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Grothendieck Classes of Quiver
Cycles as Iterated Residues

Justin Allman

Abstract. In the case of Dynkin quivers, we establish a formula for
the Grothendieck class of a quiver cycle as the iterated residue of a cer-
tain rational function, for which we provide an explicit combinatorial
construction. Moreover, we utilize a new definition of the double sta-
ble Grothendieck polynomials due to Rimányi and Szenes in terms of
iterated residues to exhibit that the computation of quiver coefficients
can be reduced to computing the coefficients in a combinatorially pre-
scribed Laurent expansion of the aforementioned rational function.

1. Introduction

Let Q be a quiver with a finite vertex set Q0 = {1, . . . ,N} and finite set of ar-
rows Q1. For each arrow a ∈ Q1, denote the vertex at its head by h(a) and the
vertex at its tail by t (a). Throughout the sequel, we will refer also to the set

T (i) = {j ∈ Q0 | ∃a ∈ Q1 with h(a) = i and t (a) = j}. (1)

Given a dimension vector of nonnegative integers v = (v1, . . . , vN), define
the vector spaces Ei = C

vi and the affine representation space V =⊕
a∈Q1

Hom(Et(a),Eh(a)) with a natural action of the algebraic group G =
GL(E1) × · · · × GL(EN) given by

(gi)i∈Q0 · (fa)a∈Q1 = (gh(a)fag
−1
t (a))a∈Q1 . (2)

A quiver cycle � ⊂ V is a G-stable, closed, irreducible subvariety and, as such,
has a well-defined structure sheaf O�. The goal of this paper is the calculation of
the class

[O�] ∈ KG(V ),

in the G-equivariant Grothendieck ring of V . To accomplish this, we reformulate
the problem in an equivalent setting; we realize [O�] as the K-class associated to
a certain degeneracy locus of a quiver of vector bundles over a smooth complex
projective base variety X.

Formulas for this class exist already in the literature, the most general of which
is due to Buch [Buc08], and which we now explain. Buch’s result is given in
terms of the stable version of Grothendieck polynomials first invented by Lascoux
and Schützenberger [LS82] as representatives of structure sheaves of Schubert
varieties in a flag manifold, which are applied to the Ei in an appropriate way. For
details specific to this context, see [Buc08], Section 3.2, and for a comprehensive
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introduction to the role of Grothendieck polynomials in K-theory, we refer the
reader to [Buc05].

The stable Grothendieck polynomials Gλ are indexed by partitions, that is,
nonincreasing sequences of nonnegative integers λ = (λ1 ≥ λ2 ≥ · · · ) with only
finitely many nonzero parts. The number of nonzero parts is called the length
of the partition and denoted �(λ). For each i ∈ Q0, form the vector space Mi =⊕

j∈T (i) Ej . With this notation, Buch shows that for unique integers cμ(�) ∈ Z,
we have

[O�] =
∑
μ

cμ(�)Gμ1(E1 − M1) · · ·GμN
(EN − MN) ∈ KG(V ), (3)

where the sum is taken over all sequences of partitions μ = (μ1, . . . ,μN) subject
to the constraint �(μi) ≤ vi for all 1 ≤ i ≤ N . The integers cμ(�) are called the
quiver coefficients. In the case that Q is a Dynkin quiver, that is, its underlying
nonoriented graph is one of the simply laced Dynkin diagrams (of type A, D,
or E), Buch shows that the sum (3) is finite. The central question in the theory
is: are the quiver coefficients alternating? In this setting, alternating means that
(−1)|μ|−codim(�)cμ(�) ≥ 0 for all μ, where |μ| = ∑

i |μi |, and |μi | is the area of
the corresponding Young diagram. An answer to this question supersedes many of
the other positivity conjectures in this vein, in particular, whether or not the coho-
mology class [�] ∈ H ∗

G
(V ) is Schur positive, since the leading term of Gλ is the

Schur function sλ, and the coholomology class [�] can be interpreted as a certain
leading term of the K-class [O�]. For this reason, the quiver coefficients cμ(�)

for which |μ| = codim(�) are called the cohomological quiver coefficients.
The goal of this paper is to give a new formula for [O�] in terms of iterated

residue operations. The motivation is plain – namely there has been some con-
siderable recent success in attacking positivity and stability results in analogous
settings once armed with such a formula.

Fehér and Rimányi [FR07] discover that the Thom polynomials of singularities
share unexpected stability properties, and this is made evident through noncon-
ventional generating sequences. The ideas of [FR07] are further developed and
organized in [BS12], [FR12], and [Kaz10b], where the generating sequence for-
mulas appear under the name iterated residue. In particular, Bérczi and Szenes
[BS12] prove new positivity results for certain Thom polynomials, and Kazarian
[Kaz10b] is able to calculate new classes of Thom polynomials through iterated
residue machinery developed in [Kaz10a].

Even more recently, a new formula for the cohomology class of the quiver cy-
cle in H ∗

G
(V ) as an iterated residue has been reported in [Rim14], and some new

promising initial results on Schur positivity have been obtained from this formula
in [Kal13]. Moreover, Rimányi [Rim13] describes an explicit connection between
the iterated residue formula for cohomological quiver coefficients of [Rim14] and
certain structure constants in the cohomological Hall algebra (COHA) of Kontse-
vich and Soilbelman [KS11].

The organization of the paper is as follows. In Section 2, we describe quiver
representations in some more detail and define the degeneracy loci associated to
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them. In Section 3, we discuss an algorithm of Reineke to resolve the singularities
of the degeneracy loci in question, which produces a sequence of well-understood
maps that we eventually utilize for our calculations. In Section 4, we define our
iterated residue operations and provide some illustrative examples of their appli-
cation. In Section 5, we present the statement of the main result and by example
compare our method to previous formulas, most notably that of [Buc08] and the
cohomological iterated residue formula from [Rim14]. In Section 6, we describe
how the push-forward (or Gysin) maps associated to Grassmannian fibrations are
calculated with equivariant localization and translated to the language of iterated
residues, and in Section 7, we provide the proof of the main theorem. In Section 8,
we use a new definition of Grothendieck polynomials proposed by Rimányi and
Szenes to exhibit that our formula produces an explicit rational function whose
coefficients, once expanded as a multivariate Laurent series, correspond to the
quiver coefficients. Finally, in Section 9, we pose several questions regarding the
rational functions of Section 8. We expect that further analysis of these rational
functions will produce new positivity results regarding the quiver coefficients.

2. Quiver Representations and Degeneracy Loci

2.1. Quiver Cycles for Dynkin Quivers

In this paper, we consider only Dynkin quivers, which always have finite sets of
vertices and arrows and contain no cycles. Throughout the sequel, Q denotes a
Dynkin quiver with vertices Q0 = {1, . . . ,N} and arrows Q1, v = (v1, . . . , vN) ∈
N

N denotes a dimension vector, and V denotes the corresponding representation
space.

Let � be a quiver cycle. For technical reasons, we henceforth assume that
� is Cohen–Macaulay with rational singularities. In the case of Dynkin quivers,
Gabriel’s theorem [Gab72] implies that there are only finitely many stable G-
orbits and, as a consequence, every quiver cycle must be a G-orbit closure (and
conversely). Moreover, the orbits have an explicit description as follows.

Let {φi : 1 ≤ i ≤ N} denote the set of simple roots of the corresponding root
system, and �+ the set of positive roots. For any positive root φ, one obtains the
integers d1(φ), . . . , dN(φ) defined uniquely by φ = ∑N

i=1 di(φ)φi . The G-orbits
in V are in one-to-one correspondence with the vectors

m = (mφ) ∈ N
�+

such that
∑

φ∈�+
mφdi(φ) = vi for each 1 ≤ i ≤ N.

