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On the Geometry of Abel Maps for Nodal Curves

Alex Abreu, Juliana Coelho, & Marco Pacini

Abstract. In this paper, we give local conditions to the existence of
Abel maps for smoothings of nodal curves extending the Abel maps
for the generic fiber. We use this result to construct Abel maps of any
degree for nodal curves with two components.

1. Introduction

1.1. History

Let C be a smooth projective curve over an algebraically closed field and fix a
point P in C. A degree-d Abel map is a map αd

L : Cd → JC from the product
of d copies of C to its Jacobian JC , sending (Q1, . . . ,Qd) to the invertible sheaf
L(dP − Q1 − · · · − Qd), where L is an invertible sheaf on C. It is classically
known that this map encodes many geometric properties of the curve C. For in-
stance, the Abel theorem states that the fibers of αd

L are complete linear series on
C, up to the action of the d th symmetric group. Thus, all possible embeddings of
C in projective spaces are known once we know its Abel maps.

Often, to study linear series on smooth curves, we resort to degenerations to
singular curves. Then, it is important to understand how linear series behave un-
der such degenerations. It was through the study of these degenerations that Grif-
fiths and Harris proved the celebrated Brill–Noether theorem in [14], and later
Gieseker proved Petri’s conjecture in [13]. This inspired the seminal work of
Eisenbud and Harris [9], where they introduced the theory of limit linear series for
curves of compact type. Nevertheless, a satisfactory general theory of limit linear
series has not yet been obtained, although there are several works in this direction
for curves with two components, for instance, Coppens and Gatto [8] and Esteves
and Medeiros [11]. More recently, Osserman [15] gave a more refined notion of
limit linear series for a curve of compact type with two components.

Since there is a relationship between linear series and Abel maps for smooth
curves, an interplay between limit linear series and Abel maps for singular curves
is expected. This interplay was explored by Esteves and Osserman [12] for curves
of compact type with two components, for which natural Abel maps exist. How-
ever, Abel maps for singular curves have been constructed only in a few cases:
for irreducible curves in [1], in degree one in [3] and [4], in degree two in [5], [6],
[16], and [17], and for curves of compact type and in any degree, in [7].
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There are two main compactifications of the Jacobian employed as targets of
these Abel maps, namely Caporaso–Pandharipande’s compactified Jacobian con-
structed in [2] and [18] and Esteves’ compactified Jacobian constructed in [10]
based on the previous work of Altman and Kleiman [1]. The principal goal of this
paper is to construct Abel maps of any degree for curves with two components
with Esteves’ compactified Jacobian as target.

In a different paper, we plan to describe the fibers of this map and unreveal
their relationship with degenerations of linear series on smooth curves in the
spirit of paper [12] and possibly compare the results with the work of Esteves
and Medeiros [11].

1.2. Main Results

Let us explain in details our main results. Let C be a nodal curve over an al-
gebraically closed field K . Let π : C → B be a family of curves over B :=
Spec(K[[t]]) with smooth total space C and C as a special fiber. Let σ : B → C
be a section of π through its smooth locus, and L be an invertible sheaf on C of
relative degree e. Since the generic fiber of π is a pointed smooth curve, there ex-
ists a rational Abel map αd

L : Cd ��� Je from the product of d copies of C over B

to the compactified Jacobian of π . Here, Je is the fine moduli scheme, introduced
by Esteves in [10], parameterizing rank-1 torsion-free sheaves of degree e that are
σ -quasi-stable with respect to a polarization e of degree e (see Section 2 for more
details).

We will resolve the map αd
L in the case where C has two smooth components

C1 and C2. To do that, we construct a desingularization C̃d of Cd recursively on d .
More precisely, we will perform a sequence of blowups along Weil divisors as
follows. Set C̃1 := C1. Assume that C̃d is constructed and let C̃d+1 → C̃d ×B C be
the sequence of blowups along the strict transforms of the following Weil divisors
in the stated order:

�d,d+1,�d−1,d+1, . . . ,�1,d+1,

and then

Cd+1
1 ,Cd

1 × C2,C
d−1
1 × C2 × C1,C

d−1
1 × C2

2 ,

. . . ,Cd−1
2 × C1 × C2,C

d
2 × C1,C

d+1
2 ,

where �i,d+1 is the “ith diagonal,” that is, the image of the section C̃d → C̃d ×B C
induced by the composition δi : C̃d → Cd → C of the desingularization map with
the projection onto the ith factor.

Theorem. There exists a modular map αd
L : C̃d → Je extending the map αd

L.

We note that the order in which these Weil divisors are blown up is important
to the resolution of the map. Indeed, it is not difficult to find examples in which
a different sequence of blowups does not give rise to a resolution. Moreover, the
desingularization C̃d is independent of the polarization e and the sheaf L. We refer
to [6, Section 7] for examples of resolutions for more general curves in degree 2.
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In order to prove the result, we consider a local formulation of our problem.
Indeed, we note that the completion of the local ring of C̃d at a point is given
by K[[u1, . . . , ud+1]], and, in the relevant cases, the map C̃d → B is given by
t = u1 · . . . · ud+1. For this reason, we consider S := Spec(K[[u1, . . . , ud+1]])
and the map S → B given by t = u1 · . . . · ud+1. Let CS := C ×B S and δ1, . . . , δm

be sections of πS : CS → S. Since the generic fiber Cη over the generic point η of
B is smooth, we have a rational map αL : S ��� Je sending ηS , the generic point
of S, to the invertible sheaf

L|Cη
(mσ(η) − δ1(ηS) − · · · − δm(ηS)),

where the sections δi are identified with their composition with the projection
CS → C.

In Theorem 4.2, we give numerical conditions to the existence of a map
αL : S → Je extending αL. In fact, this result holds for curves with any num-
ber of components.

To check that these conditions hold for a desingularization of Cd , we need
to understand its local geometry, that is, to understand how Cd behaves under
the sequence of blowups performed. To do that, in Section 3, we give a local
description of blowups along certain Weil divisors. Since this approach is local, it
can be applied to curves with any number of components.

Altough we only obtained a sequence of blowups for curves with two compo-
nents, our techniques might be applied more generally to determine algorithmi-
cally whether or not a given sequence of blowups resolves the map αd

L for any
nodal curve. This approach is similar to that in [6], where a script to determine
the existence of the degree-2 Abel map was produced.

1.3. Notation and Terminology

Throughout the paper, we will use the following notation.
We work over an algebraically closed field K . A curve is a connected, projec-

tive, and reduced scheme of dimension 1 over K . We will always consider curves
with nodal singularities. A pointed curve is a curve C with a marked point P in
the smooth locus of C, usually denoted by (C,P ).

Let C be a curve. We denote the irreducible components of C by C1, . . . ,Cp

and by Csing the set of its nodes. A subcurve of C is a union of irreducible com-
ponents of C. If Y is a proper subcurve of C, we let Y c := C \ Y and call it the
complement of Y . We denote �Y := Y ∩ Y c and kY := #�Y ; a node in �Y is
called an extremal node of Y . We always consider curves with smooth irreducible
components.

Given a map of curves φ : C′ → C, we say that an irreducible component
of C′ is φ-exceptional if it is a smooth rational curve and is contracted by the
map. A chain of rational curves of length d is a curve that is the union of
smooth rational curves E1, . . . ,Ed such that Ei ∩ Ej is empty if |i − j | > 1
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and #(Ei ∩ Ei+1) = 1. A chain of φ-exceptional components is a chain of φ-
exceptional curves. We define the curve C(d) as the curve

C(d) := Cν ∪
∐
N

EN,

where Cν is the normalization of C, N runs through all the nodes of C, and EN

is a chain of rational curves of length d such that each EN intersects transversally
Cν at the two branches over the node N and each irreducible component EN,i of
EN intersects C(d)\EN,i in exactly two points. Note that C(d) is endowed with a
map φ : C(d) → C such that φ is an isomorphism over the smooth locus of C and
the preimage of each node of C consists of a chain of φ-exceptional components
of length d . If (C,P ) is a pointed curve, we abuse notation denoting by P its
preimage in C(d), so that (C(d),P ) is also a pointed curve.

A family of curves is a proper and flat morphism π : C → B whose fibers are
curves. If b ∈ B , then we denote Cb := π−1(b) its fiber. The family π : C → B

is called local if B = Spec(K[[t]]), regular if C is regular, and pointed if it is
endowed with a section σ : B → C through the smooth locus of π . A smoothing
of a curve C is a regular local family π : C → B with special fiber C. Given a
pointed smoothing π : C → B of a curve C with section σ : B → C, we define
P := σ(0). If f : C → B is a family of curves, we denote by Cd the product of d

copies of C over B .
Let I be a coherent sheaf on a curve C. We say that I is torsion-free if its as-

sociated points are generic points of C. We say that I is of rank 1 if I is invertible
on a dense open subset of C. Each invertible sheaf on C is a rank-1 torsion-
free sheaf. If I is a rank-1 torsion-free sheaf, we call deg(I ) := χ(I) − χ(OC)

the degree of I . An invertible sheaf I over φ : C(d) → C is φ-admissible if
deg(I |E) ∈ {−1,0,1} for every chain of φ-exceptional components E.

We fix B := Spec(K[[t]]), S := Spec(K[[u1, . . . , ud+1]]), and the map S → B

given by t = u1 · u2 · . . . · ud+1. We will call the closed point of both B and S by
0 when no confusion may arise. Moreover, we denote by Qi the generic point of
V (ui) in S. Given a smoothing π : C → B of a curve C, define CS := C ×B S and
let πS : CS → S be the induced map.

2. Jacobians and Abel Maps

Let π : C → B be a pointed regular local family of nodal curves with section
σ : B → C. The degree-e Jacobian of π is the scheme parameterizing the equiv-
alence classes of degree-e invertible sheaves on the fibers. In general, this scheme
is neither proper nor of finite type. To solve these issues, we resort to rank-1
torsion-free sheaves and to stability conditions.

