â and H = ClA ⊂ ClB .

There is a well-known classification of the surface rational double points, namely
An, Dn, E6, E7, E8 [11]; in each case, we produce an algebraic surface S ⊂ P

3
C

and a rational double point p ∈ S such that ClOS,p
∼= H . This result comes as a

surprise in view of Mohan Kumar’s result [14]. He proved that for almost all An-
and En-type singularities on a rational surface over C, the analytic isomorphism
class determines the algebraic isomorphism class; the exceptions are A7, A8, and
E8, for which there are two possibilities each. In particular, the possibility for
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Cl(A) ↪→ Cl(Â) is unique, except for these cases (and also the E8 case since the
complete local ring is a UFD).

Whereas the results cited are local algebraic, our method of proof uses global
algebraic geometry. Our idea in each case is to exhibit a base locus Y ⊂ P

n and
a point p ∈ Y constructed so that the general hypersurface X containing Y has
the desired singularity type at p, meaning that B ∼= ÔX,p . Taking A = OX,p , an
honest local ring from the variety X, we can read off the generators of ClA by
the following consequence of our extension of the Noether–Lefschetz theorem to
linear systems with base locus [3].

Theorem 1.5. Let Y ⊂ P
n
C

be a closed subscheme that is properly contained in a
normal hypersurface and suppose p ∈ Y . Then the very general hypersurface X

of degree d 
 0 containing Y is normal, and ClOX,p is generated by supports of
the components of Y having codimension two in P

n. In particular, codim(Y,Pn) >

2 ⇒ ClOX,p = 0.

Remark 1.6. As is the case with many results of Noether–Lefschetz type, the con-
clusion of Theorem 1.5 holds for Zariski general X ∈ |H 0(IY (d))| when n > 3.

After applying Theorem 1.5, we use power series techniques to compute the im-
ages of the local class groups to obtain the results. For example, the proof of The-
orem 1.2 combines Theorem 1.5 with a power series lemma due to Ruiz [18]. The
constructions in Theorem 1.4 are more complicated and rather interesting. For An

singularities, we used a Cohen–Macaulay multiplicity structure on a smooth curve
for Y , but for Dn singularities, we found it necessary to use a line (or a double
line, depending on the parity of n) with an embedded point at p. In the case of
a Dn singularity given locally by x2 + y2z + zn−1 = 0, the completed local ring
has class group Z/4Z when n is odd and Z/2Z ⊕ Z/2Z when n is even. In the
odd case there is only one subgroup of order 2, but in the even case there are three
of them, two of which are indistinguishable up to automorphism of the complete
local ring since their generators correspond to conjugate points in the associated
Dynkin diagram [10]. In this case we prove the stronger statement that each of the
two nonequivalent subgroups arises as the class group of a local ring on a surface.
Finally, in Proposition 4.9 we prove that any divisor class of a rational double
point surface singularity has a representative that is smooth at that point.

Regarding organization, we prove Theorem 1.5 and Theorem 1.2 in Sections 2
and 3, respectively. Section 4 is devoted to Theorem 1.4. We work throughout over
the field k = C of complex numbers except as noted. Whereas the base locus Y

should be projective to apply Theorem 1.5, we often give a local ideal for Y ⊂ A
n

and apply the theorem to Y ⊂ P
n.

2. Geometric Generators of Local Class Groups

In this section we prove Theorem 1.5 from the Introduction, which identifies the
generators of the local class group of a general member of a linear system of
hypersurfaces at a point lying in the base locus. The proof is quite short, being a
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straightforward consequence of our Noether–Lefschetz theorem with base locus
[3], and we present it without further ado.