Observe that the list of orbits does not depend on the orientation of the arrows of
Q but only on the underlying nonoriented graph. Throughout the sequel, we will
denote the orbit-closure corresponding to m ∈N

�+
by �m.
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2.2. Degeneracy Loci Associated to Quivers

Let X be a smooth complex projective variety, and let K(X) denote the
Grothendieck ring of algebraic vector bundles over X. A Q-bundle (E•, f•) → X

is the following data:

• for each i ∈ Q0, a vector bundle Ei → X with rank(Ei ) = vi , and
• for each arrow a ∈ Q1, a map of vector bundles fa : Et (a) → Eh(a) over X.

Let (E•, f•)x denote the fiber of the Q-bundle at the point x ∈ X. This con-
sists of the fibers of the vector bundles (E1)x, . . . , (EN)x and also a linear map
(fa)x : (Et (a))x → (Eh(a))x for each a ∈ Q1. Corresponding to the quiver cycle
� ⊂ V , define the degeneracy locus

�(E•) = {x ∈ X | (E•, f•)x ∈ �}. (4)

Observe that the fiber (E•, f•)x only belongs to V = ⊕
a∈Q1

Hom(Et(a),Eh(a))

once one specifies a basis in each vector space (Ei )x . However, the degeneracy
locus (4) is well defined since the action of G on V described by equation (2) can
interchange any two choices for bases, and � is G-stable. The relevance of the
degeneracy locus �(E•) is as follows.

Proposition 2.1 (Buch). If X and � are both Cohen–Macaulay and the codi-
mension of �(E•) in X is equal to the codimension of � in V , then

[O�(E•)] =
∑
μ

cμ(�)Gμ1(E1 −M1) · · ·GμN
(EN −MN) ∈ K(X),

where Mi = ⊕
j∈T (i) Ej , and the cμ(�) are exactly the quiver coefficients defined

by equation (3).

The hypothesis of the above result is the reason for our technical assumption
that � be Cohen–Macaulay. The goal of this paper is to give a new formula for
the class corresponding to the structure sheaf of �(E•) in the Grothendieck ring
K(X) and hence, by the uniqueness of the quiver coefficients, a new formula for
[O�] ∈ KG(V ).

Remark 2.2 (Notation and genericity). A choice of maps f• for a Q-bundle
amounts to a section of V = ⊕

a∈Q1
Hom(Et (a),Eh(a)). When choices f• for

which the degeneracy locus �(E•) has its expected codimension in X actually
exist, we call (E•, f•) → X a generic Q-bundle, and in this case, the K-class of
the degeneracy locus is independent of the maps.

Our purpose is to calculate the quiver coefficients, which one defines in terms
of the equivariant K-theory as in equation (3), and, moreover, we are allowed
complete freedom in choosing the base variety X, so we are free to assume the
generic case. We will consider only this situation and therefore are justified in
omitting any decoration referring to f• in our notation, for example, as in the
definition of equation (4).
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3. Resolution of Singularities

In general, the degeneracy locus �(E•) defined by (4) is singular, though in the
case of Dynkin quivers some “worst-case scenario” results have been established.
For example, it is known [BZ01] that over any algebraically closed field, �(E•)
has at worst rational singularities when Q is of type A, and when one assumes ad-
ditionally that the field has characteristic zero, the same is true for type D [BZ02].
We work exclusively over C, so the additional technical assumption that � have
rational singularities is necessary only when Q is of exceptional type (i.e., its
underlying nonoriented graph is the Dynkin diagram for E6, E7, or E8).

The proof of our main theorem depends on a construction originally due to
Reineke [Rei03] to resolve the singularities, but we follow a slightly more gen-
eral approach as in [Buc08] and adapt it specifically for Q-bundles. The original
idea for using the Reineke resolution to compute cohomology classes of degener-
acy loci for quivers comes from the (unfortunately unpublished) work [KS06] of
Knutson and Shimozono, who give the name “Kempf collapsing” to this process.
For still more details, see also [Rim14].

Let (E•, f•) → X be a generic Q-bundle. Given i ∈ Q0 and an integer 0 ≤ r ≤
vi , we construct the Grassmannization Grvi−r (Ei ) → X with tautological exact
sequence of bundles S → Ei → Q. Here S is the tautological subbundle (whose
rank is s = vi − r), and Q is the tautological quotient bundle (whose rank is r).
Define Xi,r (E•, f•) = Xi,r to be the zero scheme Z(Mi → Q) ⊂ Grs(Ei ) where
Mi = ⊕

j∈T (i) Ej . Here the map Mi → Q is understood to be the composition
of the map Mi → Ei , given explicitly by

∑
j∈T (i) fj , followed by the natural

projection Ei →Q.
Observe that over Xi,r ⊂ Grs(Ei ) we obtain an induced Q-bundle (Ẽ•, f̃•) de-

fined by the following:

• for j 	= i, set Ẽj = Ej ,
• set Ẽi = S ,
• if a ∈ Q1 such that h(a) 	= i and t (a) 	= i, then f̃a = fa ,
• if t (a) = i, set f̃a = fa|S ,
• if h(a) = i, set also f̃a = fa .

The last bullet is well defined (and this is the key point) since y ∈ Z(Mi → Q)

implies that in the fiber over y, the image of (fa)y : (Et (a))y → (Ei )y must lie in
Sy . Let ρr

i : Xi,r → X denote the natural map given by the composition Xi,r =
Z(Mi ,Q) ↪→ Grs(Ei ) → X.

More generally, let i = (i1, . . . , ip) be a sequence of quiver vertices, and r =
(r1, . . . , rp) a sequence of nonnegative integers subject to the restriction that for
each i ∈ Q0, we have vi ≥ ∑

i�=i r�. We can now inductively apply the schemes
Xi,r to obtain the new variety

Xi,r = (· · · ((Xi1,r1)i2,r2) · · · )ip,rp .

Let ρr
i : Xi,r → X denote the natural mapping obtained from the composition

ρ
r1
i1

◦ · · · ◦ ρ
rp
ip

.
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Now identify each simple root φi ∈ �+ for 1 ≤ i ≤ N with the standard unit
vector in N

N with 1 in position i and 0 elsewhere. For dimension vectors u,w ∈
N

N , let

〈u,w〉 =
∑
i∈Q0

uiwi −
∑
a∈Q1

ut(a)wh(a)

denote the Euler form associated to the quiver Q. If �′ ⊂ �+ is any subset of
positive roots, then a partition �′ = I1 ∪ · · · ∪ I� is called directed if for every
1 ≤ j ≤ �, we have:

• 〈α,β〉 ≥ 0 for all α,β ∈ Ij , and
• 〈α,β〉 ≥ 0 ≥ 〈β,α〉 whenever i < j and α ∈ Ii , β ∈ Ij .

For Dynkin quivers, a directed partition always exists [Rei03].
Now choose m = (mφ)φ∈�+ , a vector of nonnegative integers corresponding

to the quiver cycle �m. Let �′ ⊂ �+ be a subset containing {φ | mφ 	= 0}, and let
�′ = I1 ∪ · · · ∪ I� be a directed partition. For each 1 ≤ j ≤ �, compute the vector

∑
φ∈Ij

mφφ = (p
(j)

1 , . . . , p
(j)
N ) ∈N

N.