Let C be a nodal curve with p irreducible components C1, . . . ,Cp , and P be
a smooth point of C. A polarization of degree e on C is any p-tuple of rational
numbers e = (e1, . . . , ep) summing up to e. Let Y be a proper subcurve of C. We
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set

eY :=
∑
Ci⊂Y

ei .

Let I be a rank-1 degree-e torsion-free sheaf on C. We define the sheaf IY as the
sheaf I |Y modulo torsion. We say that I is P -quasi-stable over Y (with respect to
e) if the following condition holds:

−kY

2
< deg(IY ) − eY ≤ kY

2
if P ∈ Y,

−kY

2
≤ deg(IY ) − eY <

kY

2
if P /∈ Y.

Equivalently, I is P -quasi-stable over Y if the following conditions hold:

−kY

2
< deg(IY ) − eY and

−kY

2
≤ deg(IY c ) − eY c if P ∈ Y,

−kY

2
≤ deg(IY ) − eY and

−kY

2
< deg(IY c ) − eY c if P /∈ Y.

Note that I is P -quasi-stable over Y if and only if it is over Y c .
We say that I is P -quasi-stable over C if it is P -quasi-stable over every proper

subcurve of C. Since the conditions are additive on connected components, it is
enough to check them over connected subcurves. In fact, it is easy to see that it
suffices to check on connected subcurves with connected complement.

Given the map of curves φ : C(d) → C and a polarization e over C, we define
the polarization e(d) over C(d) simply by e(d)Y = eφ(Y ) if φ(Y ) is not a point
and e(d)Y = 0 otherwise, where Y is a irreducible component of C(d). From now
on fix a polarization e of degree e on C and its induced polarizations e(d).

Let π : C → B be a pointed regular local family of nodal curves with section
σ : B → C. We say that a sheaf I over C is σ -quasi-stable if it restricts to a
torsion-free rank-1 sheaf over each fiber of π and if its restriction to the special
fiber C of π is σ(0)-quasi-stable. The degree-e compactified Jacobian of π is
the scheme Je parameterizing σ -quasi-stable sheaves over C of degree e. This
scheme is proper and of finite type (see [10, Thms. A and B]), and it represents
the contravariant functor J from the category of locally Noetherian B-schemes to
sets, defined on a B-scheme S by

J(S) := {σS-quasi-stable sheaves of degree e over C ×B S
πS−→ S}/ ∼,

where σS is the pullback of the section σ , and ∼ is the equivalence relation given
by I1 ∼ I2 if and only if there exists an invertible sheaf M on S such that I1 ∼=
I2 ⊗ π∗

SM .

Proposition 2.1. Let (C,P ) be a pointed nodal curve and consider
φ : C(d) → C. Let L be a line bundle over C(d) that is φ-admissible and
P -quasi-stable over each proper subcurve Y of C(d) such that Y and Y c are
connected and neither is contracted by φ. Then the sheaf φ∗(L) is P -quasi-stable.
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Proof. Fix C → B a smoothing of (C(d),P ) and let L be a line bundle on C such
that L|C(d) = L. By [6, Propositions 5.2 and 5.3] it suffices to show that exists a
twister OC(Z), with Z is a divisor supported on the exceptional components of
φ, such that (L⊗OC(Z))|C(d) is P -quasi-stable.

The divisor Z is effective and can be algorithmically computed as follows.
Recall that L is admissible if and only if its degree on each chain of φ-
exceptional components is −1, 0, or 1. We define invertible sheaves Li induc-
tively. Set L0 := L. For a maximal chain of φ-exceptional components E over
some node of C, let WE,i be the (possibly empty) maximal subchain of E such
that deg(Li−1|WE,i

) = 1. Define

Zi :=
⋃
E

WE,i

and Li := Li−1(Zi).
We claim that Li is admissible and that Zi+1 is empty or strictly con-

tained in Zi . Indeed, fix a maximal chain E = E1 ∪ · · · ∪ Ed and assume that
WE,i = E� ∪ · · · ∪ Eh is nonempty; otherwise, the result is clear. We have that
deg(Li−1|WE,i

) = 1, and the maximality of WE,i implies that either � = 1 or

deg(Li−1|E�−1) = −1 and deg(Li−1|Ek
) = 0 for every 1 ≤ k ≤ � − 2;

also, either h = d or

deg(Li−1|Eh+1) = −1 and deg(Li−1|Ek
) = 0 for every h + 2 ≤ k ≤ d.

This implies that either � = 1 or

deg(Li |Ek
) = 0 for every 1 ≤ k ≤ � − 1;

also, either h = d or

deg(Li |Ek
) = 0 for every h + 1 ≤ k ≤ d.

Therefore, we see that Li is admissible.
Moreover, we have

deg(Li |WE,i
) = −1,

meaning that there exist �′ and h′ such that

deg(Li |E�′ ) = −1 and deg(Li |Ek
) = 0 for every � ≤ k ≤ �′ − 1

and

deg(Li |Eh′ ) = −1 and deg(Li |Ek
) = 0 for every h′ + 1 ≤ k ≤ h.

Clearly, WE,i+1 is a subchain of E�′+1 ∪ · · · ∪ Eh′−1 (which may be empty if
�′ = h′), and then WE,i+1 is strictly contained in WE,i . This concludes the proof
of the claim.

Define

Z :=
∑
i≥1

Zi.
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Now it is enough to prove that N := L ⊗ OC(Z) restricted to C(d) is P -quasi-
stable. Let Y be a proper connected subcurve of C(d) with connected com-
plement. If Y is contracted by the map φ, then Y is a chain of exceptional
components; hence, since N is admissible and there is no chain of exceptional
components over which N has degree 1, it follows that deg(N |Y ) ∈ {−1,0}. This
proves that N is P -quasi-stable over Y and Y c .

Now assume that neither Y nor Y c is contracted by φ. For every N ∈ �φ(Y),
we define

Y ◦ := Y \
⋃

N∈�φ(Y)

φ−1(N), N◦ := φ−1(N) ∩ Y ◦,

EN := (φ−1(N) \ {N◦}) ∩ Y , and EY :=
⋃

N∈�φ(Y)

EN .

Note that Y ◦ = Y \ EY and, hence,

deg(N |Y ) = deg(N |Y ◦) + deg(N |EY
).

Moreover, we have

deg(N |Y ◦) = deg(L|Y ◦) +
∑

N∈�φ(Y)

εN ,

where εN is 1 if N◦ ∈ Z and 0 otherwise. Note that if εN = 0, then either there
exists a chain of exceptional components E′

N such that deg(L|E′
N
) = −1 and

E′
N ∩ Y ◦ �= ∅, or the degree of L over every chain of exceptions components

contained in φ−1(N) is zero, and in this case, define E′
N = ∅. Define

Y ′ := Y ◦ ∪
⋃

N∈�φ(Y)

εN=0

E′
N.

Then

deg(N |Y ) = deg(L|Y ◦) +
∑

N∈�φ(Y)

εN + deg(N |EY
)

= deg(L|Y ◦) +
∑
εN=0

deg(N |EN
) +

∑
εN=1

(εN + deg(N |EN
))

≥ deg(L|Y ′),

implying that
deg(N |Y ) − e(d)Y ≥ deg(L|Y ′) − e(d)Y ′ .

We can repeat the same process for Y c , obtaining a subcurve Y c ′ satisfying

deg(N |Y c ) − e(d)Y c ≥ deg(L|Y c ′) − e(d)Y c ′ .

Since both Y ′ and Y c ′ are connected with connected complement and are not
contracted by φ, it follows that L is P -quasi-stable over Y ′ and Y c ′, and therefore
N is P -quasi-stable over Y . The proof is complete. �
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Let π : C → B be a pointed regular local family of nodal curves with sec-
tion σ : B → C. Let C be the special fiber of π with irreducible components
C1, . . . ,Cp . We define Ċ as the smooth locus of π and Ċj := Cj ∩ Ċ. Set
Ċd := Ċ ×B Ċ ×B · · · ×B Ċ, the product of d copies of Ċ over B . Note that the
special fiber of Ċd → B is ∐

1≤j1,...,jd≤p

Ċj1 × · · · × Ċjd
.

For each d-tuple j = (j1, . . . , jd), define Ċj := Ċj1 ×· · ·×Ċjd
. Let L be a degree-

e invertible sheaf over C. There exists a degree-d Abel map from Ċd to the degree-
e Jacobian of π simply sending the d-tuple (Q1, . . . ,Qd) over b to the invertible
sheaf

L|Cb
(d · σ(b) − Q1 − · · · − Qd). (1)

We want to extend this Abel map to Cd , and it is convenient to consider the degree-
e compactified Jacobian Je as target. However, the sheaf (1) may not be σ(b)-
quasi-stable, and thus we do not even have a map from Ċd to Je defined as before.
To solve this, we use twisters and the fact that Je represents the functor J.

Indeed, form the fiber diagram

Ċd ×B C f−−−−→ C

πd

⏐⏐� ⏐⏐�π

Ċd −−−−→ B

By [10, Thm. 32, (4)], for each j , there exists a divisor

Zj =
p∑

j=1

�j,i · Ċj × Ci (2)

of Ċd ×B C such that the invertible sheaf M defined as

M := f ∗L⊗OĊd×BC

(
d · f ∗σ(B) −

d∑
i=1

�i,d+1

)
⊗OĊd×BC

(
−

∑
j

Zj

)

is f ∗σ -quasi-stable, where �i,d+1 is the preimage of the diagonal via the projec-
tion map Ċd ×B C → C ×B C onto the ith and (d + 1)th factors. This f ∗σ -quasi-
stable sheaf M induces the Abel map

αd
L : Ċd −→ Je.