Proof of Theorem 1.5. The condition that Y is properly contained in a normal hy-
persurface implies that Y has codimension ≥ 2 in P

n and its points of embedding
dimension = n have codimension ≥ 3 in P

n, which is to say that Y is superficial
in the language used in [3] (the converse is also easy to see). Thus, we may apply
[3, Theorems 1.1 and 1.7] to see that X is normal and ClX is (freely) generated
by OX(1) and the supports of the components of Y having codimension two in
P

n. On the other hand, the natural restriction map ClX → ClOX,p is surjective
(because height one primes in OX,p lift to global Weil divisors on X), so ClOX,p

is generated by these same classes. Since OX(1) and the supports of the com-
ponents of Y having codimension two in P

n not passing through p have trivial
restriction in ClOX,p , it follows that ClOX,p is generated by the remaining sup-
ports of components of Y having codimension two in P

n that pass through p. �

One can use Theorem 1.5 together with the natural injection ClOX,p → Cl ÔX,p

to calculate class groups of local rings by carrying out calculations inside power
series rings. We will use this idea to prove our main results; for further applica-
tions, see [5]. The following restates Theorem 1.5 in algebraic terms.

Corollary 2.1. Let I ⊂ R = C[x1, . . . , xn] be an ideal of height ≥ 2. In
the primary decomposition I = ⋂

qi with qi a pi -primary ideal, assume that
qi ⊂ p2

i for each height two prime pi . Then for the very general f ∈ I and

A = C[x1, . . . , xn]/(f ), the image of Cl(A) ↪→ Cl(Â) is generated by the height
two primes associated to I .

3. Completions of Unique Factorization Domains

Given a complete local ring A, what is the nicest ring R having completion A?
Heitmann [9] shows that A is the completion of a UFD if and only if A is a
field, A is a DVR, or A has depth ≥ 2 and no integer is a zero-divisor of A;
however, his constructions need not lead to excellent rings. Loepp [12] shows with
minimal hypothesis that A is the completion of an excellent local ring, though her
construction need not produce a UFD. Using geometric methods, Parameswaran
and Srinivas [16] show that the completion of the local ring at an isolated local
complete intersection singularity is the completion of a UFD that is the local ring
for a variety. We prove the same for normal hypersurface singularities over C that
need not be isolated. We first need a lemma, which can be found in Ruiz’ book on
power series [18, V, Lemma 2.2].

Lemma 3.1. Let m ⊂ C[[x1, . . . , xn]] denote the maximal ideal, fix f ∈ m2, and
define Jf = (fx1, . . . , fxn) to be the ideal generated by the partial derivatives
of f . Then for any g ∈ C[[x1, . . . , xn]] such that f − g ∈m · J 2

f , C[[x1, . . . , xn]]/
(f ) ∼= C[[x1, . . . , xn]]/(g).



Srinivas’ problem for rational double points 159

Remark 3.2. Ruiz actually proves Lemma 3.1 for the ring C{x1, . . . , xn} of con-
vergent power series and notes that the same proof goes through in the formal
case.

We proceed to prove Theorem 1.2.

Proof of Theorem 1.2. Let f ∈ C[x1, x2, . . . , xn] be the equation of a hypersur-
face V that is singular and normal at the origin p, corresponding to the maxi-
mal ideal m = (x1, . . . , xn), and let B = C[[x1, x2, . . . , xn]]/(f ) be the comple-
tion of OV,p . The singular locus D of V is given by the ideal (f ) + Jf , where
Jf = (fx1 , . . . , fxn). Using primary decomposition in the ring C[x1, . . . , xn], we
may write

Jf =
⋂

pi⊂m

qi ∩
⋂

pi ⊂m

qi,

where qi is pi -primary, and we have sorted into components that meet the origin
and those that do not. Denote by K the intersection on the left and J the intersec-
tion on the right; localizing at m, we find that (Jf )m = Km because Jm = (1).