From this data construct the sequence ij = (i1, . . . , in) to be any list of the vertices

i ∈ Q0 for which p
(j)
i 	= 0, with no vertices repeated and ordered so that for

every a ∈ Q1, the vertex t (a) comes before h(a). From this information, set rj =
(p

(j)
i1

, . . . , p
(j)
in

). Finally, let i and r be the concatenated sequences i = i1 · · · i�
and r = r1 · · · r�. A pair of sequences (i, r) constructed in this way is called a
resolution pair for �m.

Proposition 3.1 (Reineke). Let Q be a Dynkin quiver, �m a quiver cycle, and
(i, r) a resolution pair for �m. Then in our notation, the natural map ρr

i : Xi,r →
X is a resolution of �m(E•), that is, it has the image �m(E•) and is a birational
isomorphism onto this image.

The important consequence of Reineke’s theorem is the following corollary.

Corollary 3.2. With ρr
i as before, (ρr

i )∗(1) = [O�m(E•)] ∈ K(X).

In the above statement, 1 ∈ K(Xi,r) is the class [OXi,r ]. As we will see in Sec-
tion 7, this provides an inductive recipe to give a formula for our desired K-class,
which has been used previously by Buch (e.g., in [Buc08]). However, our method
of computing push-forward maps by iterated residues, which we explain in Sec-
tions 4 and 6, is essentially different, and this technology produces formulas in a
more compact form. For an analogous approach to this problem in the cohomo-
logical setting, see [Rim14].
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4. Iterated Residue Operations

Let f (x) be a rational function in the variable x with coefficients in some com-
mutative ring R. Define the operation

Res
x=0,∞

(f (x) dx) = Res
x=0

(f (x) dx) + Res
x=∞(f (x) dx), (5)

where Resx=0(f (x) dx) is the usual residue operation from complex analysis
(i.e., take the coefficient of x−1 in the corresponding Laurent series about x = 0),
and furthermore one recalls that

Res
x=∞(f (x) dx) = Res

x=0

(
− 1

x2
f (1/x)dx

)
.

The idea of using the operation Resx=0,∞ in K-theory is due to Rimányi and
Szenes [RS14].

More generally, let z = {z1, . . . , zn} be an alphabet of ordered commuting inde-
terminants, and F(z) a rational function in these variables with coefficients in R.
Then we define

Res
z=0,∞

(F (z) dz) = Res
zn=0,∞

· · · Res
z1=0,∞

(F (z) dz1 · · · dzn).

Example 4.1. Consider the function g(a) = 1
(1−a/b)a

. Using the convention that
a � b (which we use throughout the sequel), we obtain that

Res
a=0

(g(a) da) = Res
a=0

(
1

a

(
1 + a

b
+ a2

b2
+ · · ·

)
da

)
= 1.

On the other hand,

− 1

a2
g(1/a) = b

(
1

1 − ab

)
,

and so Resa=∞(g(a) da) = 0. Thus Resa=0,∞(g(a) da) = 1. However, it is more
convenient to do the calculation by using the fact that for any meromorphic differ-
ential form, the sum of all residues (including the point at infinity) is zero. Since
the only other pole of g occurs at a = b, we see easily that

Res
a=0,∞

(g(a) da) = −Res
a=b

(
da

(1 − a/b)a

)
= 1.

Example 4.2. Consider the meromorphic differential form

F(z1, z2) = (1 − β1/z2)(1 − β2/z2)(1 − z2/z1)

(1 − z1/α1)(1 − z2/α1)(1 − z1/α2)(1 − z2/α2)z1z2
dz1 dz2.

Functions of this type will occur often in our analysis, where the result of the
operation Resz=0,∞(F ) is a certain (Laurent) polynomial in the variables αi and
βj , separately symmetric in each. We begin by factoring F = F1F2, where

F1 = (1 − z2/z1)

(1 − z1/α1)(1 − z1/α2)z1
dz1 and

F2 = (1 − β1/z2)(1 − β2/z2)

(1 − z2/α1)(1 − z2/α2)z2
dz2.
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We first use the residue theorem as in the previous example to write that

Res
z1=0,∞

(F ) = −
(

Res
z1=α1

(F ) + Res
z1=α2

(F )
)
,

and we compute that

− Res
z1=α1

(F ) = −F2

(
Res

z1=α1
(F1)

)
= F2

(
(1 − z2/α1)

(1 − α1/α2)

)
= F ′,

− Res
z1=α2

(F ) = −F2

(
Res

z1=α2
(F1)

)
= F2

(
(1 − z2/α2)

(1 − α2/α1)

)
= F ′′.

It is not difficult to see that Resz2=α1(F
′) = Resz2=α2(F

′′) = 0, so it remains only
to compute

Res
z=0,∞

(F ) = − Res
z2=α2

(F ′) − Res
z2=α1

(F ′′)

= (1 − β1/α2)(1 − β2/α2)

(1 − α1/α2)
+ (1 − β1/α1)(1 − β2/α1)

(1 − α2/α1)
= 1 − β1β2

α1α2
.

The last line bears resemblance to a Berline–Vergne–Atiyah–Bott-type formula
for equivariant localization, adapted for K-theory. This is not accidental, a con-
nection that we explain in Section 6.

5. The Main Theorem

Choose an element m = (mφ) ∈ N
�+

corresponding to the G-orbit closure �m ⊂
V having only rational singularities. Let i = (i1, . . . , ip) and r = (r1, . . . , rp) be a
resolution pair for �m. Let (E•, f•) → X be a generic Q-bundle over the smooth
complex projective base variety X. For each k ∈ {1, . . . , p}, define the alphabets
of ordered commuting variables

zk = {zk1, . . . , zkrk }
and the discriminant factors

�(zk) =
∏

1≤i<j≤rk

(
1 − zkj

zki

)
.

For each i ∈ Q0, recall the definition of the set T (i) from equation (1) and define
the alphabets of commuting variables

Ei = {εi1, . . . , εivi
}, Mi =

⋃
j∈T (i)

Ej ,

where the degree d elementary symmetric function ed(Ei ) = ed(εi1, . . . , εivi
)

is interpreted as the class [∧d
(Ei )] ∈ K(X). Consequently, we conclude that

ed(ε−1
i1 , . . . , ε−1

ivi
) = [∧d

(E∨
i )]. Henceforth, we will call such a set of formal com-

muting variables the Grothendieck roots of Ei . Finally, for each k ∈ {1, . . . , p},
define:
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• the residue factors

Rk =
∏
y∈zk

∏
x∈Mik

(1 − xy)∏
x∈Eik

(1 − xy)
,

• the interference factors

Ik =
∏
y∈zk

∏
�<k:i�=ik

x∈z�

(1 − y/x)

∏
�<k:i�∈T (ik)

x∈z�

(1 − y/x)
, and

• the differential factors

Dk = �(zk) · d log(zk) = �(zk)

rk∏
i=1

dzki

zki

.

