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The Additive Problem with One Cube
and Three Cubes of Primes

Lilu Zhao

Abstract. In this paper, we establish that all positive integers up to
N but at most O(N25/27+ε) exceptions can be represented as the sum
of a cube and three cubes of primes. This improves upon the earlier
result O(N17/18+ε) obtained by Ren and Tsang [4].

1. Introduction

In 1949, Roth [5] investigated the expression of positive integers n as the sum of
a cube and three cubes of primes, that is,

n = x3 + p3
1 + p3

2 + p3
3, (1.1)

where x is a positive integer, and p1, p2, p3 are primes. The philosophy of the
Hardy–Littlewood circle method suggests that every sufficiently large integer n

can be expressed in the form (1.1). Roth [5] proved that almost all positive integers
n can be written as (1.1). In order to introduce Roth’s theorem more precisely, we
denote by r(n) the number of representations of n in the form (1.1) and define

E(N) = |{1 ≤ n ≤ N : r(n) = 0}|. (1.2)

Roth’s theorem actually states that E(N) � N log−A N for arbitrary large con-
stant A > 0. Roth’s theorem has been refined by Ren [2] to

E(N) � N169/170. (1.3)

Recently, further improvement has been obtained in a series of papers by Ren and
Tsang [3; 4]. In particular, it was proved in [3] that E(N) � N1,271/1,296+ε , and
it was established in [4] that

E(N) � N17/18+ε. (1.4)

In this paper, we establish the following result.

Theorem 1.1. Let E(N) be defined in (1.2). Then for any ε > 0, we have

E(N) � N25/27+ε. (1.5)

We establish Theorem 1.1 by the Hardy–Littlewood circle method. We employ
the technique developed by Vaughan [6; 7]. This technique was recently used by
Koichi Kawada to prove that all large even integers can be written as the sum
of seven cubes of primes and a cube with at most two prime factors. In prior
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works [2; 3; 4], the proof is to investigate the expression n = x3 + p3
1 + p3

2 + p3
3,

where P < x,p1 ≤ 2P , P 5/6 < p2,p3 ≤ 2P 5/6, and n1/3 � P � n1/3. In this
paper, we investigate the representation n = x3 +p3

1 +p3
2 +p3

3 with P < x ≤ 2P ,
P 5/6 < p1 ≤ 2P 5/6, and P 25/36 < p2,p3 ≤ 2P 25/36. For the contribution from
the minor arcs, we shall essentially consider the generating function∑

h�√
P

∑
P<x≤2P

e(((x + h)3 − x3)α).

When |qα − a| ≤ P −3/2−ε for some a ∈ Z and q ∈ N with 1 ≤ q ≤ P 1−ε and
(a, q) = 1, we consider cancelations not only from the summation over x but
also from the summation over h. For the technical simplification, we introduce a
smooth weight. Then we can obtain very nice approximations to the generating
functions (see Lemma 3.1 in Section 3).

As usual, we abbreviate e2πiz to e(z). The letter p, with or without a subscript,
always denotes a prime number. We use ε to denote a sufficiently small positive
number. We denote by φ(n) the Euler function.

2. Preliminaries

Suppose that N is a sufficiently large real number. Let

P = (N/2)1/3, S1 = P 5/6, S2 = P 25/36.

We define the smooth function

w0(t) =
{

exp( 1
(t−3/2)2−1/4

) if 1 < t < 2,

0 otherwise,

and set

w(x) = w0(x/P ).

We shall investigate

R(n) =
∑

P<x≤2P
S1<p1≤2S1

S2<p2,p3≤2S2
x3+p3

1+p3
2+p3

3=n

w(x)

( 3∏
j=1

logpj

)
.

In order to apply the circle method, we introduce the generating functions. Let

f (α) =
∑
x∈Z

w(x)e(x3α). (2.1)

For 1 ≤ j ≤ 2, we define

gj (α) =
∑

Sj <p≤2Sj

(logp)e(p3α). (2.2)
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Let

M =
⋃

q≤P 5/36

q⋃
a=1

(a,q)=1

[
a

q
− P 13/18

qN
,
a

q
+ P 13/18

qN

]
,

and let

m =
[

1

P 3/2
,1 + 1

P 3/2

] ∖
M.