Now if K = (k1, . . . , kr ) gives a polynomial generating set for K , the closed
subscheme Y defined by the ideal IY = (f, k3

1, . . . , k3
r ) is supported on the com-

ponents of the singular locus of V that contain the origin; hence, Y has codimen-
sion ≥ 3 in P

n by normality of V at the origin. The very general hypersurface
X containing Y satisfies ClOX,p = 0 by Theorem 1.5, so OX,p is a UFD [7,
Prop. 6.2]. Moreover, X has the local equation

g = f + a1k
3
1 + · · · + ark

3
r

for units ai , and clearly f − g ∈ K3. Since Km = (Jf )m, their completions are
equal in C[[x1, . . . , xn]]. Therefore, f − g ∈ J 3

f ⊂ mJ 2
f , and it follows from

Lemma 3.1 that ÔX,p = C[[x1, . . . , xn]]/(g) ∼= C[[x1, . . . , xn]]/(f ) = B . �

Example 3.3. For an isolated singularity, we can give the following proof based
on the Mather–Yau theorem [13]. The ideal I = (f,fx1 , . . . , fxn) generated by
f and its partial derivatives define a 0-dimensional scheme Y supported at the
origin; hence, (x1, . . . , xn)

N ⊂ I for some N > 0. The scheme Z defined by
(f, xN+2

1 , . . . , xN+2
n ) is also supported at the origin p, so by Theorem 1.5 the

very general surface S containing Z satisfies ClOS,p = 0. The local equation
of S has the form g = f + ∑

aix
N+2
i for units ai in the local ring OPn,p

∼=
C[x1, . . . , xn](x1,...,xn). Observe that J = (g, gx1 , . . . , gxn) ⊂ I because g − f and
its partials lie in (x1, . . . , xn)

N+1 ⊂ I . These ideals are equal because the induced
map J → I/(x1, . . . , xn)I is obviously surjective, therefore so is the map J → I

by Nakayama’s lemma. It follows that I = J in the ring C{x1, . . . , xn} of germs
of holomorphic functions as well, so f and g define (complex-)analytically iso-
morphic singularities; this isomorphism lifts to a formal-analytic isomorphism.
We have thus produced a UFD, namely OS,p , whose completion is isomorphic
to A.
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4. Local Class Groups of Rational Double Points

As noted in the Introduction, Mohan Kumar showed that for An and En double
points on a rational surface, the analytic isomorphism class determines the al-
gebraic isomorphism class of the local ring, with the three exceptions A7, A8,
E8 for which there are two possibilities each. Regarding the question of Srinivas
mentioned in the Introduction, this means that there is one (or sometimes two)
possibilities for the inclusion ClA ↪→ Cl Â for the corresponding local rings. Our
main goal in this section is to prove Theorem 1.4 from the Introduction, which
says that without the rationality hypothesis, all subgroups arise in this way. Note
that the case of the trivial class group is Theorem 1.2, so we only need prove the
result for nontrivial class groups.

We will prove this for each singularity type An, Dn, En separately, noting their
standard equations as we will use, the class group Cl Â of the completion of a
local ring A having the given type, and the Dynkin diagram of exceptional (−2)-
curves for the minimal resolution (these have been known for a long time; cf. [1;
11]). The class of any curve is determined by its intersection numbers with the
exceptional curves Ej ; denote by ej the class-group element corresponding to a
curve meeting ej once and no other ei .

Now we prove Theorem 1.4. For the trivial subgroup, we can apply Theo-
rem 1.2 or Srinivas’ calculation [20]. The approach in the nontrivial cases is to
find a base locus that forces both the desired singularity type and a curve, guar-
anteed by Theorem 1.5 to generate the class group, whose strict transform has the
desired intersection properties with the exceptional locus.

4.1. An Singularities

The An singularity for n ≥ 1 is analytically isomorphic to that given by the equa-
tion xy−zn+1 at the origin; its class group is Z/(n+1)Z, and the Dynkin diagram
is

◦
E1

◦
E2

. . . ◦
En

Here e1 is one generator, and ej = je1 in the local class group.
The following, which immediately implies Theorem 1.4 for An singularities,

is Proposition 4.1 from [5]; there we used it to calculate the class groups of gen-
eral surfaces containing base loci consisting of certain multiplicity structures on
smooth curves.