Theorem 5.1. With the notation just given, the class [O�m(E•)] ∈ K(X) is given
by the iterated residue

Res
z1=0,∞

· · · Res
zp=0,∞

( p∏
k=1

RkIkDk

)
. (6)

Remark 5.2. The result of the operation in (6) is certainly a Laurent polynomial
in the Grothendieck roots of the bundles Ei . Moreover, the argument of the iter-
ated residue operation is separately symmetric in each set of Grothendieck roots
since they appear only in the residue factors Rk and do so symmetrically. This
ensures that the result is actually an element of K(X) since it can be written as a
polynomial in the classes [∧d Ei] and [∧d E∨

i ].
Example 5.3. Consider the “inbound A3” quiver {1 → 2 ← 3}. Let φ1, φ2, and
φ3 be the corresponding simple roots, so that the positive roots of the underlying
root system can be represented by φij = ∑

i≤�≤j φ� for 1 ≤ i ≤ j ≤ 3. Consider
now the orbit closure �m ⊂ V = Hom(E1,E2) ⊕ Hom(E3,E2) corresponding to
m11 = m23 = 0, but all other mij = 1, so that the resulting dimension vector is
v = (2,3,2). Set �′ = {φ12, φ13, φ22, φ33} and choose the directed partition

�′ = {φ22} ∪ {φ12, φ13} ∪ {φ33}
with corresponding resolution pair i = (2,1,3,2,3) and r = (1,2,1,2,1). Let
E• → X be a generic Q-bundle. Set

E1 = {α1, α2}, E2 = {β1, β2, β3}, E3 = {γ1, γ2}
to be the Grothendieck roots of E1, E2, and E3, respectively. In particular, this
means that M1 = M3 = {}, whereas M2 = {α1, α2, γ1, γ2}. Following the recipe
of the theorem and equation (6), we form the alphabets zk for 1 ≤ k ≤ 5, which
we rename as

z1 = {v}, z2 = {w1,w2}, z3 = {x}, z4 = {y1, y2}, z5 = {z}
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and construct the differential form∏
s∈M2,t∈z1∪z4

(1 − st)∏
s∈E2

t∈z1∪z4

(1 − st)
∏

s∈E1
t∈z2

(1 − st)
∏

s∈E3
t∈z3∪z5

(1 − st)

× (1 − z/x)
∏2

i=1(1 − yi/v)∏
s∈z4

t∈z2∪z3
(1 − s/t)

5∏
k=1

Dk. (7)

A calculation in Mathematica shows that the result of applying the iterated residue
operation Resz1=0,∞ · · ·Resz5=0,∞ to the latter form gives

[O�m(E•)] = 1 − α1α2γ
2
1 γ 2

2

β2
1β2

2β2
3

+ α1α2γ1γ2

β1β2β
2
3

+ α1α2γ1γ2

β1β
2
2β3

+ α1α2γ1γ2

β2
1β2β3

− γ1γ2

β1β2
− γ1γ2

β1β3
− γ1γ2

β2β3
− α1α2γ1

β1β2β3

− α1α2γ2

β1β2β3
+ γ 2

1 γ2

β1β2β3
+ γ1γ

2
2

β1β2β3
. (8)

Following Buch’s combinatorial description of the inbound A3 case (cf. Sec-
tion 7.1 of [Buc08]), we obtain in terms of double stable Grothendieck polynomi-
als that

[O�(E•)] = G21(E2 −M2)+G2(E2 −M2)G1(E1)−G21(E2 −M2)G1(E1), (9)

which, as one can check, agrees with equation (8) once expanded (note that in
the expression above, the subscript “21” is the partition whose Young diagram
has two rows, the first with two boxes and the second with one box). The leading
term (see [Buc08], Corollary 4.5) is given by s21(E2 −M2)+s2(E2 −M2)s1(E1),
which agrees with the result of [Rim14], Section 6.2.

We wish also to check this example against the cohomological iterated residue
formula of Rimányi [Rim14]. From the K-class [O�m(E•)] we obtain the coho-
mology class [�m(E•)] by the following method, which we explain in general.

Let E1, . . . ,En be vector bundles over X with ranks e1, . . . , en, respectively,
and

E1 = {ε11, . . . , ε1e1}, . . . , En = {εn1, . . . , εnen}
the respective sets of Grothendieck roots. If f (εij ) is a Laurent polynomial, sep-
arately symmetric in each set of variables Ei , then f represents a well-defined
element in K(X), and for such a class, we replace each εij with the exponential
exp(εij ξ). Then a class in H ∗(X) is given by taking the lowest degree nonzero
term in the Taylor expansion (with respect to ξ about zero) of f (exp(εij ξ)) where,
once in the cohomological setting, the variables εij are interpreted as Chern
roots of the corresponding bundles. In particular, applying this process to the
class [O�(E•)] yields the class [�(E•)] ∈ H ∗(X). This is actually the leading
term of the Chern character K(X) → H ∗(X). For more details, see Section 4 of
[Buc08].
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Applying the latter algorithm to the Laurent polynomial (8) gives that the cor-
responding class in H ∗(X) must be

[�m(E•)] = 2β1β2β3 + β2
1β2 + β1β

2
2 + β2

1β3 + β2
2β3 + β1β

2
3 + β2β

2
3

− α1β1β2 − α2β1β2 − α1β2β3 − α2β2β3 − α1β1β3 − α2β1β3

− 2(β1β2γ1 + β1β2γ2 + β2β3γ1 + β2β3γ2 + β1β3γ1 + β1β3γ2)

− β2
1γ1 − β2

1γ2 − β2
2γ1 − β2

2γ2 − β2
3γ1 − β2

3γ2

+ β1γ
2
1 + β2γ

2
1 + β3γ

2
1 + β1γ

2
2 + β2γ

2
2 + β3γ

2
2

+ 2(β1γ1γ2 + β2γ1γ2 + β3γ1γ2) − γ 2
1 γ2 − γ1γ

2
2

− α1γ
2
1 − α2γ

2
1 − α1γ

2
2 − α2γ

2
2 − α1γ1γ2 − α2γ1γ2

+ α1β1γ1 + α2β1γ1 + α1β2γ1 + α2β2γ1 + α1β3γ1 + α2β3γ1

+ α1β1γ2 + α2β1γ2 + α1β2γ2 + α2β2γ2 + α1β3γ2 + α2β3γ2,

where the variables {αi}, {βi}, and {γi} are now interpreted as the Chern roots
of E1, E2, and E3, respectively. If one sets Ai = ci(E1), Bi = ci(E2), and Ci =
ci(E3) to be the corresponding Chern classes, then the latter expression be-
comes

[�m] = (B1 − A1)(B2 + C2
1) − C1(B

2
1 + C2) + A1(B1C1 + C2) − B3. (10)

In [Rim14], equation (9), this class is computed to be

−c3(M∨
2 − E∨

2 )+ c2(M∨
2 − E∨

2 )c1(M∨
2 − E∨

2 )+ c2(M∨
2 − E∨

2 )c1(−E∨
1 ), (11)

where the relative Chern classes cn(V∨ −W∨) are defined by the formal expres-
sion ∑

n≥0

cn(V∨ −W∨)ξn =
∑

k≥0 ck(V)(−ξ)k∑
�≥0 c�(W)(−ξ)�

for bundles V and W with respective Chern classes ck(V) and c�(W). Using the
Chern classes Ai , Bi , and Ci as before, we substitute into the expression (11) to
obtain

[�m] = − [(B3
1 + B3 − 2B1B2) − (B2

1 − B2)(A1 + C1)

+ B1(A2 + A1C1 + C2) − (A1C2 + A2C2)]
+ [(B2

1 − B2) − B1(A1 + C1) + (A2 + A1C1 + C2)][B1 − (A1 + C1)]
+ [(B2

1 − B2) − B1(A1 + C1) + (A2 + A1C1 + C2)]A1,

and a little high-school algebra shows that this is identical to (10). We will give
a different computation of this class in Section 8 using iterated residues to ex-
plicitly write the K-class above as a polynomial in double stable Grothendieck
polynomials. Further, in Section 9, we will compare directly to Rimanyi’s iterated
residue operation producing the Schur expansion in cohomology.