Lemma 2.1 (Lemma 3.1 [4]). Suppose that α is a real number and that |α −
a/q| ≤ q−2 for some a ∈ Z and q ∈ N with (a, q) = 1. Let β = α − a/q . Then for
1 ≤ j ≤ 2, we have

gj (α) � qε(logSj )
c

(
S

1/2
j

√
q(1 + S3

j |β|) + S
4/5
j + Sj√

q(1 + S3
j |β|)

)
,

where c is a constant.

Lemma 2.2 (Lemma 8.5 [9]). Suppose that α is a real number and that there exist
a ∈ Z and q ∈N with

(a, q) = 1, 1 ≤ q ≤ S
3/2
1 , and |qα − a| ≤ S

−3/2
1 .

Then for 1 ≤ j ≤ 2, we have

gj (α) � S
1−1/12+ε
j + q−1/6+εS1+ε

j

(1 + S3
j |α − a/q|)1/2

.

Lemma 2.3. Suppose that α is a real number and that there exist a ∈ Z and q ∈ N

with

(a, q) = 1, 1 ≤ q ≤ S
3/2
1 , and |qα − a| ≤ S

−3/2
1 .

Then for 1 ≤ j ≤ 2, we have

gj (α) � S
1−1/12+ε
j + S1+ε

j

q1/2(1 + S3
j |α − a/q|)1/2

.

Proof. This follows from Lemma 2.1 and Lemma 2.2 by the standard argument.
�

Lemma 2.4. For α ∈ m, we have

g1(α)2g2(α)2 � S2
1S2

2P −2/9+ε.

Proof. By Dirichlet’s approximation theorem, there exist a ∈ Z and q ∈ N with

(a, q) = 1, 1 ≤ q ≤ S
3/2
1 , and |qα − a| ≤ S

−3/2
1 .
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If q ≤ P 5/36 and |α − a/q| ≤ S
1/6
2 /(qS3

2), then we have 1 ≤ a ≤ q and |α −
a/q| > q−1P 13/18N−1 due to α ∈m. By Lemma 2.1,

g1(α) � S
5/6+ε

1 + S1+ε
1√

q(1 + S3
1 |α − a/q|)

� S1P
−1/9+ε.

Otherwise, by Lemma 2.3 we have

gj (α) � S
1−1/12+ε
j for 1 ≤ j ≤ 2.

We conclude from the above that g1(α)2g2(α)2 � S2
1S2

2P −2/9+ε for any α ∈ m.
�

We define

S(q, a,m) =
q∑

b=1

e

(
ab3 − mb

q

)
, S(q, a) = S(q, a,0),

S∗(q, a) =
q∑

b=1
(b,q)=1

e

(
ab3

q

)
,

and

Ch(q, a) =
q∑

x=1

e

(
a(3hx2 + 3h2x + h3)

q

)
.

We introduce the multiplicative function �(q) by taking

�(p3u+v) =
{

3p−u−1/2 when u ≥ 0 and v = 1,

p−u−1 when u ≥ 0 and 2 ≤ v ≤ 3.

Whenever (a, q) = 1, we have

q−1/2 � |S(q, a)|/q � �(q) � q−1/3. (2.3)

Lemma 2.5. We have

q∑
b=1

Cb(q, a)e(−bm/q) = |S(q, a,m)|2.

Proof. By the definition of Cb(q, a),

q∑
b=1

Cb(q, a)e(−bm/q) =
q∑

x=1

q∑
b=1

e

(
a(3bx2 + 3b2x + b3) − bm

q

)
.
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We deduce by changing variables that
q∑

b=1

Cb(q, a)e(−bm/q)

=
q∑

x=1

q∑
y=1

e

(
a(3(y − x)x2 + 3(y − x)2x + (y − x)3) − (y − x)m

q

)

=
q∑

x=1

q∑
y=1

e

(
a(y3 − x3) − (y − x)m

q

)
= |S(q, a,m)|2.