Proposition 4.1. Let Z ⊂ P
3
C

be the subscheme with ideal IZ = (x2, xy, xzq −
ym−1, ym) for m ≥ 3. Then the very general surface S containing Z has an
A(m−1)q−1 singularity at p = (0,0,0,1), and Cl(OS,p) ∼= Z/(m − 1)Z is gen-
erated by C.
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4.2. Dn Singularities

The Dn singularity for n ≥ 4 is analytically isomorphic to that given by x2 +
y2z + zn−1 at the origin. The class group of the completion is Z/2Z⊕Z/2Z if n

is even and Z/4Z if n odd, and the Dynkin diagram is

En−1◦

◦
E1

◦
E2

. . . ◦
En−2

◦
En

(1)

Here ej = je1 for j < n − 1 as in the An case. If n is odd, then En−1 and En are
the two distinct generators of Cl Â, and e1 corresponds to the element 2; if n is
even, then e1, en−1, and en are the three distinct nonzero elements.

We will need the following lemmas.

Lemma 4.2 [5, Lemma 2.2]. Let (R,m) be a complete local domain, and let n be
a positive integer that is a unit in R. If a0 ∈ R is a unit and u ≡ an

0 modmk for
some fixed k > 0, then there exists a ∈ R such that an = u and a ≡ a0 modmk .

Lemma 4.3. Let R = k[[y, z]] with maximal ideal m ⊂ R. For integers a, s, t with
s > a > 1, t > a +1, and b ∈ R a unit, there is a change of coordinates Y , Z such
that

f = yaz + zs − byt = YaZ + Zs.

Furthermore X, Y may be chosen so that y ≡ Y modm2 and z ≡ Z modm2.

Proof. We produce coordinate changes yi , zi such that yi+1 ≡ yi modmi+1,
zi+1 ≡ zi modmi , and f = ya

i zi + zs
i − biy

ki

i with ki ≥ i + a + 1 and bi a unit.
By hypothesis, y1 = y and z1 = z give the base step i = 1.

For the induction step, let zi+1 = zi − biy
ki−a ≡ zi mod mi+1, so that

f = ya
i zi+1 + (zs

i+1 + sbiz
s−1
i+1y

ki−a
i + · · · + sbs−1

i zi+1y
(s−1)(ki−a)
i + y

s(ki−a)
i )

= ya
i zi+1 [1 + sbiz

s−2
i+1y

ki−2a
i + · · · + sbs−1

i y
(s−1)(ki−2a)
i ]︸ ︷︷ ︸

vi

+ zs
i+1 + bs

i y
s(ki−a)
i ,

where vi is a unit with lowest-degree term after the leading 1 is of degree s − 2 +
ki − 2a ≥ i. By Lemma 4.2, vi has an ath root wi that is congruent to 1 modmi .
Then yi+1 = wiyi ≡ yi modmi+1, so that f = ya

i+1zi+1 +zs
i+1 −bi+1y

ki+1
i+1 , where

bi+1 = −bs
i w

−s(ki−a)
i is a unit, and ki+1 = s(ki −a) ≥ s(i +1) ≥ (a+1)(i +1) ≥

a + i + 2, completing the induction. �

Remark 4.4. For the convenience of the reader, we recall the well-known mini-
mal resolution for Dn singularities for n even [11, §14 and §17].
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(a) Blowing up a D4 results in a single rational exceptional curve E2 containing
three A1 singularities, which resolve by blowing up to obtain three rational
exceptional curves E1, E3, E4 that cannot be distinguished in the Dynkin
diagram (1) and therefore by [10, Theorem 1.1] are equivalent up to automor-
phism of the completed local ring.

(b) For n ≥ 6, we start with the standard form x2 +y2z+zn−1, blow up following
our usual conventions, and look on the Z = 1 patch, where the local equation
becomes X2 + Y 2z + zn−3. This has a Dn−2 singularity at the origin and no
other when n ≥ 6. On the patch Y = 1 we get X2 + yZ + yn−3Zn−1, which
is an A1 singularity by Lemma 3.1 applied to the quadric cone X2 + yZ, and
there are no further singularities. Resolving the A1 and the Dn−2 and contin-
uing by induction lead to the Dynkin diagram (1). Note that for n ≥ 5, the
exceptional curve in this blow-up becomes E1 according to our conventions
in the full resolution.