In this paper, we give conditions to determine when this map extends to a suitable
desingularization of Cd .
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3. Desingularizations

Given a smoothing π : C → B of a curve C and N a node of C, we can write the
completion of the local ring of C at N as

ÔC,N � K[[x, y]].
The map π : C → B is, locally around N , given by xy = t . In this section, we
study the geometry of this local map and its formation with base change. In Fig-
ure 1, we collect all the relevant results in an explicit example.

Recall that we defined S = Spec(K[[u1, . . . , ud+1]]) and a map S → B given
by t = u1 · . . . · ud+1. Define T := Spec(K[[x, y]]) and the map T → B given by
t = xy. Let TS := T ×B S. Clearly, we have

TS = Spec

(
K[[u1, . . . , ud+1, x, y]]

(xy − u1 · · ·ud+1)

)
.

Given a subset A of {1, . . . , d + 1}, we define

uA :=
∏
j∈A

uj .

To desingularize TS , we will blowup Weil divisors of type DA := V (x,uA),
where A is a proper nonempty subset of {1, . . . , d + 1}. More precisely, given a
collection of proper nonempty subsets A := (A1, . . . ,Ak) of {1, . . . , d + 1}, we
will perform a sequence of blowups

φ : T̃ A
S := T̃ k

S

φk−→ T̃ k−1
S

φk−1−→ · · · φ2−→ T̃ 1
S

φ1−→ T̃ 0
S := TS, (3)

where the map φi is the blowup of the strict transform D̃Ai
of DAi

via the com-
position map φ1 ◦ · · · ◦ φi−1.

Remark 3.1. Note that the local equations of the blowup of TS along DA are
given by αx − α′uA = 0 and α′y − αuAc = 0, where (α : α′) are the coordinates
of P1. It is easy to see that if we blow up V (y,uAc), then we will obtain the same
equations. Therefore, blowing up V (y,uAc) is equivalent to blowing up DA.

The same property holds for the blowup along V (x − uAc , y − uA). Indeed,
the local equation of such a blowup is

α(x − uAc) − α′(y − uA) = 0. (4)

Nevertheless, we know that the relation xy = uAuAc holds, and this relation is
equivalent to x(y − uA) = uA(uAc − x). Hence, we can simplify equation (4) to
the equations

αx + α′uA = 0 and α′y + αuAc = 0,

which, up to sign, are the same equations for the blowup along DA. This justifies
why in the sequel we only consider blowups along divisors of type DA.

Let A = (A1, . . . ,Ak) be a collection of subsets of {1, . . . , d + 1}, and A be a
subset of {1, . . . , d + 1}. Assume that T̃ A

S is obtained by a sequence of blowups
of TS as in (3). Also, let SA be the complement of V (uA) in S. We have SA =
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Figure 1 In this picture, we describe the maps

π̃S : T̃A
S

φ−→ TS
πS−→ S

over the special point of B in the case d = 2 for A= ({1}, {2}).
At the bottom, we have depicted the variety S with its divisors

V (ui).
At the middle, the variety TS with the branch y = 0 being the top

one. The inverse image of each V (ui) via the map πS is the union of
the Weil divisors V (x,ui) and V (y,ui). The map φ is the blowup of
TS along V (x,u1) and then V (x,u2).

At the top, we have the variety T̃A
S

. The dotted lines bound the
singular loci �1, �2, and �3 of the map π̃S . The permutation η

in this case is the identity; thus, the node Ni belongs to �i , see
Proposition 3.5 and Corollary 3.6. Note that in the central fiber we
have two φ-exceptional curves, see Proposition 3.2 and Corollary 3.3.
The node N1 belongs to the strict transforms of V (x,u1), V (y,u1),
V (y,u2), and V (y,u3), whereas N2 belongs to the ones of V (x,u1),
V (x,u2), V (y,u2), and V (y,u3), and finally N3 belongs to the ones
of V (x,u1), V (x,u2), V (x,u3), and V (y,u3), see Corollary 3.6
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Spec(K[[u1, . . . , ud+1]]uA
). Define TSA

:= T ×B SA and T̃ A
SA

:= T̃ A
S ×S SA. We

have the fiber diagram
T̃ A

SA
−−−−→ T̃ A

S⏐⏐� ⏐⏐�
TSA

−−−−→ TS⏐⏐� ⏐⏐�
SA −−−−→ S

We call a collection A := (A1, . . . ,Ak) of subsets of a finite set F a smooth
collection for F if for every distinct i, j ∈ F , there exists � such that either j ∈ A�

and i /∈ A�, or i ∈ A� and j /∈ A�.

Proposition 3.2. The scheme T̃ A
S is smooth if and only if A is a smooth col-

lection for {1, . . . , d + 1}. Moreover, in that case, the inverse image of the closed
point of TS in T̃ A

S is a chain of d rational curves.

Proof. First assume that T̃ A
S is smooth. Consider the open subscheme S{i,j}c with

i, j = 1, . . . , d + 1 distinct. Note that T̃S{i,j }c is smooth and TS{i,j }c is not. Hence,
there exists one of the divisors DA�

= V (x,uA�
) such that the restriction to TS{i,j }c

is not Cartier. However, the equation of TS{i,j }c is xy − uiuj = 0, and hence the
restriction of DA�

is not Cartier only if i ∈ A� and j /∈ A� or i /∈ A� and j ∈ A�.
Assume now that A is smooth. An open covering for T̃ 1

S is given by

U := Spec

(
K[[x, y,u1, . . . , ud+1]][α]

(αx − uA1, y − αuAc
1
)

)
= Spec

(
K[[x,u1, . . . , ud+1]][α]

(αx − uA1)

)
, (5)

V := Spec

(
K[[x, y,u1, . . . , ud+1]][α′]

(x − α′uA1 , α
′y − uAc

1
)

)
= Spec

(
K[[y,u1, . . . , ud+1]][α′]

(α′y − uAc
1
)

)
. (6)

We claim that the strict transform D̃A2 in T̃ 1
S is given locally, up to Cartier

divisors, by
V (x,uA1∩A2) ⊂ U and V (α′, uAc

1∩A2) ⊂ V.

To see this, just note that

(x,uA2) =
⋂

j∈A2

(x,uj ).

Hence, we need only analyze the strict transforms Ṽ (x,uj ) of V (x,uj ). Since
the strict transform is contained in the inverse image, we get

(x,uj ) ⊂ I (Ṽ (x,uj ) ∩ U).



88 A. Abreu, J . Coelho, & M. Pacini

(Here, note that we are using the same notation for the coordinates in both U and
TS .) Therefore, by equation (5), we readily see that (x,uj ) has codimension 1 in
U if and only if j ∈ A1, which implies that Ṽ (x,uj ) is empty if j ∈ Ac

1. Arguing
similarly for V , we see that

(α′uA1 , uj ) ⊂ I (Ṽ (x,uj ) ∩ V ).

Therefore, if j ∈ A1, using equation (6), we get that I (Ṽ (x,uj )) = (uj ) in V ,
and hence Ṽ (x,uj ) is Cartier in V . Otherwise, if j ∈ Ac

1, then we have

(α′uA1 , uj ) = (α′, uj ) ∩
⋂
i∈A1

(ui, uj ).

Since (ui, uj ) has codimension 2 in V , we conclude that

I (Ṽ (x,uj ) ∩ V ) = (α′, uj ).

To sum up, the strict transform Ṽ (x,uj ) of V (x,uj ) has empty intersection
with U (resp. is a Cartier divisor in V ) if j ∈ Ac

1 (resp. if j ∈ A1). Otherwise,
if j ∈ A1 (resp. if j ∈ Ac

1), then this intersection is given by (x,uj ) in U (resp.,
by (α′, uj ) in V ). The proof of the claim is complete, and this also proves the
proposition in the case d = 1.

We proceed now by induction on d . First, we split sequence (3) into two using
the open covering T̃ 1

S = U ∪ V . Define

U� := (φ2 ◦ · · · ◦ φ�)
−1(U) and V� := (φ2 ◦ · · · ◦ φ�)

−1(V )

and the sequence

Uk
φk−→ Uk−1

φk−1−→ · · · φ3−→ U2
φ2−→ U,

where the map φ� is the blowup along the intersection D̃A�
∩U�. Second, we note

that the singular locus of T̃ 1
S = U ∪ V is contained in the locus defined by

(α : α′) = (1 : 0) and (0 : 1).

Hence, we can argue locally, that is, we can assume that

U = Spec

(
K[[x,u1, . . . , ud+1, α]]

(αx − uA1)

)
and

V = Spec

(
K[[y,u1, . . . , ud+1, α

′]]
(α′y − uAc

1
)

)
.

By the previous claim, the strict transforms of DA2,DA3, . . . ,DAk
via the map

U → TS are given by the equations

(x,uA1∩A2), (x,uA1∩A3), . . . , (x,uA1∩Ak
).

Now, we just observe that the collection

AU := (A1 ∩ A2,A1 ∩ A3, . . . ,A1 ∩ Ak)
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is a smooth collection for A1. Since |A1| ≤ d , by the induction hypothesis, Uk is
smooth.

For V , the argument is similar; just note that Cartier divisors may appear as
components of the strict transforms, but they do not give contributions to the
blowups. This proves the smoothness.

To prove the second statement, we still proceed by induction on d . By the
induction hypothesis, the inverse image of the closed point in U via the map
Uk → U is a chain of |A1|−1 rational curves, and the inverse image of the closed
point in V via the map Vk → V is a chain of |Ac

1| − 1 rational curves. Since the
blowup of V (x,uA1) adds exactly one rational curve, we get the result. �

Corollary 3.3. Let A be a smooth collection for {1, . . . , d + 1}. Then, the in-
verse image of the closed point in TSA

via the map T̃ A
SA

→ TSA
is a chain of d −|A|

rational curves.

Proof. Just note that (A1 ∩ A, . . . ,Ak ∩ A) is a smooth collection for A. �

Let A = (A1, . . . ,Ak) be a smooth collection for a finite set F . We define the
A-ordering of F as follows.