Remark 5.4. The leading term of the class (9) is, according to Buch, denoted
by s21(E2 − M2) + s2(E2 − M2)s1(E1). In [Rim14], the same Schur functions



876 Justin Allman

are instead evaluated on M∨
i − E∨

i , but both authors’ notations are interpreted to
mean

sλ = det(hλi+j−i ),

where the h� are the appropriate relative Chern classes defined above.

6. Equivariant Localization and Iterated Residues

Let X be a smooth complex projective variety, and A → X a vector bundle of
rank n. Choose an integer 1 ≤ k ≤ n and set q = n − k. The integers n, k, and
q will be fixed throughout the section. Form the Grassmannization of A over X,
π : Grk(A) → X, with tautological exact sequence of vector bundles S → A →
Q over Grk(A). By convention we suppress the notation of pullback bundles. The
following diagram is useful to keep in mind:

A S � A � Q

X
�
�

π
Grk(A)

��
�

Let {σ1, . . . , σk} and {ω1, . . . ,ωq} be sets of Grothendieck roots for S and Q, re-
spectively. Set R = K(X) and let f be a Laurent polynomial in R[σ±1

i ;ω±1
j ] sep-

arately symmetric in the σ and ω variables (where 1 ≤ i ≤ k and 1 ≤ j ≤ q). The
symmetry of f implies that it represents a K-class in K(Grk(A)). The purpose of
this section is to give an explanation of the push-forward map π∗ : K(Grk(A)) →
K(X) applied to f .

Many formulas for π∗ exist in the literature. For example, Buch [Buc02a, The-
orem 7.3] has given a formula in terms of stable Grothendieck polynomials and
the combinatorics of integer sequences. We utilize the method of equivariant lo-
calization. The following formula is well known to experts, deeply embedded
in the folklore of the subject, and, as such, a single (or original) reference is un-
known to the author. Following the advice of [FS12], we refer the reader to various
sources, namely [KR99] and [CG97].

Proposition 6.1. Let {α1, . . . , αn} be Grothendieck roots for A and set [n] =
{1, . . . , n}. Let [n, k] denote the set of all k-element subsets of [n], and for any sub-
set J = {j1, . . . , jr} ⊂ [n], let αJ denote the collection of variables {αj1, . . . , αjr }.
With this notation, π∗ acts by

f (σ1, . . . , σk;ω1, . . . ,ωq) �→
∑

I∈[n,k]

f (αI ;αĪ )∏
i∈I,j∈Ī (1 − αi/αj )

,

where Ī denotes the complement [n] \ I .
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Example 6.2. Suppose that A and B are both vector bundles of rank 2, and let
{α1, α2} be as before. Let {β1, β2} be Grothendieck roots of B. Form the Grassm-
annization Gr1(A) = P(A) and consider the class

f (σ,ω) =
(

1 − β1

ω

)(
1 − β2

ω

)
∈ K(P(A)).

The expert will recognize this expression as the K-class associated to the structure
sheaf of the subvariety in P(A) defined by the vanishing of a generic section
P(A) → Hom(B,Q). In any event, applying Proposition 6.1 gives that

π∗(f (σ,ω)) = (1 − β1/α2)(1 − β2/α2)

(1 − α1/α2)
+ (1 − β1/α1)(1 − β2/α1)

(1 − α2/α1)
,

an expression which we concluded was equal to 1−β1β2/(α1α2) in Example 4.2.
In comparison to Buch’s formula (see [Buc02a], Theorem 7.3), we have set f =
G2(Q−B) and obtained that π∗(f ) = G1(A−B).

Observe that, in general, the expression obtained from applying Proposition 6.1
has many terms (the binomial coefficient

(
n
k

)
to be precise) and by this measure

is quite complicated. Hence, we seek to encode the expression in a more compact
form, and this is accomplished by the following proposition, which is just a clever
rewriting of the localization formula, pointed out to the author by Rimányi in
correspondence with Szenes.

Proposition 6.3. Let z = {z1, . . . , zn} be an alphabet of ordered, commuting
variables. If f has no poles in R = K(X) (aside from zero and the point at infin-
ity), then in the setting of Proposition 6.1 we have that π∗ acts by

f (σ1, . . . , σk;ω1, . . . ,ωq) �→ Res
z=0,∞

(
f (z)

∏
1≤i<j≤n(1 − zj /zi)∏n

i,j=1(1 − zi/αj )
d log z

)
m,

where d log z = ∏n
i=1 d log(zi) = ∏n

i=1(dzi)/zi .

Proof. The proof is a formal application of the fact that the sum of the residues at
all poles (including infinity) vanishes. We leave the details to the reader, but for
a similar proof in the case of equivariant localization and proper push-forward in
cohomology, see [Zie14]. �

If the class represented by f depends only on the variables σi , then the expres-
sion above can be dramatically simplified – namely, one needs to utilize only the
variables zi for 1 ≤ i ≤ k.

Corollary 6.4. If f = f (σ1, . . . , σk) depends only on the Grothendieck roots of
S , then setting z = {z1, . . . , zk}, π∗ acts by

f (σ1, . . . , σk) �→ Res
z=0,∞

(
f (z)

∏
1≤i<j≤k(1 − zj /zi)∏

1≤i≤k,1≤j≤n(1 − zi/αj )
d log z

)
.
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Proof. We will prove the result in the case n = 2 and s = q = 1; the general case
is analogous. Let f (σ ) represent a class in K(Grs(A)). Proposition 6.3 implies
that π∗(f ) is

Res
z=0,∞

(
f (z1)

(1 − z2/z1) d log z∏2
i,j=1(1 − zi/αj )

)
.

Taking the “finite” residues of z1 = α1 and z1 = α2, we obtain that this is equal to

Res
z2=0,∞

(
f (α1)�����

(1 − z2/α1) dz2

�����
(1 − z2/α1)(1 − α1/α2)(1 − z2/α2)z2

+ f (α2)�����
(1 − z2/α2) dz2

�����
(1 − z2/α2)(1 − α2/α1)(1 − z2/α1)z2

)
.

In both terms of this expression, the only parts that depend on z2 have the form
1/((1 − z2/αi)z2), and Example 4.1 implies that residues of this type always
evaluate to 1. Observe then that the expression is equivalent to what we would
have obtained by removing all the factors involving z2 at the beginning. �

We can obtain a similar expression for classes depending only on the variables
ωj , which requires only n − k = q residue variables.

Corollary 6.5. If f = f (ω1, . . . ,ωq) depends only on the Grothendieck roots
of Q, then setting z = {z1, . . . , zq}, π∗ acts by

f (ω1, . . . ,ωq) �→ Res
z=0,∞

(
f (z−1

1 , . . . , z−1
q )

∏
1≤i<j≤k(1 − zj /zi)∏

1≤i≤q,1≤j≤n(1 − αjzi)
d log z

)
.

Proof. We use the fact that Grs(A) is homeomorphic to the Grassmannian fibra-
tion Grq(A∨), over which the tautological exact sequence Q∨ → A∨ → S∨ lies.
We are now in a situation to apply the previous corollary, once we recognize that
for any bundle B, if {βi}1≤i≤rankB is a set of Grothendieck roots, then the corre-
sponding Grothendieck roots of B∨ are supplied by {β−1

i }1≤i≤rankB . �

7. Proof of the Main Theorem

In this section, we prove Theorem 5.1 and use the notation of Section 5 except
where otherwise specified. We will need the language and notation of Reineke’s
construction, which is detailed in Section 3. We also introduce the following no-
tation. If A = {a1, . . . , an} and B = {b1, . . . , bm}, then we write(

1 − A

B

)
=

∏
1≤i≤n
1≤j≤m

(
1 − ai

bj

)
, (1 −AB) =

∏
1≤i≤n
1≤j≤m

(1 − aibj ).