Proposition 4.5. Theorem 1.4 holds for Dn singularities.

Proof. The class group of a complete Dn singularity is either Z/4Z or Z/2Z ⊕
Z/2Z; we first produce the subgroups of order two as class groups of local rings
of surfaces. The scheme Z defined by IZ = (x2, y2z, zn−1, xyn) consists of the
line L: x = z = 0 and an embedded point at the origin p; hence, the local ring at
p of the very general surface S containing Z has class group Cl(OS,p) generated
by L by Theorem 1.5; L = 0 in this group because L is not Cartier at p since L is
smooth at p whereas S is not. The local equation of S has the form ax2 + by2z +
zn−1 + cxyn with units a, b, c ∈ OP3,p . After we use Lemma 4.2 to take square
roots of a, b in ÔP3,p , the equation becomes

x2 + y2z + zn−1 + cxyn =
(

x + c

2
yn︸ ︷︷ ︸

x1

)2

+ y2z + zn−1 − c2

4
y2n,

and applying the coordinate change of Lemma 4.3 exhibits the Dn singularity.
To determine the class of L, we blow up S at p. The local equation of S̃ on

the patch Y = 1 is aX2 + byZ + yn−3Zn−1 + cXyn−1, and the strict transform L̃

has ideal (X,Z); hence, L̃ meets the exceptional curve at the new origin of this
patch, which is the A1 singularity whose blow-up will produce the exceptional
divisor E1. Resolving this A1 shows that L̃ meets E1 but not E2, so L gives the
class u1 defined previously. In particular, 2L = 0 and Cl(OS,p) ∼= Z/2Z (see also
[7, II, Ex. 6.5.2]).

When n is odd, 〈u1〉 is the only subgroup of order 2 in Cl(OS,p), and we are
finished. For n = 4, the exceptional curves E1, E3, E4 are indistinguishable (see
Remark 4.4), so there is essentially only one subgroup of order 2 to consider.
When n is even and n ≥ 6, there are three such subgroups 〈u1〉, 〈un−1〉, and 〈un〉,
the last two being distinguishable from the first, but not from one another, since
they correspond to the two exceptional curves in the final blow-up. Since the
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Table 1 Fundamental cycle for rational double points

Type ξ0

An E1 + E2 + · · · + En

Dn E1 + 2E2 + 2E3 + · · · + 2En−2 + En−1 + En

E6 E1 + 2E2 + 3E3 + 2E4 + 2E5 + E6
E7 E1 + 2E2 + 3E3 + 4E4 + 2E5 + 3E6 + 2E7
E8 2E1 + 3E2 + 4E3 + 5E4 + 6E5 + 3E6 + 4E7 + 2E8

previous paragraph achieves the subgroup generated by u1, we therefore construct
a Dn singularity on S at p, n even, such that ClOS,p is generated by un−1 or un.

Write n = 2r and define Z by the ideal IZ = (x2, y2z − z2r−1, y5 − z5r−5).
The last two generators show that y = 0 ⇐⇒ z = 0 along Z, when IZ is locally
equal to (x2, y −zr−1); thus, Z consists of a double structure on the smooth curve
C with ideal (x, y − zr−1) and an embedded point at the origin p. Therefore, if S

is a very general surface containing Z, then as before C generates Cl(OS,p) and is
nonzero. The local equation for S has the form ax2 +y2z− z2r−1 +by5 −bz5r−5

for units a, b ∈ OP3,p . Passing to the completion and adjusting the variables by
appropriate roots of units, the equation of S becomes x2 + y2z + z2r−1 + y5.
Changing variables via Lemma 4.3, the equation becomes x2 + Y 2Z + Z2r−1,
and we see the D2r -singularity.