Let m, n be distinct elements of F . We say that m <A n if there exists j such
that m ∈ Aj , n /∈ Aj and for every i < j , we have that either {m,n} ⊂ Ai or
{m,n} ⊂ Ac

i . Since A is smooth, the ordering <A is a complete ordering of F .
Fix a smooth collection A of {1, . . . , d + 1}. Let T̃ A

S be the desingularization
of TS obtained via A. The inverse image of the closed point in S via the map
TS → S is the germ of nodal curve given by two branches x = 0 and y = 0. It
follows from Proposition 3.2 that the inverse image of the closed point of S via
the map T̃ A

S → S is the union of these two branches, but with the singular point
replaced with a chain of d rational curves. We denote by N1, . . . ,Nd+1 the nodes
lying on the chain, where N1 is the one in y = 0, and Nd+1 is the one in x = 0,
and by E1, . . . ,Ed the rational curves, where {Ni,Ni+1} ⊂ Ei .

From now on all the strict transforms will be via the map φ : T̃ A
S → TS .

Lemma 3.4. Let A be a smooth collection for {1, . . . , d + 1}. If i <A j , then the
strict transforms via T̃ A

S → TS of V (x,uj ) and V (y,ui) do not intersect.

Proof. Keep the notation of the proof of Proposition 3.2. We proceed by induction
on d . We first analyze the case where i ∈ A1 and j /∈ A1. It follows from the proof
of Proposition 3.2 that the strict transform of V (x,uj ) is empty in U . Similarly,
the strict transform of V (y,ui) is empty in V . Therefore, there is no intersection
in this case.

On the other hand, if i, j ∈ A1, then the equations of the strict transforms of
V (x,uj ) and V (y,ui) in U become (x,uj ) and (α,ui). By the induction hy-
pothesis the intersection of these strict transforms in Uk is empty. Since the strict
transform of V (y,ui) is empty in V , we are done also in this case. The case
i, j ∈ Ac

1 is similar. �
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The singular locus of the map T̃ A
S → S consists of d + 1 connected components,

each of which dominates one region of type V (uj ) ⊂ S for some j = 1, . . . , d +1.
Indeed, if we keep the same notation of Proposition 3.2, then the singular locus
lying over V (uj ) of the map TS → S is contained in both V (x,uj ) and V (y,uj ),
and if i �= j , then either the strict transforms of V (x,uj ) and V (y,ui) do not
intersect, or the strict transforms of V (x,ui) and V (y,uj ) do not intersect. We
will denote by �j the connected component of the singular locus of the map
T̃ A

S → S that dominates V (uj ).
In the sequel, we will often use the following fact: If Ni ∈ �j , then the rational

curves Ei, . . . ,Ed are contained in the strict transform of V (x,uj ).

Proposition 3.5. Let A be a smooth collection for {1, . . . , d + 1}. If η is a
permutation of 1, . . . , d + 1 such that η(1) <A η(2) <A · · · <A η(d + 1), then
Ni ∈ �η(i).

Proof. Since the �j are disjoint and each node belongs to at least one of them,
it is clear that each node Ni is contained in exactly one �j ; we denote such an
index by j := τ(i).

Without loss of generality, we may assume that η is the identity. This means
that the A-ordering is the usual one. Since Ni ∈ �τ(i), we get that the strict
transform of V (x,uτ(i)) contains the rational curves Ei, . . . ,Ed . Hence, the strict
transform of V (y,uτ(i)) contains the rational curves E1, . . . ,Ei−1. Given a k > i,
the strict transform of V (y,uτ(k)) contains the rational curves E1, . . . ,Ek−1.
Hence, the intersection of the strict transforms of V (x,uτ(i)) and V (y,uτ(k)) con-
tains Ei and therefore is nonempty. By Lemma 3.4 we have τ(i) < τ(k) for every
i < k, and we conclude that τ is the identity. �

Corollary 3.6. Let A be a smooth collection for {1, . . . , d + 1}. Let η be a
permutation of 1, . . . , d + 1 such that η(1) <A η(2) <A · · · <A η(d + 1). Then
Ei, . . . ,Ed+1 is contained in the strict transform of V (x,uη(i)) via φ : T̃ A

S → TS .
Furthermore, the intersection of the strict transforms of the divisors

V (x,uη(1)), . . . , V (x,uη(i)),V (y,uη(i)), . . . , V (y,uη(d+1))

is exactly the node Ni .

Remark 3.7. Using Proposition 3.2, we see that for any given regular local family
of curves with smooth irreducible components π : C → B , there exists a desingu-
larization of CS := C ×B S obtained by blowing up Weil divisors. Moreover, the
map π̃S : C̃S → S is a regular family of curves since C̃S is smooth. Also note that
Corollary 3.3 implies that the fiber of π̃S over the special point 0 of S is C(d);
more generally, the fibers of π̃S are either the smooth curve Cη over the generic
point η of S or curves of the form C(k) for some k ∈ {0, . . . , d}.
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4. Local Conditions

Recall that B = Spec(K[[t]]), S = Spec(K[[u1, . . . , ud+1]]), and consider the
map S → B given by t = u1 · u2 · . . . · ud+1. Let π : C → B be a pointed regular
family of nodal curves with special fiber C and section σ : B → C through the
smooth locus of π . We let P := σ(0). Consider CS := C×B S and let πS : CS → S

be the induced map; form the fiber diagram

CS
f−−−−→ C

πS

⏐⏐� ⏐⏐�π

S −−−−→ B

Any section S → CS of the map πS induces a B-map S → C by composition;
conversely, every B-map S → C induces a section of πS . We will abuse notation
using the same name for both the section and the B-map.

Let δ : S → C be a B-map. Assume that δ(0) = N , where N is a node of C.
We can write the completion of the local ring of C at N as

ÔC,N � K[[x, y]].
The map π : C → B is given by xy = t locally around N . Up to multiplication by
an invertible element, the map δ is given by

x = uA and y = uAc , (7)

where A is a proper nonempty subset of {1, . . . , d + 1}. Note that, geometrically,
this means that δ(Qj ) ⊂ V (x) if and only if j ∈ A, where Qj is the generic point
of V (uj ) ⊂ S.

Given sections δ1, . . . , δm of πS passing through nodes of C, a subcurve Y of
C, and a node N of C, we define

aN
j (Y ) := #{k | δk(0) = N and δk(Qj ) ⊂ Y c}. (8)

Note that if N /∈ �Y , then the index j plays no role; in this case, we simply write
aN(Y ). Also note that if N ∈ Y sing, then aN(Y ) = 0.

Recall that S{j}c is the complement of
⋃

i �=j V (ui) in S and it is given by

S{j}c = Spec(K[[u1, . . . , ud+1]]u{j }c ). (9)

Hence, there exists a map S{j}c → S. Let CS{j }c := CS ×S S{j}c and denote by
gj : CS{j }c → CS the projection onto the first factor. Form the following fiber dia-
gram:

CS{j }c
gj−−−−→ CS

πj

⏐⏐� ⏐⏐�πS

S{j}c −−−−→ S

(10)

Let fj := f ◦gj , and let δ1, . . . , δm be sections of πS passing through nodes of C.
If we restrict these sections to S{j}c , then we obtain the sections S{j}c → CS{j }c
passing through the smooth locus of πj .
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Let L be a degree-e invertible sheaf over C. Denote by LS the pullback of L to
CS and define

M := LS ⊗ f ∗OC(m · σ(B)) ⊗ Iδ1(S)|CS
⊗ · · · ⊗ Iδm(S)|CS

.

Note that the sheaf M induces a rational map S ��� J since the generic fiber of
πS is smooth. We also define

Mj := g∗
jM for every j = 1, . . . , d + 1. (11)

Since the restrictions of the sections δ1, . . . , δm to S{j}c are sections passing
through the smooth locus of C, the sheaf Mj is invertible. Also, since S{j}c is
the spectrum of a DVR, there exists an invertible sheaf OCS{j }c (−Zj ), where

Zj =
p∑

i=1

�j,i · f ∗
j Ci, (12)

such that
Mj ⊗OCS{j }c (−Zj ) (13)

is σ -quasi-stable.
Given a degree-e invertible sheaf L, sections δ1, . . . , δm of πS , a subcurve Y

of C, and a node N in the intersection of Cr and Cs , we define

bN
j (Y,L) :=

⎧⎪⎨⎪⎩
�j,s − �j,r if Cr ⊂ Y and Cs �⊂ Y,

�j,r − �j,s if Cr �⊂ Y and Cs ⊂ Y,

0 otherwise.

(14)

Recall that since we are working with curves with smooth irreducible compo-
nents, for every node N , there exists r �= s such that N is in the intersection of Cr

and Cs .

Proposition 4.1. Let L be a degree-e invertible sheaf on C, let δ1, . . . , δm be
sections of πS passing through nodes of C, and let Y be a subcurve of C contain-
ing P . Then, for every h ∈ {1, . . . , d + 1}, we have

−kY

2
< deg(L|Y ) − eY +

∑
N∈Csing

(aN
h (Y ) − bN

h (Y,L)) ≤ kY

2
.

Proof. Let Qh be the generic point of V (uh). Identify Y with Y ×B Qh. By the
definition of aN and by the fact that each section δi goes through some node N ,
we clearly have

deg(Mj |Y ) = deg(L|Y ) +
∑

N∈Csing

aN
h (Y ).