The desired conclusion is established. �

Lemma 2.6. If (a, q) = 1, then we have

S(q, a,m) � q1/2+ε(q,m)1/4.

Proof. If (q1, q2) = 1, then

S(q1q2, a,m) = S(q1, aq2
2 ,m)S(q2, aq2

1 ,m).

Therefore, it suffices to prove that

S(pα, a,mpβ) � pα/2+ε(pα,pβ)1/4 if (am,p) = 1. (2.4)

In view of Lemma 4.1 in [8] and (2.3), the above estimate holds when α ≤ β or
β = 0. Then we assume that 1 ≤ β < α. By changing variables,∑

1≤x≤pα

e

(
ax3 − mpβx

pα

)
=

∑
1≤y≤pα−1

e

(
ay3 − mpβy

pα

) ∑
1≤x≤p

e

(
3axy2

p

)
.

(2.5)

First of all, we suppose that p �= 3. Then we get

S(pα, a,mpβ) = p
∑

1≤y≤pα−2

e

(
apy3 − mpβ−1y

pα−2

)
.

Clearly, (2.4) holds for α = 2, and next we consider α ≥ 3. If β = 1, then by a
change of variables we can obtain S(pα, a,mpβ) = 0. If β ≥ 2, then

S(pα, a,mpβ) = p2
∑

1≤y≤pα−3

e

(
ay3 − mpβ−2y

pα−3

)
= p2S(pα−3, a,mpβ−2).

The desired estimate follows from the iterative argument.
Now suppose that p = 3, and we only need to consider β ≥ 2. By (2.5) and a

change of variable we get

S(pα, a,mpβ) = p
∑

1≤y≤pα−2

e

(
ay3 − mpβy

pα

) ∑
1≤x≤p

e

(
3apα−2xy2

pα

)

= p2S(pα−3, a,mpβ−2).
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The desired estimate follows again from the iterative argument. We complete the
proof. �

Lemma 2.7. For y ≥ 1, we have∑
1≤h<y

Ch(q, a) = y

q
|S(q, a)|2 + O(q1+ε).

Proof. We introduce the congruence condition to deduce that∑
1≤h<y

Ch(q, a) =
∑

1≤b≤q

Cb(q, a)
∑

1≤h<y
h≡b(mod q)

1

= 1

q

∑
1≤m≤q

∑
1≤b≤q

Cb(q, a)
∑

1≤h<y

e

(
m(h − b)

q

)

= 1

q

∑
1≤m≤q

∑
1≤b≤q

Cb(q, a)e(−bm/q)
∑

1≤h<y

e(hm/q).

By Lemma 2.5 we get∑
1≤h<y

Ch(q, a) = 1

q

∑
1≤m≤q

|S(q, a,m)|2
∑

1≤h<y

e(hm/q).

Applying the estimate
∑

h<y e(hm/q) � 1/‖m/q‖ for 1 ≤ m ≤ q − 1, we obtain

∑
1≤h<y

Ch(q, a) = y + O(1)

q2
|S(q, a)|2 + O(1)

q

∑
1≤m≤q−1

|S(q, a,m)|2 1

‖m/q‖ .

We complete the proof by applying Lemma 2.6. �

Let

S(n) =
∞∑

q=1

1

qφ3(q)

q∑
a=1

(a,q)=1

S(q, a)S∗(q, a)3e(−an/q).

According to (2.5) in [3], for even numbers n ≥ 2, we have

(log logn)−c �S(n) � logn (2.6)

for some constant c > 0.

Lemma 2.8. We have

∑
q≤P 5/36

q∑
a=1

(a,q)=1

S(q, a)

q
g1(a/q)g2(a/q)2e(−an/q)

= S(n)S1S
2
2 + O(S1S

2
2(logN)−A),

where A is a sufficiently large constant.
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Proof. By introducing the Dirichlet characters, for 1 ≤ j ≤ 2, we have

gj (a/q) = 1

φ(q)

∑
χ(mod q)

Cq(χ, a)gj (χ),

where

Cq(χ,a) =
q∑

b=1
(b,q)=1

χ(b)e

(
ab3

q

)
and gj (χ) =

∑
Sj <p≤2Sj

(logp)χ(p).