To determine the class of C in Cl(OS,p), we return to the original form of the
equation for S and blow up p. Following our usual conventions, look on the patch
Z = 1, where the blow-up S̃ has the equation aX2 + Y 2z − z2r−3 + bY 5z3 −
bz5r−7. Note that the strict transform C̃ of C has the ideal (X,Y − zr−2) and
so meets the exceptional curve X = z = 0 transversely. Rather than go through
coordinate changes to identify the singularity of this new surface at the origin, we
use Remark 4.4: There are two singular points in the blow-up, namely a Dn−2 and
an A1, and since at the origin the leading term is a square, this must be the D2r−2.
In the minimal resolution of singularities the strict transform C̃ ⊂ S̃ maps to the
smooth curve C, which therefore has multiplicity one at p ∈ S, but by Remark 4.7
this multiplicity is given by ξ0.C̃, where ξ0 is the fundamental cycle for the Dn

singularity (see Section 4.4 for generalities): glancing at the coefficients of the
exceptional divisors Ei in ξ0 in Table 1, we see that C̃ must meet either E1,
En−1, or En with multiplicity one. By the transversality noted before, however, it
does not meet E1 in the next blowup. We conclude that it meets En−1 or En, and
so we have produced the desired subgroup.

Finally, we need an example for which Cl(OS,p) = Cl(ÔS,p). To this end,
consider the surface S defined by x2 + y2z − zn−1, which has a Dn singularity at
the origin (change coordinates z �→ z′ = exp( πi

n−1 )z, y �→ y′ = exp(− πi
2(n−1)

y)).
As before, the curve with ideal (x, z) corresponds to u1, so it suffices in all cases
to find a curve on this surface that gives the element un (or un−1).
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For even values of n, the curve (x, y − z(n−2)/2) gives the other generator by
an argument analogous to, but much easier than, the one for n even in the previous
case considered.

For odd values of n, write n = 2r + 1, use the form x2 + y2z − z2r , and let
C be the curve having the ideal (x − zr , y). Looking on the patch Z = 1 of the
blow-up gives the surface X2 + Y 2z − 2z2r−2 and the curve (X − zr−1, Y ), so by
induction it suffices to prove that, for n = 5, that is, r = 2, the curve C having
the ideal (x − z2, y) gives one of the classes u4, u5 in Cl(OS,p), where S has the
equation x2 + y2z − 2z4, and p is the origin. On the patch Z = 1 of the blow-
up S̃, the equation is X2 + Y 2z − Z2, which has the A3 at the origin, and C̃

has the ideal (X − z,Y ). A further blow-up, again on the patch Z = 1, gives the
equation X2 + Y 2z − 1 for S̃ and the ideal (X − 1, Y ) for C̃. The curve C meets
the exceptional locus only at the smooth point with coordinates (1,0,0) relative
to this patch, so in the full resolution of singularities, C̃ meets one of the two
exceptional curves arising from the blow-up of the A3, which correspond to E4
and E5 in the Dynkin diagram. �

4.3. E6, E7, E8 Singularities

The standard equations for the analytic isomorphism types and class groups for
these singularities are as follows:

Type Equation Cl Â

E6 x2 + y3 + z4
Z/3Z

E7 x2 + y3 + yz3
Z/2Z

E8 x2 + y3 + z5 0

and the En Dynkin diagram looks like

En−2◦

◦
E1

◦
E2

. . . ◦
En−3

◦
En−1

◦
En

For our purposes, as it happens, the way that the exceptional curves correspond
to class group elements is not important.

Proposition 4.6. Theorem 1.4 holds for E6, E7, and E8 singularities.