Indeed, the sum
∑

aN
h (Y ) is the number of sections δi such that δi(Qh) ∈ Y c . It

follows that

deg(Mj ⊗OCS{h}c (−Zh)|Y ) = deg(L|Y ) +
∑

N∈Csing

aN
h (Y ) − Zh · Y.
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However, we have

Zh · Y =
∑

N∈Csing

bN
h (Y,L),

which concludes the proof. �

Let φ : C̃S → CS be a fixed desingularization of CS as in Remark 3.7. Let �̃j be
the strict transform of δj (S). Since C̃S is regular, it follows that �̃j is a Cartier
divisor. We define

C̃ := (πS ◦ φ)−1(0),

the special fiber of the map πS ◦ φ. Recall that, by Proposition 3.2, we have an
identification of C̃ with C(d). Let C[uj i] be the closure of g̃j (f

−1
j (Ci)) in C̃S ,

where g̃j is the induced map g̃j : CS{j }c → C̃S and fj = f ◦ gj . Finally, we let

Zj :=
p∑

i=1

�j,i · C[uj i] (15)

and define the invertible sheaf on C̃S

M̃φ := φ∗(LS) ⊗ φ∗f ∗(OC(m · σ(B))) ⊗OC̃S

(
−

m∑
j=1

�̃j −
d+1∑
j=1

Zj

)
. (16)

Theorem 4.2. Let L be a degree-e invertible sheaf on C, and δ1, . . . , δm be sec-
tions of πS . There exists a map S → Je extending the rational map defined by M
if the following two conditions hold for every subcurve Y ⊂ C containing P :

1. For every j1, j2 = 1, . . . , d + 1 and every node N ∈ �Y , we have

|(aN
j1

(Y ) − bN
j1

(Y,L)) − (aN
j2

(Y ) − bN
j2

(Y,L))| ≤ 1.

2. For every function j : Csing → {1, . . . , d + 1}, we have

−kY

2
< deg(L|Y ) − eY +

∑
N∈Csing

(aN
j (N)(Y ) − bN

j(N)(Y,L)) ≤ kY

2
.

In this case, if φ : C̃S → CS is any desingularization of CS as in Remark 3.7, then
this map is induced by the invertible sheaf M̃φ .

Proof. Throughout the proof, we fix a desingularization φ : C̃S → CS of CS as in
Remark 3.7 and set M̃ := M̃φ . It is enough to prove that under the hypothesis
the sheaf φ∗(M̃) is σ -quasi-stable. By Proposition 2.1 it suffices to check that
M̃ is admissible and σ -quasi-stable over each connected subcurve Y of C̃ with
connected complement such that Y and Y c are not contracted by the map φ.

We begin by computing the degrees of the restriction of M̃ to the components
of the special fiber. Let E be a chain of φ-exceptional components, and let N =
φ(E). Clearly, the degree of

φ∗(LS) ⊗ φ∗f ∗(OC(m · σ(B)))|E
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is zero. The same property holds for OC̃S
(−�̃j )|E if the section δj does not

pass through the node N . Since E is contracted, we can look locally around the
node N . Let T := Spec ÔC,N ; the subcurve E can be seen as a subcurve of the
special fiber of the map T̃ A

S → S for some collection A, as in Section 3. Let
{Ni,Nj } = E ∩ Ec be the extremal nodes of the chain. It follows from Propo-
sition 3.5 that Ni ∈ �η(i) and Nj ∈ �η(j). Without loss of generality, we will
assume that η is the identity.

Let Y be a fixed subcurve of C containing P and admitting N as an extremal
node. Let δk be a section through N . Up to renaming i and j , we can assume that
the strict transform of Y × V (ui) does not contain the node Nj . Let Qi be the
generic point of V (ui). Set Yi := Y × Qi ⊂ C̃S and Yi,0 := Y i ∩ C̃, where the bar
denotes the closure in C̃S .

The degree of OC̃S
(−�̃k)|Yi

is −1 if δk(Qi) ∈ Yi and 0 otherwise. Since the

degree of OC̃S
(−�̃k)|Yi,0 is the same as the degree of OC̃S

(−�̃k)|Yi
, we have

deg(OC̃S
(−�̃k)|E) =

⎧⎪⎨⎪⎩
1 if δk(Qi) ∈ Yi and δk(Qj ) /∈ Yj ,

−1 if δk(Qi) /∈ Yi and δk(Qj ) ∈ Yj ,

0 otherwise.

Indeed, notice that Yj,0 \ Yi,0 ∪ Yi,0 \ Yj,0 consists of E and other chains of ra-
tional curves contracted by φ; since the section δk goes through the node N , it
follows that the line bundle OC̃S

(−�̃k) restricted to these other chains has de-
gree 0. Similarly, we can compute:

deg(OC̃S
(−C[uk r]|E)) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1 if k = j and N ∈ Cr ⊂ Y,

1 if k = i and N ∈ Cr ⊂ Y c,

−1 if k = j and N ∈ Cr ⊂ Y c,

−1 if k = i and N ∈ Cr ⊂ Y,

0 otherwise.

Summing up all the contributions, we get that the degree of M̃|E is

(aN
j (Y ) − bN

j (Y,L)) − (aN
i (Y ) − bN

i (Y,L)),

and this shows that the admissibility of M̃ is equivalent to condition (l).
Let Z be a connected subcurve of C̃ with connected complement such that

neither Z nor Zc are contracted by φ and set Y := φ(Z) ⊂ C. We can assume
that P ∈ Y . We want to compute the degree of M̃|Z . Again by Proposition 3.5
each extremal node of Z belongs to only one �j . Let jZ : �Z → {1, . . . , d + 1}
be the induced function; note that the extremal nodes of Z map bijectively onto
the extremal nodes of Y , and hence we can also consider �Y as a domain for the
function jZ . We have

deg(φ∗(LS) ⊗ φ∗f ∗(OC(m · σ(B)))|Z) = deg(L|Y ) + m.
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If we fix k such that δk(0) = N , then we also have

deg(OC̃S
(−�̃k)|Z) =

⎧⎪⎨⎪⎩
−1 if N ∈ �Y and δk(QjZ(N)) ∈ YjZ(N),

−1 if N ∈ Y \ �Y ,

0 otherwise.

Moreover, we have

deg(OC̃S
(−C[uk r])|Z) =

{
−#(j−1

Z (k) ∩ �Cr ) if Cr ⊂ Y c,

#(j−1
Z (k) ∩ �Cr ) if Cr ⊂ Y.

Indeed, j−1
Z (k) is the collection of extremal nodes of Z that belong to �k . This

means that over each node N ∈ �Y \ j−1
Z (k) the intersection of the divisor C[uk r]

with Z is either empty or a (not necessarily maximal) chain of rational curves
contracted by φ with image the node N . In either case, the contribution to the
intersection number C[uk r] · Z is zero. On the other hand, if N ∈ j−1

Z (k) and
Cr ⊂ Y c , then the intersection C[uk r] ∩ Z ∩ φ−1(N) is a single point, and in this
case, the contribution to the intersection number is 1. The case where Cr ⊂ Y is
analogous.

To sum up, if we define

c :=
∑

N∈�Y

#{k | nδk(0) = N and δk(QjZ(N)) ∈ YjZ(N)}

+
∑

N∈Y sing

#{k | δk(0) = N}, (17)

then the degree of M̃|Z is

deg(L|Y ) + m − c +
d+1∑
k=1

p∑
r=1

�r,k deg(OC̃S
(−C[uk r])|Z).

We note now that

m − c =
∑

N∈�Y

aN
jZ(N)(Y ) +

∑
N∈Csing\�Y

aN(Y ). (18)

In fact, we have a total of m sections, and hence m − c is the number of sec-
tions that do not satisfy the conditions in equation (17), that is, the number of
sections that satisfy either δk(0) ∈ �Y and δk(QjZ(N)) ∈ Y c or δk(0) ∈ (Y c)sing

and δk(QjZ(N)) ∈ Y c . This is clearly equal to the right-hand side of equation (18).
Let εr be 1 if Cr ⊂ Y and −1 otherwise. We have

d+1∑
k=1

p∑
r=1

�r,k deg(OC̃S
(−C[uk r])|Z) =

d+1∑
k=1

p∑
r=1

∑
jZ(N)=k

N∈Cr

εr�r,k

=
∑

N∈Csing

∑
N∈Cr

r=1,...,p

εr�r,jZ(N),
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and since N only belongs to two components, we also have∑
N∈Cr

r=1,...,p

εr�r,jZ(N) = −bY
jZ(N)(Y,L).

Therefore, we conclude that
d+1∑
k=1

p∑
r=1

�r,k deg(OC̃S
(−C[ukr])|Z) = −

∑
N∈�Y

bY
jZ(N)(Y,L)

= −
∑

N∈Csing

bY
jZ(N)(Y,L),

and the proof is complete. �

5. Curves with Two Components

Let π : C → B be a pointed smoothing of a nodal curve C with section σ : B → C
through the smooth locus of π . Let L be a invertible sheaf of degree e over C.
From now on, we assume that C has two smooth components C1 and C2 meeting
at q nodes N1, . . . ,Nq , with the marked point P := σ(0) on the component C1.
Locally around each node N�, the completion of the local ring of C at N� is given
by

ÔC,N � K[[x, y]],
where x = 0 is the local equation of C1, and y = 0 is that of C2. Hence, if we
let T = Spec(K[[x, y]]), then, for each node N , there exists a map T → C taking
the closed point of T to N . Moreover, the composition map T → B is given by
t = xy.

Our goal is to resolve the rational map αd
L : Cd ��� Je . Let C̃d be the blowup

of Cd obtained inductively as follows. First, define C̃1 := C1. Then assume that
C̃d is given and let C̃d+1 → C̃d ×B C be the sequence of blowups along the strict
transforms of the following Weil divisors in the stated order

�d,d+1,�d−1,d+1, . . . ,�1,d+1, (19)

and then

Cd+1
1 ,Cd

1 × C2,C
d−1
1 × C2 × C1,C

d−1
1 × C2

2 ,

. . . ,Cd−1
2 × C1 × C2,C

d
2 × C1,C

d+1
2 , (20)

where �i,d+1 is the image of the section C̃d → C̃d ×B C induced by the composi-
tion δi : C̃d → Cd → C, where the last map is the projection onto the ith factor.