Therefore, we have

∑
q≤P 5/36

q∑
a=1

(a,q)=1

S(q, a)

q
g1(a/q)g2(a/q)2e(−an/q)

=
∑

q≤P 5/36

1

qφ3(q)

×
∑

χ1(mod q)

∑
χ2(mod q)

∑
χ3(mod q)

B(q,χ1, χ2, χ3, n)g1(χ1)g2(χ2)g3(χ3),

where

B(q,χ1, χ2, χ3, n) =
q∑

a=1
(a,q)=1

S(q, a)Cq(χ1, a)Cq(χ2, a)Cq(χ3, a)e(−an/q).

We first consider the contribution from the principal character χ0 modulo q . Us-
ing the bound B(q,χ0, χ0, χ0, n) � q5/2+ε(q, n)1/2 (see p. 277 in [5]), we have∑

q≤P 5/36

1

qφ3(q)
B(q,χ0, χ0, χ0, n) = S(n) + O(P −5/72+ε). (2.7)

The prime number theorem implies

gj (χ
0) =

∑
Sj <p≤2Sj

(logp) = Sj + O(Sj (logN)−A). (2.8)

Let

E =
∑

q≤P 5/36

1

qφ3(q)
χ1(mod q)
χ2(mod q)
χ3(mod q)

∑∗
B(q,χ1, χ2, χ3, n)g1(χ1)g2(χ2)g3(χ3), (2.9)

where
∑∗ means that at least one of χj (1 ≤ j ≤ 3) is nonprincipal. We have

E =
∑

r1,r2,r3≤P 5/36

r1+r2+r3>3

∑
χ1(mod r1)

∗

∑
χ2(mod r2)

∗

∑
χ3(mod r3)

∗
T ([r1, r2, r3])

× g1(χ1)g2(χ2)g3(χ3),
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where [r1, r2, r3] is the least common multiple of r1, r2, r3, χ(mod r)∗ means that
the summation is taken over primitive characters modulo r , and

T (r) =
∑

q≤P 5/36

r|q

1

qφ3(q)
B(q,χ1χ

0, χ2χ
0, χ3χ

0, n).

Lemma 4.3 in [3] yields T (r) � r−5/6+ε logP . Then we conclude from Lemmas
4.1 and 4.2 in [1] that

E � S1S
2
2(logN)−A. (2.10)

The proof is completed by applying (2.7), (2.8), (2.9), and (2.10). �

Lemma 2.9. Let g1(α) and g2(α) be defined in (2.2). Then we have∫ 1

0
|g1(α)2g2(α)4|dα � S1+ε

1 S2
2 .

Proof. This follows from the theorem of Vaughan [8] by considering the under-
lying Diophantine equation. �

3. Approximations to Generating Functions

For h ∈ Z, we define

Fh(α) =
∑
x∈Z

w(x)w(x + h)e((3hx2 + 3h2x + h3)α).

Lemma 3.1. Let h be a nonzero integer. Suppose that |α−a/q| ≤ P 1−ε/(|h|qP 2)

for some a ∈ Z and q ∈ N with 1 ≤ q ≤ P 1−ε and (a, q) = 1. Then we
have

Fh(α) = Ch(q, a)

q

∫
w(x)w(x + h)e((3hx2 + 3h2x + h3)β) dx

+ O(P −A),

where β = α − a/q , and A is a sufficiently large constant.

Proof. Set ρh(x) = 3hx2 + 3h2x + h3. We have

Fh(a/q + β)

=
∑
x∈Z

w(x)w(x + h)e(ρh(x)(a/q + β))

=
q∑

b=1

e

(
aρh(b)

q

) ∑
x≡b(mod q)

w(x)w(x + h)e(ρh(x)β)

=
q∑

b=1

e

(
aρh(b)

q

) ∑
m∈Z

w(b + mq)w(b + mq + h)e(ρh(b + mq)β).
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We apply the Poisson formula to conclude that

Fh(a/q + β)

=
q∑

b=1

e

(
aρh(b)

q

)∑
n∈Z

∫
w(b + yq)w(b + yq + h)

× e(ρh(b + yq)β)e(−ny)dy

= 1

q

∑
n∈Z

q∑
b=1

e

(
aρh(b) + nb

q

)∫
w(x)w(x + h)e(ρh(x)β)e(−nx/q)dx.