Proof. The statement holds automatically for E8 singularities because the class
group is trivial. For the E6 singularity, consider the affine quartic surface S given
by x2 + y3 + x4 = 0 for which the E6 singularity at the origin p is clear. The
smooth curve C with ideal (x − iz2, y) lies on S and passes through p. If C
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restricts to 0 in ClOS,p , then C is Cartier on S at p, impossible because C is
smooth at p whereas S is not: thus, C defines a nonzero element in ClOS,p ,
which must generate all of Cl ÔS,p

∼= Z/3Z, the only nontrivial subgroup. For the
E7 singularity, we use the affine quartic S given by x2 +y3 +yz3 = 0 at the origin
p when Cl ÔS,p

∼= Z/2Z is generated by the smooth z-axis C. �

4.4. The Fundamental Cycle and Smooth Representatives for Local Class
Groups

In this section we use the fundamental cycle to prove that at any rational double
point, each element of the class group of the local ring can be lifted to a locally
smooth curve.

If p ∈ S is a rational double point with minimal desingularization X → S,
then the fundamental cycle ξ0 is the unique minimal effective nonzero excep-
tionally supported divisor on X having nonpositive intersection with each excep-
tional curve [1, pp. 131–132]. With the conventions used in describing the mini-
mal desingularizations, the fundamental cycles for each singularity type are given
in Table 1.

Remark 4.7. The fundamental cycle has the property that for a nonexceptional
smooth curve D on X, D.ξ0 is equal to the multiplicity of π(D) on S [2,
Prop. 5.3]. For a given rational singularity, the exceptional divisors Ei with coef-
ficient 1 in the fundamental cycle ξ0 are said to be permissible [10].

This lemma generalizes and makes a small correction to [2, Prop. 5.5].

Lemma 4.8. Let X → S be a minimal desingularization of a rational double point
p ∈ S with exceptional divisors E1, . . . ,En and fix a divisor F on X such that
F.Ei ≥ 0 for all i. Then there exists an effectively supported divisor G on X such
that (F +G).Ei = 0 for all but at most one i; if such i exists, then (F +G).Ei = 1,
and Ei is permissible.

Proof. Letting si = F.Ei , we are done if
∑

si ≤ 1. Assuming that
∑

si > 1, we
show how to add sums of the Ei to achieve the statement in each case.

For an An singularity, let j (resp. k) be the least (resp. greatest) index i with
si > 0. If j < k, then adding Ej + Ej+1 + · · · + Ek to F decreases sj , sk by 1,
increases sj−1, sk+1 by 1 (if these exist), and has no effect on the remaining si .
Repeat until j = 1 or k = n at which the point

∑
si decreases. If 1 < j = k < n

and sj ≥ 2, then adding Ej reduces to the previous case. Eventually
∑

si = 1,
and we are done, and the final statement is clear because the coefficient of each
Ei in ξ0 is 1.

For a Dn singularity, note that adding En−1 (resp. En) decreases sn−1 (resp.
sn) by 2 and increases En−2 by 1, so we may assume 0 ≤ sn−1, sn ≤ 1. We may
assume si = 0 for 1 < i < n− 1. If this is not so, let k be the largest i in this range
with sk > 0. Adding sk(Ek + 2Ek+1 + · · · + 2En−2 + En−1 + En) increases sk−1

by sk , decreases sk to 0, and leaves the remaining si fixed; thus, k decreases, and
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we may continue until k = 1. Adding 2E1 + · · · + 2En−2 + En−1 + En decreases
s1 by 2 and fixes the remaining si , so we may assume that 0 ≤ s1, sn−1, sn ≤ 1 (the
rest are zero). We are done if at most one of these is nonzero; otherwise, adding
s1E1 + s2E2 + E3 + · · · + En−2 + sn−1En−1 + snEn switches s1, sn−1, sn from
0 to 1 or 1 to 0 and fixes the rest, finishing the proof.

For an E6, note that adding ξ0 reduces s4 while fixing the rest, so we may
assume that s4 = 0 as needed. Now applying the A5 strategy to the remaining
chain reduces to the case that at most one of {si}i =4 is 1 while the rest of these
are zero; if s1 = 1 or s6 = 1, we are done; if s2 = 1, adding E1 + 2E2 + 2E3 +
E4 + E5 sets s2 = 0 and s6 = 1 (the case s5 = 1 is similar); if s3 = 1, adding
E1 + 2E2 + 3E3 + E4 + 2E5 + E6 decreases s3 by 1 and increases s4 by 1.