Lemma 5.1. The following properties hold.

1. The scheme C̃d is smooth.
2. For each closed point R ∈ C̃d , there exists a map ιR : SR → C̃d , where SR =

Spec(K[[u1, . . . , ud+1]]), such that the image of the closed point of SR is the
point R and the composed map SR → C̃d → B is given by t = u1 · . . . · uk for



On the Geometry of Abel Maps for Nodal Curves 97

some k = 1, . . . , d +1. In particular, defining S′
R = Spec(K[[u1, . . . , uk]]), we

have a natural map S′
R → SR → C̃d .

3. For each closed point R ∈ C̃d and each node N ∈ C, there exists a smooth
collection A for {1, . . . , k} and a fiber diagram

T̃ A
S′

R

−−−−→ C̃d+1⏐⏐� ⏐⏐�
TS′

R
−−−−→ C̃d ×B C −−−−→ C⏐⏐� ⏐⏐� ⏐⏐�

S′
R −−−−→ C̃d −−−−→ B

where the map TS′
R

= S′
R ×B T → C̃d ×B C is induced by the map T =

Spec(ÔC,N ) → C, and T̃ A
S′

R

is constructed as in equation (3).

We postpone the proof to Section 5.2.
Let φ : C̃d+1 → C̃d ×B C be the desingularization previously given. The pro-

jection π̃ : C̃d+1 → C̃d onto the first factor is a regular family of nodal curves. As
in (16), we define the sheaf M̃ on C̃d+1 as

M̃ := φ∗f ∗(L⊗OC(d · σ(B))) ⊗OC̃d+1

(
−

d∑
i=1

�̃i,d+1

)
⊗OC̃d+1(−Z),

where Z is defined as the sum of the strict transforms of the divisors Zj , defined
in equation (2), via the map φ.

Note that there is a relation between the divisors Zj and the divisors Zi defined

in equation (12). Indeed, recalling equation (9), for each closed point R ∈ C̃d

such that k = d + 1 in condition (2) of Lemma 5.1, one can form the following
commutative diagram:

S{i}c −−−−→ Ċd⏐⏐� ⏐⏐�
SR

ιR−−−−→ C̃d

where the image of the closed point of S{i}c belongs to some Ċj . Then, the pull-

back of Zj via the map CS{i}c → Ċd ×B C (recall the diagram in equation (10)) is
the divisor Zi .

We can now state our main result.

Theorem 5.2. There exists a map αd
L : C̃d → Je induced by M̃ extending the

map αd
L.

We devote the rest of this section to prove Theorem 5.2.
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5.1. Special Points

Define Ui , i = 1, . . . , d , as the locus in C̃d such that the fiber of π̃ is the curve C(i)

(see Corollary 3.3 for a description of these loci), and U0 := Ċd . Then U0, . . . ,Ud

define a stratification of C̃d by locally closed subschemes. Furthermore, note that
each neighborhood of Ud intersects every irreducible component of Ui . Note that
the sheaf M̃ is σ -quasi-stable over U0.

In order to prove the theorem, we can argue locally on the base. Recall that
σ -quasi-stability is a numerical condition. Also note that the restrictions of M̃
to the fibers over points in a connected component of Ui for i ≥ 1 have constant
multidegree because the restriction of the family π̃ to Ui is the product Ui ×
C(i) for i ≥ 1. Therefore, it follows that if M̃ is σ -quasi-stable over a point in a
connected component of Ui , then it is so over the whole connected component.
Since σ -quasi-stability is an open condition by [10, Prop. 34] and since every
neighborhood of Ud intersects every connected component of Ui , it suffices to
prove that there exists a map extending αd

L locally around Ud .
Let R be a point in Ud . We call the point R a special point. Locally around R,

the scheme C̃d is given by SR = Spec(K[[u1, . . . , ud+1]]). Let

ιR : SR → C̃d (21)

be the natural map. Let also SR → B be the restriction of the map C̃d → B; hence,
SR → B is given by t = u1 · . . . · ud+1.

We can associate to the special point R a d-tuple (�1, �2, . . . , �d), with �k ∈
{1, . . . , q} by the rule δk(R) = N�k

. Also, we can associate to uj a d-tuple
[ε1, . . . , εd ] with εj ∈ {1,2}, where uj is the local equation of the strict trans-
form C[uj ] of Cε1 × · · ·×Cεd

via C̃d → Cd . Abusing notation, we will denote this
d-tuple by [uj ], and we set uj (k) := εk . We define a special point data as a set

R := {(�1, . . . , �d), [u1], . . . , [ud+1]}.
We call such a data a constructible special point data if it arises from a special
point R of C̃d . In this case, we may simply refer to it as a special point and denote
it by R.

Let R = {(�1, . . . , �d), [u1], . . . , [ud+1]} be a special point of C̃d , and N� be a
node of C. We have maps S := SR → C̃d and T → C associated to these points.
Then equations (19) and (20) induce a collection AR,� of subsets of {1, . . . , d +1}
that gives the desingularization of TS as in equation (3). We will call the AR,�-
ordering of [u1], . . . , [ud+1] simply the �-ordering of [u1], . . . , [ud+1].

We proceed now to determine what special point data are constructible. For
d = 1, the only constructible special point data are of the form

{(�), [1], [2]}.
For d = 2, we use Corollary 3.6. We just need to find each collection AR,�

associated with the blowup described by equations (19) and (20). First, note that
each special point {(�1), [1], [2]} in C̃1 is locally given by t = [1] · [2] and each
node N�2 of C is given locally by t = xy. Therefore, we just need to compute
the local equations of the diagonal of C2 and of each of the divisors C1 × C1,
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C1 ×C2, C2 ×C1, and C2 ×C2. If �2 �= �1, then the diagonal is empty, otherwise
the equation of the diagonal is (x − [1], y − [2]). On the other hand, the equation
of Cε × C1 is (x, [ε]) and of Cε × C2 is (y, [ε]) for ε ∈ {1,2}. By Remark 3.1,
the blowup of the diagonal is locally given by the blowup of V (x, [2]), whereas
the blowup of Cε × C2 is locally given by the blowup of V (x, [3 − ε]). It follows
that the �2-ordering of [1], [2] is

[1], [2] if �2 �= �1,

[2], [1] if �2 = �1.

Note that in Corollary 3.6 the nodes Ni are the special points. Moreover, the strict
transform of the divisor V (x, [ε]) becomes [ε 1], and that of V (y, [ε]) becomes
[ε 2]. Therefore, the constructible special point data for C̃2 are

{(�, �), [21], [22], [12]} and {(�, �), [21], [11], [12]}
and

{(�1, �2), [11], [12], [22]} and {(�1, �2), [11], [21], [22]}
for �1 �= �2.

For d = 3, we proceed in a similar fashion. First, fix a special point R with
special point data {(�1, �2), [u1], [u2], [u3]} in C̃2 and choose a node N�3 of C.
The equation of the diagonal �k,3 is of the form

(x − uA′
k
, y − u(A′

k)
c ),

where
A′

k := {j | uj (k) = 1 and �3 = �k}
since x = 0 is the equation of C1. Note that if �3 �= �k , then A′

k is empty, and then
so is �k,3. On the other hand, the local equation of C[uj ] × C1 is (x,uj ), and
the one of C[uj ] × C2 is (y,uj ). It follows that the blowup of the diagonal �k,3
is locally given by the blowup of V (x,u(A′

k)
c ) and the blowup of C[uj ] × C2 is

locally given by the blowup of V (x,u{j}c ).
Now, for R = {(�, �), [11], [12], [21]} and �3 = �, we see that the collection

AR,�3 is given by A1 = (A′
2)

c = {[12]}, A2 = (A′
1)

c = {[21]}, A3 = {[11]}, A4 =
{[12], [21]}, and so on. However, (A1,A2) is a smooth collection. Then the �3-
ordering of [11], [12], [21] is [12], [21], [11], and hence, by Corollary 3.6, we
have three special points in C̃3 lying over R:

{(�, �, �), [121], [122], [212], [112]},
{(�, �, �), [121], [211], [212], [112]}, (22)

{(�, �, �), [121], [211], [111], [112]}.
Similarly, for R = {(�, �), [12], [21], [22]} and �3 = �, the �3-ordering of [12],
[21], [22] is [22], [12], [21], then we get three special points:

{(�, �, �), [221], [222], [122], [212]},
{(�, �, �), [221], [121], [122], [212]},
{(�, �, �), [221], [121], [211], [212]}.



100 A. Abreu, J . Coelho, & M. Pacini

As for the case R = {(�, �), [11], [12], [21]} and �3 �= �, we see that the two
diagonals are empty. Therefore, A1 = {[11]}, A2 = {[12], [21]}, A3 = {[12]},
A4 = {[11], [21]}, and so on. We see that (A1,A2,A3) is a smooth collection,
and in fact the given desingularization is the same as that given by the collection
(A1,A3). The �3-ordering of [11], [12], [21] is [11], [12], [21]. It follows again
from Corollary 3.6 that the special points of C̃3 over R are

{(�, �, �3), [111], [112], [122], [212]},
{(�, �, �3), [111], [121], [122], [212]},
{(�, �, �3), [111], [121], [211], [212]}.

Similarly, for R = {(�, �), [12], [21], [22]} and �3 �= �, the �3-ordering of [12],
[21], [22] is [12], [21], [22], and then we get three special points:

{(�, �, �3), [121], [122], [212], [222]},
{(�, �, �3), [121], [211], [212], [222]},
{(�, �, �3), [121], [211], [221], [222]}.