In the special case that A and B are the respective sets of Grothendieck roots of
vector bundles A and B, we will write A• = A and B• = B. We can also mix
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these notations and write, for example,(
1 − A•

B

)
=

∏
1≤i≤n
1≤j≤m

(
1 − ai

bj

)
,

(
1 − A

B•

)
=

∏
1≤i≤n
1≤j≤m

(
1 − ai

bj

)
,

(1 −A•B) =
∏

1≤i≤n
1≤j≤m

(1 − aibj ), (1 −AB•) =
∏

1≤i≤n
1≤j≤m

(1 − aibj ),

provided that A corresponds to a set of Grothendieck roots, and B represents a set
of some other formal variables (as on the left) or vice versa (as on the right). This
is not to be confused with the notation E• → X used to denote a Q-bundle. The
context should always make clear the intended meaning of the “bullet” symbol as
a subscript to calligraphic letters.

We will prove Theorem 5.1 by iteratively understanding the sequence of maps
ρ

rk
ik

in the Reineke resolution, which break up into a natural inclusion followed by
a natural projection from a Grassmannization (cf. Section 3). Our first step is the
following lemma, which provides a formula for the natural inclusion.

Lemma 7.1. Let X be a smooth base variety, and M → E a map of vector bundles
over X. Let 0 ≤ s ≤ rank(E) and form the Grassmannization π : Grs(E) → X

with tautological exact sequence S → E → Q. Set Z = Z(M → Q) ⊂ Grs(E)

and let ι : Z ↪→ Grs(E) denote the natural inclusion. If f ∈ K(Z) is a class ex-
pressed entirely in terms of bundles pulled back from Grs(E), then ι∗ : K(Z) →
K(Grs(E)) acts on f by

f �→ f ·
(

1 − M•
Q•

)
.

Proof. Set r = rank(Q) = rank(E) − s and m = rank(M). Because of our as-
sumption on f , we know that ι∗(f ) = ι∗(ι∗(f )), and therefore the adjunction
formula implies that ι∗(f ) = f · ι∗(1). The image of ι∗(1) is exactly the class
[OZ(M→Q)] ∈ K(Grs(E)), which is given by the K-theoretic Giambelli–Thom–
Porteous theorem, proved in [Buc02a], Theorem 2.3. Explicitly,

ι∗(1) = GR(Q−M),

where GR denotes the double stable Grothendieck polynomial associated to the
rectangular partition R = (m)r , that is, the partition whose Young diagram has
r rows, each containing m boxes. The result of evaluating GR on the bundles in
question is given, for example, by [Buc02b], equation (7.1)

GR(Q−M) = GR(x1, . . . , xr ;y1, . . . , ym) =
∏

1≤i≤r
1≤j≤m

(xi + yj − xiyj )

with the specializations xi = 1 − ω−1
i and yj = 1 − μj , where Q• = {ωi}ri=1

and M• = {μj }mj=1 denote the respective Grothendieck roots. The result of this
substitution is exactly the statement of the lemma. �
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For the Dynkin quiver Q, smooth complex projective variety X, and quiver cycle
�, let E• → X be a generic Q-bundle, and i = (i1, . . . , ip) and r = (r1, . . . , rp) be
a resolution pair for �. We will show that at each step in the Reineke resolution,
the result can be written as an iterated residue entirely in terms of residue vari-
ables (i.e., the alphabets zk) and Grothendieck roots only of the bundles Ei or the
tautological quotient bundles constructed at previous steps. Moreover, the form of
this result is arranged in such a way to evidently produce the formula of the main
theorem.

By Corollary 3.2 we must begin with the image of (ρ
rp
ip

)∗(1). Set i = ip ∈ Q0

and A = Ei . Write T (i) = {t1, . . . , t�} ⊂ Q0 and denote Etj = Bj . Recall that
whenever j ∈ Q0 appears in the Reineke resolution sequence i, it is subsequently
replaced with a tautological subbundle. For any bundle F and Grassmannization
Grs(F), we will denote the tautological subbundle by SF . If this is done multiple
times, we let SnF denote the tautological subbundle over Grs′(Sn−1F). Simi-
larly, we denote the tautological quotient over Grs(F) by QF .

Suppose that the vertex i ∈ Q0 appears n times in i and, moreover, that each
tail vertex tj appears nj times. Set

Y = (· · · (X)i1,r1 · · · )ip−1,rp−1, M =
�⊕

j=1

SnjBj ,

Z = Z(M → QSn−1A).

Then the composition ρ
rp
ip

= πp ◦ ιp is depicted diagrammatically as follows:

M � Sn−1A SnA � Sn−1A � QSn−1A M � SnA

Y �
πp

�

�

Grrp (Sn−1A)

�
�

ιp

�
�

Z

�

�

where the notation Grr (F) denotes that the rank of the tautological quotient is r .
Starting with the class 1 ∈ K(Z), Lemma 7.1 implies that (ιp)∗(1) is the prod-

uct (1 − M•/(QSn−1A)•). Now for any family of variables T, bundle F , and
Grassmannization Grs(F), we have the formal identity

(1 −F•T) = (1 − (SF)•T)(1 − (QF)•T), (12)

and applying this many times, we can rewrite (ιp)∗(1) as

�∏
j=1

(1 − (Bj )•/(QSn−1A)•)∏nj

k=1(1 − (QSnj −kBj )•/(QSn−1A)•)
.

Using Corollary 6.5 to compute (πp)∗ of the latter, we obtain that (ρ
rp
ip

)∗(1) is
given by

Res
zp=0,∞

( �∏
j=1

(1 − (Bj )•zp)

(1 − (Sn−1A)•zp)

Dp∏nj

k=1(1 − (QSnj −kBj )•zp)

)
,
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but using equation (12) on the denominator factors (1 − (Sn−1A)•zp), this can
also be rewritten as

Res
zp=0,∞

(
RpDp

∏n
w=1(1 − (QSn−wA)•zp)∏�

j=1
∏nj

k=1(1 − (QSnj −kBj )•zp)

)
. (13)

Now observe that when the alphabets zu for u < p are utilized as residue variables
to push-forward classes containing only Grothendieck roots corresponding to tau-
tological quotient bundles (as in Corollary 6.5) through the rest of the Reineke
resolution, the remaining rational function will produce exactly the interference
factor Ip . Expression (13) depends only on bundles pulled back to Y from earlier
iterations of the Reineke construction, and so Lemma 7.1 again applies. Further-
more, the formal algebraic manipulations required to compute each subsequent
step in the resolution are completely analogous to those previously given, and
therefore the result of the composition (ρr

i )∗ = (ρ
r1
i1

)∗ ◦ · · · ◦ (ρ
rp
ip

)∗(1) is exactly
the expression of equation (6). This proves Theorem 5.1.

8. Expansion in Terms of Grothendieck Polynomials

Let λ = (λ1, . . . , λr ) be an integer sequence (not necessarily a partition), and
A and B vector bundles of respective ranks n and p. Let A = {αi}ni=1 and
B = {βj }pj=1 be sets of Grothendieck roots for A and B, respectively. Let z =
{z1, . . . , zr } and set l = p − n. Now define the factors

μλ(z) =
r∏

i=1

(1 − zi)
λi−i ,

�(z) =
∏

1≤i<j≤r

(
1 − zj /zi

)
,

P (A,B, z) =
r∏

i=1

∏
b∈B(1 − bzi)

(1 − zi)l
∏

a∈A(1 − azi)
.