Note that
dk

dxk
(w(x)w(x + h)e(ρh(x)β)) � P −k + |hPβ|k.

When n �= 0, we deduce from the integration by parts k times that∫
w(x)w(x + h)e(ρh(x)β)e(−nx/q)dx �(P −k + |hPβ|k)qk|n|−kP

�P −kε+1.

The desired conclusion follows from the above by choosing a sufficiently large k.
�

Lemma 3.2. Suppose that |α − a/q| ≤ P 1−ε/(qP 3) for some a ∈ Z and q ∈ N

with 1 ≤ q ≤ P 1−ε and (a, q) = 1. Then we have

f (α) = S(q, a)

q

∫
w(x)e(x3β)dx + O(P −A),

where β = α − a/q , and A is a sufficiently large constant.

Proof. The proof is the same as that of Lemma 3.1. We omit the details. �

Let

υ(y) := υβ(y) =
∫

w(x)w(x + y)e((3yx2 + 3y2x + y3)β) dx.

Lemma 3.3. Suppose that 1 ≤ |y| ≤ P . Then we have

υ(y)′ � |y|−1P (3.1)

and for any k ∈N that

υ(y) � P(|y|P 2|β|)−k. (3.2)

Proof. We have

υ(y)′ =
∫

w(x)w(x + y)′e((3yx2 + 3y2x + y3)β) dx

+ β

∫
w(x)w(x + y)(2πi)(3x2 + 6yx + 3y2)

× e((3yx2 + 3y2x + y3)β) dx
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=
∫

w(x)w(x + y)′e((3yx2 + 3y2x + y3)β) dx

+
∫

w(x)w(x + y)
3x2 + 6yx + 3y2

6yx + 3y2

×
(

d

dx
e((3yx2 + 3y2x + y3)β)

)
dx

=
∫

w(x)w(x + y)′e((3yx2 + 3y2x + y3)β) dx

−
∫ (

d

dx
w(x)w(x + y)

3x2 + 6yx + 3y2

6yx + 3y2

)
× e((3yx2 + 3y2x + y3)β) dx.

Then (3.1) follows easily. Estimate (3.2) follows from the integration by parts k

times. �

Let H = 6P 1/2. We define

F+(α) =
∑

1≤h≤H

Fh(α), F−(α) =
∑

1≤h≤H

F−h(α),

and

F(α) =
∑

H<|h|<P

Fh(α).

Lemma 3.4. Suppose that |α − a/q| ≤ P 1−ε/(qP 5/2) for some a ∈ Z and q ∈ N

with 1 ≤ q ≤ P 1−ε and (a, q) = 1. Then we have

F+(α) = |S(q, a)|2
q2

∫ H

1
υα−a/q(y) dy + O(P 1+ε)

and

F−(α) = |S(q, a)|2
q2

∫ −1

−H

υα−a/q(y) dy + O(P 1+ε).

Similarly, if |α − a/q| ≤ P 1−ε/(qP 3) for some a ∈ Z and q ∈ N with 1 ≤ q ≤
P 1−ε and (a, q) = 1, then

F(α) = |S(q, a)|2
q2

∫
H<|y|<P

υα−a/q(y) dy + O(P 1+ε).

Proof. Write β = α − a/q . In view of Lemma 3.1,

F+(α) = 1

q

∑
1≤h≤H

Ch(q, a)υβ(h) + O(P −A).
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Then by partial summation,

F+(α) = 1

q

∑
1≤h≤H

Ch(q, a)υβ(H)

− 1

q

∫ H

1

( ∑
1≤h<y

Ch(q, a)

)
υβ(y)′ dy + O(P −A).