As for the case R = {(�1, �2), [11], [12], [22]} with �1 �= �2 and �3 = �1, we see
that the diagonal �2,3 is empty. Therefore, A1 = {[22]} (it comes from the diag-
onal �1,3), A2 = {[11]}, A3 = Ac

2, A4 = {[12]}, and so on. We see that (A1,A2)

is a smooth collection. The �3-ordering of [11], [12], [22] is [22], [11], [12]. It
follows again from Corollary 3.6 that the special points of C̃3 over R are

{(�1, �2, �1), [221], [222], [112], [122]},
{(�1, �2, �1), [221], [111], [112], [122]},
{(�1, �2, �1), [221], [111], [121], [122]}.

Similarly for R = {(�1, �2), [11], [21], [22]} with �1 �= �2 and �3 = �1, the �3-
ordering of [11], [21], [22] is [21], [22], [11], and then we get three special points:

{(�1, �2, �1), [211], [212], [222], [112]},
{(�1, �2, �1), [211], [221], [222], [112]},
{(�1, �2, �1), [211], [221], [111], [112]}.

As for the case R = {(�1, �2), [11], [12], [22]} with �1 �= �2 and �3 = �2, we see
that the diagonal �1,3 is empty. Therefore, A1 = {[12], [22]} (it comes from
the diagonal �2,3), A2 = {[11]}, A3 = Ac

2, A4 = {[12]}, and so on. We see
that (A1,A2,A3,A4) is a smooth collection, and in fact the given desingular-
ization is the same as that given by the collection (A1,A4). The �3-ordering of
[11], [12], [22] is [12], [22], [11]. It follows again from Corollary 3.6 that the spe-
cial points of C̃3 over R are

{(�1, �2, �2), [121], [122], [222], [112]},
{(�1, �2, �2), [121], [221], [222], [112]},
{(�1, �2, �2), [121], [221], [111], [112]}.
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Similarly for R = {(�1, �2), [11], [21], [22]} with �1 �= �2 and �3 = �2, the �3-
ordering of [11], [21], [22] is [22], [11], [21], and then we get three special points:

{(�1, �2, �2), [221], [222], [112], [212]},
{(�1, �2, �2), [221], [111], [112], [212]},
{(�1, �2, �2), [221], [111], [211], [212]}.

As for the case R = {(�1, �2), [11], [12], [22]} with �1 �= �2 and �3 �= �1, �2, we
see that the diagonals are empty. Therefore A1 = {[11]}, A2 = Ac

1, A3 = {[12]},
A4 = Ac

3, and so on. We see that (A1,A2,A3) is a smooth collection, and in fact
the given desingularization is the same as that given by the collection (A1,A3).
The �3-ordering of [11], [12], [22] is [11], [12], [22]. It follows from Corollary 3.6
that the special points of C̃3 over R are

{(�1, �2, �3), [111], [112], [122], [222]},
{(�1, �2, �3), [111], [121], [122], [222]},
{(�1, �2, �3), [111], [121], [221], [222]}.

Similarly for R = {(�1, �2), [11], [21], [22]} with �1 �= �2 and �3 �= �1, �2, the �3-
ordering of [11], [21], [22] is [11], [21], [22], and then we get three special points:

{(�1, �2, �3), [111], [112], [212], [222]},
{(�1, �2, �3), [111], [211], [212], [222]},
{(�1, �2, �3), [111], [211], [221], [222]}.

Let R = {(�1, . . . , �d), [u1], . . . , [ud+1]} be a special point of C̃d , and let N�d+1

be a node of C. The special points of C̃d+1 over (R,N�d+1) ∈ C̃d ×B C are of the
form

{(�1, . . . , �d , �d+1), [v1 1], [v2 1], . . . , [vh 1], [vh 2], . . . , [vd+1 2]}, (23)

where [v1], [v2], . . . , [vd+1] is the �d+1-ordering of [u1], . . . , [ud+1] for each h =
1, . . . , d + 1. Recall that AR,�d+1 is the collection associated to the blowup given
by equations (19) and (20). As in the case d = 3, we see that the equation of the
diagonal �k,d+1 is of the form

(x − uA′
k
, y − u(A′

k)
c ),

where
A′

k = {j | uj (k) = 1 and �d+1 = �k}.
In particular, if �d+1 �= �k , then A′

k is empty, and so is �k,d+1. If [u1], . . . , [ud+1]
is written in lexicographical order, then A1 = (A′

d)c , A2 = (A′
d−1)

c, . . . ,Ad =
(A′

1)
c , Ad+1 = {[u1]}, Ad+2 = {[u1]}c , Ad+3 = {[u2]}, and so on. Note that some

of A1, . . . ,Ad might be empty, and in the previous examples, we omitted such
sets. We sum up what we have shown in the following lemma.

Lemma 5.3. We have uj1 <�d+1 uj2 if and only if one of the following conditions
holds.

1. There exists k0 such that uj1(k0) = 2 and uj2(k0) = 1 with �k0 = �d+1; more-
over, uj1(k) = uj2(k) for each k > k0 such that �k = �d+1.
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2. For all k such that �k = �d+1, we have uj1(k) = uj2(k), and there exists k0 such
that �k0 �= �d+1 with uj1(k0) = 1 and uj2(k0) = 2; moreover, for all k < k0, we
have uj1(k) = uj2(k).

5.2. Proof of the Main Theorem

We begin by proving Lemma 5.1.

Proof of Lemma 5.1. We proceed by induction on d . Of course, C̃1 is smooth and
satisfies condition (2). Indeed, note that if R is a node of C, then k = 2, otherwise,
if R is in the smooth locus of C, then k = 1.

To prove condition (3) for d = 1, we assume that R is a node of C; if R is
not a node, then the computations are similar. In this setting, the map C̃1 → B is
locally given at R by the equation t = u1 · u2, where uj = 0 is the local equation
of Cj for j = 1,2. Hence, the local equation of C̃1 ×B C at (R,N) is u1u2 = xy,
which is the same as the local equation of TS′

R
at the closed point. Moreover,

each Weil divisor in equation (20) has equations of the form (x,uj ) or (y,uj )

for some j = 1,2, whereas, by Remark 3.1, the blowups of the Weil divisors in
equation (19), if they contain (R,N), are the same as the blowups of the divisors
with equations (x,uj ) for some j = 1,2. Note that, if a Weil divisor in equation
(19) does not contain (R,N), then its blowup is an isomorphism locally around
(R,N). Hence, the blowups defining C̃2 are locally the blowups constructed in
equation (3), and the induced collection A is smooth. This concludes the proof of
condition (3) for d = 1.

Assume now that conditions (1), (2), and (3) holds for d − 1. First, note that,
by Proposition 3.2 and its proof, condition (3) for d − 1 implies conditions (1)
and (2) for d .

To prove condition (3) for d , we note that the local coordinates of C̃d at R

are u1, . . . , ud+1, where each uj = 0 is the local equation of the strict transform
C[uj ] of some Cε1 × · · · × Cεd

via the map C̃d → Cd for j = 1, . . . , k and some
ε1, . . . , εd ∈ {1,2}. We may assume that k = d + 1, the other cases being analo-
gous. Hence, the local equations of C̃d ×B C at the point (R,N) are the same as
the local equations of TS′

R
at the closed point. Moreover, the strict transform of a

Weil divisor in equation (20) has equations of the form (x,uj ) or (y,uj ) for some
j = 1, . . . , d +1. Indeed, the strict transform of Cε1 ×· · ·×Cεd

×C1 is C[uj ] ×C1,
which has equations (x,uj ). Furthermore, by Remark 3.1, the blowups of the
Weil divisors in equation (19) are the same as the blowups of the divisors with
equations (x,uA) for some (possibly empty) A ⊂ {1,2, . . . , d + 1}. Hence, the
blowups defining C̃d are locally the blowups constructed in equation (3). More-
over, the collection A induced by the sequence of blowups (19) and (20) is smooth
because there exists a set A� ∈A with only j as an element for each j . This con-
cludes the proof. �

We now start to check the conditions in Theorem 4.2. Given a special point
R = {(�1, . . . , �d), [u1], . . . , [ud+1]} in C̃d , recall the map ιR : SR → C̃d intro-
duced in equation (21). We only need to compute the numbers aN

j (C1) and
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bN
j (C1,L), where N is a node of C, and j = 1, . . . , d+1. We observe that aN

j (C1)

is the number of sections δk such that δk(R) = N and δk(Qj ) ∈ C2, where Qj is
the generic point of V (uj ). Thus, by the definition of δk , we see that aN

j (C1) is
the number of k such that δk(R) = N and uj (k) = 2. Thus, it is convenient to
define

a�
[uj ],R := a

N�

j (C1) = #{k | �k = � and uj (k) = 2},
a[uj ],R := (a1[uj ],R, a2[uj ],R, . . . , a

q
[uj ],R),

|a[uj ],R| :=
q∑

�=1

a�[uj ],R.

Now, in order to compute the numbers bN
j (C1,L), we have to compute the

degree of the restriction to C2 of the sheaf Mj defined in equation (11). We have
that

deg(Mj |C2) = degL|C2 − |a[uj ],R|.
On the other hand, we can assume that the divisor Zj (defined in equation (12)) is
supported on C2, and hence we can write Zj = �j,2 · f ∗

j C2. Imposing the quasi-
stability conditions to the sheaf defined in equation (13), we get

−q

2
≤ degL|C2 − |a[uj ],R| + q�j,2 − eC2 <

q

2
,

and using that bN
j (C1,L) = �j,2, we finally arrive at

buj ,R := bN
j (C1,L) =

⌈ |a[uj ],R| − deg(L|C2) + eC2

q
− 1

2

⌉
. (24)

Given two q-tuples x = (x1, . . . , xq) and y = (y1, . . . , yq) of integers, we write
x ≤ y if xi ≤ yi for every i = 1, . . . , q .

Proposition 5.4. Let R = {(�1, . . . , �d), [u1], . . . , [ud+1]} be a constructible spe-
cial point data with [u1], . . . , [ud+1] written in lexicographical order. Let also N�

be a node of C, and [v1], . . . , [vd+1] be the �-ordering of [u1], . . . , [ud+1] with
respect to the node N�. The following conditions hold.