The double stable g-polynomial gλ(A−B) corresponding to the integer sequence
λ is defined to be

gλ(A−B) = Res
z=0,∞

(μλ(z) · �(z) · P(A,B, z) · d log z). (14)

This definition was pointed out to the author by Rimányi and Szenes, who have
proven the following theorem in the upcoming paper [RS14].

Theorem 8.1. For any integer sequence λ = (λ1, . . . , λr ) and any vector bundles
A and B, the double stable g-polynomial gλ(A − B) defined by equation (14)
agrees with the double stable Grothendieck polynomial Gλ(A − B) defined by
[Buc08], equation (7).
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As a result, we henceforth use only the notation Gλ for the (double) stable
Grothendieck polynomials and take equation (14) as their definition. Combin-
ing this with our main theorem, we obtain the following steps to expand the class
[O�] in terms of the appropriate Grothendieck polynomials. Using the notation
of Theorem 5.1:

• For each i ∈ Q0, collect families of residue variables zk such that ik = i, say
zj1, . . . , zj�

.
• Combine these into the new families ui = {ui1, ui2, . . . , uini

} = zj1 ∪ · · · ∪ zj�

where j1 < · · · < j� and observe that the numerators of the interference factors
Ik multiplied with the discriminant factors Dk produce exactly the products
�(ui ).

• For each i ∈ Q0, let li = rank(Ei ) − rank(Mi ) and form the rational function
F(ui ) whose denominator is exactly the same as that of the product of all in-
terference factors, but whose numerator is the product

∏
i∈Q0

∏
u∈ui

(1 − u)−li .

• For all i and j , substitute uij = 1 − vij into F and multiply by the factor∏
i∈Q0

∏ni

j=1 v
j
ij to form a new rational function F ′.

• Expand F ′ as a Laurent series according to the convention that for any arrow
a ∈ Q1, vt(a)j � vh(a)k for any j or k.

• Finally, the expansion of [O�] in Grothendieck polynomials is obtained by
interpreting the monomial

∏
i∈Q0

vλi

i �
∏
i∈Q0

Gλi
(Ei −Mi ),

where for the integer sequence λi = (λi1, . . . , λini
), vλi

i denotes the multiindex

notation
∏ni

j=1 v
λij

ij , which we adopt throughout the sequel.

Example 8.2. Consider the A2 quiver with vertices labeled {1 → 2}. Consider the
orbit closure �m(E•) corresponding to m11 = m12 = m22 = 1 and hence having
dimension vector (2,2). From the directed partition �+ = {φ22} ∪ {φ12, φ11} we
obtain the resolution pair i = (2,1,2) and r = (1,2,1). Following the recipe of
Theorem 5.1, set

z1 = {x}, z1 = {y1, y2}, z3 = {z}.
Let E• → X be the corresponding generic Q-bundle and set E1 = A, E2 = B,
E1 = {α1, α2}, E2 = {β1, β2}. Notice that this implies that M1 = {} and M2 =
E1 = {α1, α2}. Applying the main theorem, we obtain that [O�(E•)] is equal to
applying the operation

Res
x=0,∞

Res
y2=0,∞

Res
y1=0,∞

Res
z=0,∞
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to the differential form
( 2∏

i=1

1 − αix

1 − βix

)
(1 − y2/y1)∏2

i,j=1(1 − αiyj )

( 2∏
i=1

1 − αiz

1 − βiz

)
(1 − z/x)∏2

j=1(1 − z/yj )

3∏
k=1

d log zk.

Renaming x = u1 and z = u2 and setting u = {u1, u2} and y = z2 = {y1, y2}, this
is further equal to

P(E1,M1,y)P (E2,M2,u)�(y)�(u)(d log y)(d log u)

times the rational function

1∏2
i=1(1 − yi)2

∏2
j=1(1 − u2/yj )

.

Setting ai = 1 − yi and bi = 1 − ui for 1 ≤ i ≤ 2 and multiplying this rational
function by a1a

2
2b1b

2
2 produces the rational function

b1(1 − a1)(1 − a2)

a1(1 − a1/b2)(1 − a2/b2)
, (15)

and according to the previous itemized steps, once this is expanded as a Lau-
rent series, we can read off the quiver coefficients by interpreting aI bJ �
GI(A)GJ (B − A). Since GI,J = GI whenever J is a sequence of nonpositive
integers and G∅ = 1 (see [Buc02a], Section 3), the rational function (15) is equiv-
alent (for our purposes) to the one obtained by setting b2 = 1, namely the function
a−1

1 b1 and hence simply to b1. This corresponds to the Grothendieck polynomial
G1(B − A), and we conclude that the quiver efficient c(∅,(1))(�m) = 1, whereas
all others are zero.

Example 8.3. Consider the inbound A3 quiver {1 → 2 ← 3} and the same orbit
and notation of Example 5.3. Following the previous itemized list, in equation
(7), set t1 = x, t2 = z; u1 = v, u2 = y1; and u3 = y2 to obtain the families w =
{w1,w2}, u = {u1, u2, u3}, and t = {t1, t2}, associated to the vertices 1, 2, and 3,
respectively. In the new variables, we check that [O�(E•)] is given by applying
the iterated residue operation Resw=0,∞ Rest=0,∞ Resu=0,∞ to

P(E1,M1,w)P (E2,M2,u)P (E3,M3, t)

× �(w)�(u)�(t)(d log w)(d log u)(d log t)

times the rational function
∏3

i=1(1 − ui)∏2
i=1(1 − wi)2

∏2
i=1(1 − ti )2

3∏
i=2

1∏
s∈{t1}∪w(1 − ui/s)

.

The order of the residues above is important; in particular, the residues with re-
spect to u must be done first. In general, for each a ∈ Q1, the residues with respect
to variables corresponding to the vertex t (a) must be computed before those cor-
responding to the vertex h(a). Comparing the above with equation (14) and setting
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ai = 1 − wi , bj = 1 − uj , and ci = 1 − ti for 1 ≤ i ≤ 2 and 1 ≤ j ≤ 3, observe
that the quiver coefficients can be obtained by expanding the rational function

(
∏2

i=1 ai
i )(

∏3
i=1 bi

i )(
∏2

i=1 ci
i )b1b2b3(1 − a1)

2(1 − a2)
2(1 − c1)

2

a2
1a2

2c2
1c

2
2(b2 − a1)(b2 − a2)(b2 − c1)(b3 − a1)(b3 − a2)(b3 − c1)

as a Laurent series and using the convention that

aI bJ cK � GI (E1)GJ (E2 − E1 ⊕ E3)GK(E3).