Applying Lemma 2.7 and (3.1), we obtain

F+(α) = H

q2
|S(q, a)|2υβ(H) −

∫ H

1

y

q2
|S(q, a)|2υβ(y)′ dy + O(P 1+ε)

= 1

q2
|S(q, a)|2

∫ H

1
υβ(y) dy + O(P 1+ε).

The desired conclusions for F−(α) and F(α) can be established in the same
way. �

4. The Minor Arcs Estimates

Define

M=
⋃

q≤P 1−ε

q⋃
a=1

(a,q)=1

[
a

q
− P 1−ε

qP 5/2
,
a

q
+ P 1−ε

qP 5/2

]

and

R=
⋃

q≤P 3/4

q⋃
a=1

(a,q)=1

[
a

q
− P 3/4

qP 5/2
,
a

q
+ P 3/4

qP 5/2

]
.

Let
n1 = m \M, n2 = M \R, and n3 = m∩R.

Lemma 4.1. For α ∈ n1, we have

|F+(α)| + |F−(α)| � P 1+ε. (4.1)

Proof. By Dirichlet’s approximation theorem, there exist a ∈ Z and q ∈ N such
that 1 ≤ q ≤ P 3/2+ε , (a, q) = 1, and |qα − a| ≤ P −3/2−ε . In view of the proof of
the lemma in [6], we have

|F+(α)| + |F−(α)| � (P 3/2q−1/2 + P + P 1/4q1/2)P ε.

Since α ∈ n1, we have 1 ≤ a ≤ q and q > P 1−ε . Estimate (4.1) easily follows
from the above. �

Lemma 4.2. For α ∈ n2, we have

|F+(α)| + |F−(α)| � P 1+ε. (4.2)



774 Lilu Zhao

Proof. For α ∈ M, there exist a and q such that 1 ≤ a ≤ q ≤ P 1−ε , (a, q) = 1,
and |α − a/q| ≤ P 1−ε/(qP 5/2). By (2.3), (3.2), and Lemma 3.4,

|F+(α)| + |F−(α)| � HPq−2/3(1 + HP 2|α − a/q|)−1 + P 1+ε.

We conclude from α /∈ R that either q > P 3/4 or |α − a/q| > P 3/4/(qP 5/2).
Estimate (4.2) follows from the above immediately. �

Lemma 4.3. For n ∈ {n1,n2}, we have∫
n

(|F+(α)| + |F−(α)|)|g1(α)2g2(α)4|dα � P 1+εS1S
2
2 .

Proof. This follows from Lemma 2.9 and Lemmas 4.1 and 4.2. �

Lemma 4.4. We have∫
n3

(|F+(α)| + |F−(α)|)|g1(α)2g2(α)4|dα � P 1+εS1S
2
2 .

Proof. We define �(α) on R by taking �(α) = HP(1+HP 2|α−a/q|)−1�(q)2

if |qα − a| ≤ P 3/4−5/2 for some a and q with (a, q) = 1 and 1 ≤ a ≤ q ≤ P 3/4.
Lemma 2.4, (3.2), and Lemma 3.4 together imply∫

n3

(|F+(α)| + |F−(α)|)|g1(α)2g2(α)4|dα

� S2
1S2

2P −2/9+ε

∫
R

�(α)|g2(α)2|dα

+ P 1+ε

∫ 1

0
|g1(α)2g2(α)4|dα.

Applying Lemma 2.2 in [9], we have
∫
R �(α)|g2(α)2|dα � S2+ε

2 P −1. Then by
Lemma 2.9 we obtain∫

n3

(|F+(α)| + |F−(α)|)|g1(α)2g2(α)4|dα � S2
1S4

2P −2/9−1+ε + P 1+εS1S
2
2 .

The proof is completed. �

Lemma 4.5. We have∫
m

(|F+(α)| + |F−(α)|)|g1(α)2g2(α)4|dα � P 1+εS1S
2
2 .

Proof. This follows from Lemmas 4.3 and 4.4 by observing that m = n1 ∪ n2 ∪
n3. �

Lemma 4.6. We have∫
m

F(α)|g1(α)2g2(α)4|dα � P 1+εS1S
2
2 .
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Proof. Note that∫
m

F(α)|g1(α)2g2(α)4|dα

=
∫ 1

0
F(α)|g1(α)2g2(α)4|dα −

∫
M

F(α)|g1(α)2g2(α)4|dα.