For an E7 singularity, applying the D6 strategy to E1, . . . ,E6 reduces to the
case s2 = s3 = s4 = 0 and at most one of s1, s5, s6 is 1; s7 will likely be increased
in the process, but adding ξ0 decreases s7 by one while fixing the rest, so we
may assume that s7 = 0. If s1 = 1, we are done; if s5 = 1, adding E2 + 2E3 +
3E4 + 2E5 + 2E6 + E7 sets s5 to 0 while increasing s1 to 1; if s6 = 1, adding
2E1 + 4E2 + 6E3 + 8E4 + 4E5 + 6E3 + 3E7 sets s6 = 0 while fixing the rest.

Finally, for an E8, the exceptional curves E2, . . . ,E8 form an E7 singularity;
as before, we can add exceptional curves to reach a point where s2 = 0 or 1, s3 =
s4 = · · · = s8 = 0, and s1 is still positive. Adding ξ0 has the effect of decreasing
s1 by 1 and fixing the other sj , so repeated addition of ξ0 brings us to the situation
where all the sj are 0, in which case we are finished, or s2 = 1 and all other sj
are 0. In this latter case add 3E1 +6E2 +8E3 +10E4 +12E5 +6E6 +8E7 +4E8,
which has the effect of decreasing s1 to 0 and leaving all the other sj constant. �

Proposition 4.9. Let p be a rational double point on a projective surface S,
and let x ∈ Cl(OS,p). Then there is an effective divisor D ∈ ClS smooth at p

restricting to x.

Proof. The class x lifts to a global Weil divisor C ∈ ClS because any height one
prime in the local ring lifts to a height one prime in the ring corresponding to
an open affine. We may assume that C is effective after adding a high multiple
of OS(1) since OS(1) has trivial restriction to Cl(OS,p). Let π : X → S be the
minimal resolution of singularities with irreducible exceptional curves Ei , and
let C̃ be the strict transform of C on X. By Lemma 4.8 there exists an effective
exceptionally supported divisor G on X such that (C̃ + G).Ei = 0 for all but at
most one of the Ei , and if such an Ei exists, then (C̃ + G).Ei = 1, and Ei is
admissible.

Setting A = C̃+G, we claim that no exceptional curve Ei is a fixed component
of the linear system |H 0(OX(A))|. Indeed, the composite map OX → OX(A)|Ei

in the upper right corner of the diagram

0 → OX(−Ei) → OX → OEi
→ 0

↓ ↓ ↓
0 → OX(A − Ei) → OX(A) → OX(A)|Ei

→ 0



Srinivas’ problem for rational double points 167

is nonzero on global sections, the first map being surjective and the second injec-
tive. Therefore, the map H 0(OX(A)) → H 0(OX(A)|Ei

) is also nonzero, which
implies that H 0(OX(A − Ei)) → H 0(OX(A)) is not surjective, verifying the
claim.

Now consider the general member D̃ ∈ |H 0(OX(A))|. If A.Ei = 0, then D̃

misses Ei because Ei is not a fixed component. Therefore, if A.Ei = 0 for all i,
then D = π(D̃) misses p, and we are done. Otherwise, there is at most one Ei

for which A.Ei = 1 and |H 0(OX(A))| may have one fixed point P0 ∈ Ei . By
Bertini’s theorem the only singular point for the general member of the linear
system on the exceptional locus can be P0, but even in this case D̃ is smooth
at P0 because D̃.Ei = 1. Therefore, D̃ is smooth along E = ⋃

Ei and meets ξ0

with multiplicity one, so multp(π(D̃)) = D̃.ξ0 = 1 [2, Prop. 5.4], and D = π(D̃)

is smooth at p. Moreover, D has the same class x ∈ Cl(OS,p) as C because D̃

and C̃ differ by a sum of exceptional divisors. �
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