1. The permutation [v1], . . . , [vd+1] of [u1], . . . , [ud+1] is cyclic.
2. a[uj ],R ≤ a[uj+1],R for each j = 1, . . . , d .
3. a�[vj ],R ≥ a�[vj+1],R for each j = 1, . . . , d .

4. a�
[v1],R −a�

[vd+1],R ≤ 1; furthermore, the equality holds if and only if there exists
i ∈ {1, . . . , d} such that �i = �.

5. |a[uj+1],R| − |a[uj ],R| ≤ 1 for each j = 1, . . . , d .

Proof. We proceed by induction on d . For d = 1, the constructible special point
data is of the form {(�), [1], [2]}, and hence it satisfies all the stated condi-
tions. Now, assume that these conditions hold for d . Let N�d+1 be a node of C,
and let R′ := {(�1, . . . , �d+1), [w1], . . . , [wd+2]} be a special point of C̃d+1 over
(R,N�d+1).
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We begin by proving item (1). Let [̃v1], . . . , [̃vd+1] be the �d+1-ordering of
[u1], . . . , [ud+1]. It follows from equation (23) that [w1], . . . , [wd+2] is a permu-
tation of

[̃v1 1], . . . , [̃vh 1], [̃vh 2], . . . , [̃vd+1 2]. (25)

By Lemma 5.3 the �d+1-ordering of equation (25) is

[̃vh 2], . . . , [̃vd+1 2], [̃v1 1], . . . , [̃vh 1]. (26)

Let [v1], . . . , [vd+1] be the �-ordering of [u1], . . . , [ud+1] for � �= �d+1. By induc-
tion hypothesis, the following relations hold for some h0:

ṽh0 = v1, . . . , ṽd+1 = vd+2−h0 ,

ṽ1 = vd+3−h0 , . . . , ṽh0−1 = vd+1.

If h0 ≤ h, then it follows from Lemma 5.3 that the �-ordering of equation (25)
is

[̃vh0 1], [̃vh0+1 1], . . . , [̃vh 1], [̃vh 2], . . . ,
[̃vd+1 2], [̃v1 1], . . . , [̃vh0−1 1]. (27)

If h0 > h, then the �-ordering of equation (25) is

[̃vh0 2], [̃vh0+1 2], . . . , [̃vd+1 2], [̃v1 1], . . . ,
[̃vh 1], [̃vh 2], . . . , [̃vh0−1 2]. (28)

Since, by induction hypothesis, [̃v1], . . . , [̃vd+1] is a cyclic permutation of
[u1], . . . , [ud+1] and the latter is in lexicographical order, the following relations
hold for some h′:

ṽh′ = u1, . . . , ṽd+1 = ud+2−h′ ,

ṽ1 = ud+3−h′ , . . . , ṽh′−1 = ud+1.

If h′ ≤ h, then the lexicographical ordering of equation (25) is

[̃vh′ 1], [̃vh′+1 1], . . . , [̃vh 1], [̃vh 2], . . . ,
[̃vd+1 2], [̃v1 1], . . . , [̃vh′−1 1]. (29)

If h′ > h, then the lexicographical ordering of equation (25) is

[̃vh′ 2], [̃vh′+1 2], . . . , [̃vd+1 2], [̃v1 1], . . . ,
[̃vh 1], [̃vh 2], . . . , [̃vh′−1 2]. (30)

We conclude that if [w1], . . . , [wd+2] is in lexicographical order (see equations
(29) and (30)), then their �-ordering (see equations (27) and (28)) is obtained by
a cyclic permutation. The proof of the first item is complete.

Recall that, by induction hypothesis, items (2), (3), and (4) hold for d . We want
to prove that these items also hold for d + 1. We can rewrite equations (29) and
(30) as follows:

[u1 1], . . . , [uh+1−h′ 1], [uh+1−h′ 2], . . . ,
[ud+2−h′ 2], [ud+3−h′ 1], . . . , [ud+1 1] (31)
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and

[u1 2], . . . , [ud+2−h′ 2], [ud+3−h′ 1], . . . ,
[ud+2+h−h′ 1], [ud+2+h−h′ 2], . . . , [ud+1 2]. (32)

If � �= �d+1, we have that a�
[uj ε],R′ = a�[uj ],R for ε = 1,2; moreover, the �-

ordering of [w1], . . . , [wd+2] is essentially the same of [u1], . . . , [ud+1], as we
can see in equations (27) and (28). Therefore, in this case, we have nothing to
prove.

Consider now the case � = �d+1. We have

a
�d+1
[uj 1],R′ = a

�d+1
[uj ],R and a

�d+1
[uj 2],R′ = a

�d+1
[uj ],R + 1.

We have now two cases.
Case 1. Assume that there exists i ∈ {1, . . . , d} such that �i = �d+1. Us-

ing the induction hypothesis, it is easy to see that the following relations
hold:

a
�d+1
[u1],R + 1 = · · · = a

�d+1
[ud+2−h′ ],R + 1 = a

�d+1
[ud+3−h′ ],R = · · · = a

�d+1
[ud+1],R.

Note that the following relations also hold:

a
�d+1
[ud+2−h′ 2],R′ = a

�d+1
[ud+2−h′ ],R + 1 = a

�d+1
[ud+3−h′ ],R = a

�d+1
[ud+3−h′ 1],R′ .

Therefore, with respect to equation (31), we have

a
�d+1
[u1 1],R′ + 1 = · · · = a

�d+1
[uh+1−h′ 1],R′ + 1 = a

�d+1
[uh+1−h′ 2],R′ = · · · = a

�d+1
[ud+1 1],R′ ,

whereas with respect to equation (32), we have

a
�d+1
[u1 2],R′ + 2 = · · · = a

�d+1
[ud+2+h−h′ 1],R′ + 2

= a
�d+1
[ud+2+h−h′ 2],R′ + 1 = · · · = a

�d+1
[ud+1 2],R′ + 1.

This proves item (2). To prove items (3) and (4), we just note that the �d+1-
ordering of [w1], . . . , [wd+2] is given by equation (26); moreover, in the
case of equation (31), we have ṽh = uh+1−h′ , whereas in the case of equa-
tion (32), we have ṽh = ud+2+h−h′ . In particular, we have equality in item
(4).

Case 2. Assume that there is no i ∈ {1, . . . , d} with �i = �d+1. Then the �d+1-
ordering of [u1], . . . , [ud+1] is simply [u1], . . . , [ud+1]. In this case, using equa-
tion (25) (with ṽi = ui ) and the fact that a

�d+1
[uj ],R = 0, we see that items (2), (3),

and (4) readily hold.
Finally, item (5) follows from equations (31) and (32), observing that

|a[uj ε],R′ | = |a[uj ],R| + ε − 1. �

Proof of Theorem 5.2. To conclude the proof of Theorem 5.2, we have to check
the conditions of Theorem 4.2 for every special point R of C̃d . With the notation
of this section, these conditions become:
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(1) For every j1, j2 = 1, . . . , d + 1 and every node N� of C, we have

|(a�[uj1 ],R − b[uj1 ],R) − (a�[uj2 ],R − b[uj2 ],R)| ≤ 1.

(2) For every j1, . . . , jq ∈ {1, . . . , d + 1}, we have

−q

2
< deg(L|C1) − eC1 +

q∑
�=1

(a�
[uj�

],R − b[uj�
],R) ≤ q

2
.

First, we note that by item (2) of Proposition 5.4 and by equation (24) we have

b[ui ],R ≤ b[ui+1],R for every i = 1, . . . , d.

Moreover, by item (4) of Proposition 5.4, we get |a[ud+1],R| − |a[u1],R| ≤ q , and
hence b[ud+1],R − b[u1],R ≤ 1.

We now prove condition (1). Assume without loss of generality that j1 > j2.
By items (2) and (4) of Proposition 5.4 we see that

0 ≤ a�[uj1 ],R − a�[uj2 ],R ≤ 1

and, by the previous observation, that

0 ≤ b[uj1 ],R − b[uj2 ],R ≤ 1.

Therefore, condition (1) holds.
As for condition (2), we just have to compute the minimum and maximum of

the function

F(j1, . . . , jq) =
q∑

�=1

(a�[uj�
],R − b[uj�

],R).

Clearly it is enough to find the minimum and maximum of each function

F�(j) := a�[uj ],R − b[uj ],R.

Since b[ui ],R ≤ b[ui+1],R and b[ud+1],R −b[u1],R ≤ 1, we have two cases. In the first
case, we have b[ui ],R = b[uj ],R for every i, j ∈ {1, . . . , d + 1}; in the second case,
there exists h such that the following relations hold:

b[u1],R + 1 = · · · = b[uh],R + 1 = b[uh+1],R = · · · = b[ud+1],R.

In the first case, it follows from item (2) of Proposition 5.4 that the minimum of
F� is attained at j = 1, whereas the maximum is attained at j = d + 1. On the
other hand, in the second case, we claim that the minimum of F� is attained at
j = h + 1. Indeed, using item (4) of Proposition 5.4, we see that for every j ≤ h,
we have

a�[uh+1],R − b[uh+1],R = (a�[uh+1],R − 1) − b[uj ],R ≤ a�[uj ],R − b[uj ],R.

On the other hand, using item (2) of Proposition 5.4, we see that for every j >

h + 1, we have

a�[uh+1],R − b[uh+1],R = a�[uh+1],R − b[uj ],R ≤ a�[uj ],R − b[uj ],R.

Similarly, one can show that the maximum of F� is attained at j = h.
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By the previous arguments, there exists some h such that the minimum (resp.
maximum) of F(j1, . . . , jq) is attained at (h,h, . . . , h). It follows from Proposi-
tion 4.1 that the sum

deg(LC1) − eC1 +
q∑

�=1

(a�[uh],R − b[uh],R)

satisfies condition (2). This concludes the proof of Theorem 5.2. �
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