Considering the underlying Diophantine equation, we have∫ 1

0
F(α)|g1(α)2g2(α)4|dα

=
∑

H<|h|<P

∑
x

∑
p1,p2,p3,p4,p5,p6

S1<p1,p2≤2S1,S2<p3,p4,p5,p6≤2S2
3hx2+3h2x+h3=p3

1−p3
2+p3

3−p3
4+p3

5−p3
6

w(x)w(x + h)

6∏
j=1

logpj .

If w(x)w(x + h) �= 0, then x, x + h ≥ P and

|3hx2 + 3h2x + h3| = |h|(x2 + x(x + h) + (x + h)2) ≥ 18P 5/2.

However, we have |p3
1 − p3

2 + p3
3 − p3

4 + p3
5 − p3

6| ≤ 8S3
1 = 8P 5/2. Therefore,∫ 1

0
F(α)|g1(α)2g2(α)4|dα = 0,

and it suffices to prove that∫
M

F(α)|g1(α)2g2(α)4|dα � P 1+εS1S
2
2 . (4.3)

We deduce from Lemma 3.4 that∫
M

F(α)|g1(α)2g2(α)4|dα

=
∑

q≤P 5/36

q∑
a=1

(a,q)=1

|S(q, a)|2
q2

×
∫

|β|≤P 13/18/(qN)

∫
H<|y|<P

υβ(y) dy

∣∣∣∣g1

(
a

q
+ β

)2

g2

(
a

q
+ β

)4∣∣∣∣dβ

+ O(P 1+ε)

∫
M

|g1(α)2g2(α)4|dα.

Then by Lemma 2.9 we arrive at∫
M

F(α)|g1(α)2g2(α)4|dα

=
∑

p1,p2,p3,p4,p5,p6
S1<p1,p2≤2S1

S2<p3,p4,p5,p6≤2S2

( 6∏
j=1

logpj

)∑
q

∑
a

e

(
a

q
�(p)

)
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× |S(q, a)|2
q2

I(p) + O(P 1+εS1S
2
2),

where

�(p) = p3
1 − p3

2 + p3
3 − p3

4 + p3
5 − p3

6

and

I(p) =
∫

|β|≤P 13/18/(qN)

∫
H<|y|<P

υβ(y) dye(�(p)β) dβ.

In view of (3.2), we have∫
|β|>P 13/18/(qN)

∫
H<|y|<P

υβ(y) dye(�(p)β) dβ

�
∫

|β|>P 13/18/(qN)

∫
H<|y|<P

(|y|P 2|β|)−k dy dβ

� P −A.

Then we obtain
I(p) = J (p) + O(P −A),

where

J (p) =
∫ +∞

−∞

∫
H<|y|<P

∫
w(x)w(x + y)

× e((3yx2 + 3y2x + y3 + �(p))β) dx dy dβ.

Note that J (p) is essentially the measure of the surface defined by the equation
(3yx2 + 3y2x + y3) + �(p) = 0 with H < |y| < P and P ≤ |x| ≤ 2P . Recall-
ing the conditions S1 < p1,p2 ≤ 2S1, and S2 < p3,p4,p5,p6 ≤ 2S2, we obtain
J (p) = 0. Thus, (4.3) is established, and the proof is completed. �

Lemma 4.7. We have∫
m

|f (α)g1(α)g2(α)2|2 dα � P 1+εS1S
2
2 .

Proof. By the definition of f (α) we have

|f (α)2| =
∑
x

∑
y

w(x)w(y)e((y3 − x3)α)

=
∑
x

∑
h

w(x)w(x + h)e(((x + h)3 − x3)α)

=
∑
h

∑
x

w(x)w(x + h)e(((x + h)3 − x3)α) =
∑
h

Fh(α).