We recommend rewriting this Laurent series in the form

b2
1b3(1 − a1)

2(1 − a2)
2(1 − c1)

2

a1c1
∏

s∈{b2,b3}(1 − a1/s)(1 − a2/s)(1 − c1/s)

and expanding in the domain aj , c1 � bi . In the preceding algebra, we repeatedly
use the identity that if p �→ (1 − f ) and q �→ (1 − g), then

1

1 − p/q
�→ 1

f
· (1 − g)

(1 − g/f )
. (16)

In this example, the codimension of �m is 3 (cf. equation (9)), and we note that
rational factor b2

1b3/(a1c1) has odd degree. Thus, when the remaining factors are
expanded, the signs alternate as desired. The difficulty is that most monomials in
this expansion do not correspond to partitions, and, as in the previous example,
we must use a recursive recipe (see equation (3.1) of [Buc02a]) to expand these
in the basis {Gλ} for partitions λ, introducing new signs in a complicated way.
Nonetheless, a computation in Mathematica confirms that the quiver coefficients
are

c(∅,(2,1),∅)(�m) = 1, c((1),(2),∅)(�m) = 1, c((1),(2,1),∅)(�m) = −1,

and all others are zero, which agrees with equation (9).

Example 8.4 (Giambelli–Thom–Porteous formula). Consider again the A2

quiver with vertices labeled {1 → 2}. Only now consider the general orbit closure
�m(E•) corresponding to m = (m11,m12,m22) and hence having dimension vec-
tor (m11 +m12,m12 +m22). Let E• be a generic Q-bundle and write e1 = rank(E1)

and e2 = rank(E2). From the directed partition �+ = {φ22}∪ {φ12, φ11} we obtain
the resolution pair i = (2,1,2) and r = (m22, e1,m12). Observe that the compo-
sition of the first two mappings of the Reineke resolution ρ

e1
1 ◦ ρ

m22
2 is a homeo-

morphism since in the notation of Section 7, it represents the sequence of maps

Z(SE1 → QSE2) � Gr0(SE2) � Z(0 → QE1)

� Gr0(E1) � Z(E1 → QE2),

and SE1 has rank zero. Hence, we need only to compute the image (ρ
m22
2 )∗(1),

and this is equivalent to applying Theorem 5.1 to the updated resolution pair i =
(2), r = (m22). The fact that this computation simplifies is related to the fact that
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in Example 8.2, the rational function (15) can be simplified to a monomial by
setting b2 = 1. We obtain that

[O�(E•)] = Res
z=0,∞

(
(1 − (E1)•z•)
(1 − (E2)•z•)

�(z) d log z
)

,

where z = (z1, . . . , zm22).
We set l = e2 − e1 and consider the product

∏m22
i=1(1 − ui)

−l and therefore
finally the monomial

∏m22
i=1 vi−l

i to obtain that

[O�(E•)] = G(1−l,2−l,...,m22−l)(E2 − E1).

Notice that the integer sequence 1 − l,2 − l, . . . ,m22 − l is strictly increasing
and therefore not a partition. However, GI,p−1,p,J = GI,p,p,J for any integer se-
quences I and J and any integer p (see Section 3 of [Buc02a]), and so applying
this iteratively yields the Grothendieck polynomial GR(E2 − E1) where R is the
rectangular partition (m22 − l)m22 . Finally, if one sets r = m12, then this has the
pleasing form (e1 − r)(e2−r) (cf. [Buc02a], Theorem 2.3). One thinks of “r” de-
noting the rank of the map f : E1 → E2 since, after all, �(E•) is actually the
degeneracy locus {x ∈ X : rank(f ) ≤ m12}. We conclude that the quiver coeffi-
cient c(∅,R)(�) = 1 and all others are zero.

9. Comments Regarding Rimanyi’s Formula and Buch’s Conjecture

As in Example 5.3, we again wish to compare our method to Rimanyi’s iterated
residue formula in cohomology. In particular, we will produce the formula of
[Rim14], Example 6.2, which gives a Schur expansion for the cohomology class.

9.1. Another Inbound A3 Example

We consider again the inbound A3 quiver and the same orbit as in Examples 5.3
and 8.3. However, this time we choose the directed partition

�′ = {φ22, φ12} ∪ {φ13, φ33}
and therefore the resolution pair i = (1,2,1,3,2) and r = (1,2,1,2,1). Applying
Theorem 5.1 and following the itemized steps of Section 8 along with the identity
of equation (16), we obtain that the desired K-class is given by applying the
operation

aI bJ cK � GI (E1)GJ (E2 − E1 ⊕ E3)GK(E3) (17)

to the expansion of the rational function

b1b
2
2

a1c1
· (1 − a1)

3(1 − a2)(1 − c1)(1 − c2)

(1 − a1/b1)(1 − a1/b2)(1 − a1/b3)(1 − a2/b3)(1 − c1/b3)(1 − c2/b3)
.

(18)

Here we have again rearranged the expression so that it can be easily expanded in
the domain ai, cj � bk . Notice that when expression (18) is expanded, b3 appears
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with only nonpositive exponents. Thus, as in the analysis of Example 8.2, we set
b3 = 1 to obtain that the K-class corresponds to the simplified rational function

b1b
2
2

a1c1
· (1 − a1)

2

(1 − a1/b1)(1 − a1/b2)
,

in which c1 appears with only negative exponents. Thus, we further simplify to
the rational function

b1b
2
2

a1
· (1 − a1)

2

(1 − a1/b1)(1 − a1/b2)
.

Finally, the following lemma allows another simplification.

Lemma 9.1 (Allman [All14], Lemma C.6(a)). If f (b1, b2, . . .) is a rational func-
tion symmetric in bi and bi+1, then f · (1 − b−1

i ) is equivalent to zero under the
exponent-to-subscript operation of equation (17).

The lemma is equivalent to relation (3.1) of [Buc02a], namely that

GI,p,q,J − GI,p+1,q,J = GI,q,p+1,J − GI,q−1,p+1,J

for any integer sequences I and J and any integers p and q . In our example,
setting f to be the rational function

b2
1b

2
2

a1
· (1 − a1)

2

(1 − a1/b1)(1 − a1/b2)
,

the lemma implies that we may use f to compute the desired K-class. Finally, the
leading (lowest degree) term of f is given by the rational function

b2
1b

2
2

a1(1 − a1/b1)(1 − a1/b2)
,

and this is precisely the function obtained by Rimányi as an argument for the
iterated residue operation that produces the Schur expansion of the desired coho-
mology class via the convention

aI bJ cK � sI (E1)sJ (E2 − (E1 ⊕ E2))sK(E3).

9.2. Concluding Remarks

We believe that Rimanyi’s cohomological iterated residue formula can always
be obtained from a process analogous to the previous one. However, to do so in
general, one needs to develop and organize operations on the level of rational
functions like (18) to systematically produce the correct expression. This entails
proving more general results in the spirit of Lemma 9.1. We have taken some
initial steps in this area; for example, see [All14] and [AR14].

Furthermore, similar machinery is required to attack the Buch conjecture. One
needs operations that alter rational functions to plainly produce expansions hav-
ing partitions in their exponents and alternating in total degree. For example, to
compute the K-class of the orbit from the example in the previous subsection
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(and therefore that of Examples 5.3 and 8.3), one would prefer to see the rational
function

b2
1b2(1 − a1)

(1 − a1/b2)
= b2

1b2(1 − a1) + a1b
2
1(1 − a1)

(1 − a1/b2)
. (19)

Since b2 appears with only nonpositive exponents in the second term on the right-
hand side, this expression is equivalent to the polynomial

b2
1b2(1 − a1) + a1b

2
1,

and applying our exponent-to-subscript convention, we immediately obtain the
quiver coefficients from Example 8.3. To date, the author has not been able to di-
rectly obtain the rational function of equation (19) from the methods of this paper.
This raises at least two questions. Is there a “best” resolution pair for each quiver,
dimension vector, and orbit; and if so, is it canonical in some way? Second, is
there a different resolution, akin to the process of Reineke, which can automati-
cally produce such a “good” rational function?
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