If w(x)w(x + h) �= 0, then |h| < P . Therefore, we have

|f (α)2| = F+(α) +F−(α) +F(α) +
∑
x

w(x)2

= F+(α) +F−(α) +F(α) + O(P ),
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and consequently,∫
m

|f (α)g1(α)g2(α)2|2 dα

=
∫
m

(F+(α) +F−(α) +F(α) + O(P ))|g1(α)2g2(α)4|dα.

The proof is completed by combining Lemma 2.9 and Lemmas 4.5 and 4.6. �

5. Proof of Theorem 1.1

Proof of Theorem 1.1. Bessel’s inequality yields

∑
N<n≤2N

∣∣∣∣
∫
m

f (α)g1(α)g2(α)2e(−nα)dα

∣∣∣∣
2

≤
∫
m

|f (α)g1(α)g2(α)2|2 dα.

Then we conclude from Lemma 4.7 that∑
N<n≤2N

∣∣∣∣
∫
m

f (α)g1(α)g2(α)2e(−nα)dα

∣∣∣∣
2

� P 1+εS1S
2
2 .

Thus, for all integers n ∈ (N,2N ] with at most O(N25/27+3ε) exceptions, we
have ∣∣∣∣

∫
m

f (α)g1(α)g2(α)2e(−nα)dα

∣∣∣∣ � P −2−εS1S
2
2 . (5.1)

Next, we consider the contribution from the major arcs. By Lemma 3.2,∫
M

f (α)g1(α)g2(α)2e(−nα)dα

=
∑

q≤P 5/36

q∑
a=1

(a,q)=1

S(q, a)

q
e

(−an

q

)

×
∫

|β|≤P 13/18/(qN)

u(β)g1

(
a

q
+ β

)
g2

(
a

q
+ β

)2

e(−nβ)dβ

+ O(P −A),

where

u(β) =
∫

w(x)e(x3β)dx.

We deduce from integration by parts that u(β) � P(P 3|β|)−k for any k ∈ N.
Then we obtain∫

M

f (α)g1(α)g2(α)2e(−nα)dα

=
∑

q≤P 5/36

q∑
a=1

(a,q)=1

S(q, a)

q
e

(−an

q

)
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×
∫

|β|≤Nε/N

u(β)g1

(
a

q
+ β

)
g2

(
a

q
+ β

)2

e(−nβ)dβ

+ O(P −A).

When |β| ≤ Nε/N , we have g1(
a
q

+ β) − g1(
a
q
) � S1P

−1/2+ε and g2(
a
q

+ β) −
g2(

a
q
) � S2P

−11/12+ε . Let

S(n) =
∑

q≤P 5/36

q∑
a=1

(a,q)=1

S(q, a)

q
e

(−an

q

)
g1

(
a

q

)
g2

(
a

q

)2

.

Then we conclude from the above that∫
M

f (α)g1(α)g2(α)2e(−nα)dα

= S(n)

∫
|β|≤Nε/N

u(β)e(−nβ)dβ + O(P −19/9S1S
2
2).

Applying u(β) � P(P 3|β|)−k again, we obtain∫
M

f (α)g1(α)g2(α)2e(−nα)dα

= S(n)

∫ ∞

−∞
u(β)e(−nβ)dβ + O(P −19/9S1S

2
2). (5.2)

Note that ∫ ∞

−∞
u(β)e(−nβ)dβ = lim

λ→0+
1

λ

∫
|x3−n|≤λ

w(x)dx.

Thus, for N < n ≤ 2N , we have

P −2 �
∫ ∞

−∞
u(β)e(−nβ)dβ � P −2. (5.3)

By Lemma 2.8,

S(n) = S(n)S1S
2
2 + O(S1S

2
2(logN)−A). (5.4)

We deduce from (2.6), (5.2), (5.3), and (5.4) that∫
M

f (α)g1(α)g2(α)2e(−nα)dα � P −2S1S
2
2(logN)−1. (5.5)

In view of (5.5) and the argument around (5.1), we have r(n) > 0 for all integers
n ∈ (N,2N ] with at most O(N25/27+ε) exceptions. The proof of Theorem 1.1 is
completed by the dyadic argument. �
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