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Singular Rationally Connected Surfaces
with Nonzero Pluri-Forms

WENHAO OU

ABSTRACT. Let X be a projective rationally connected surface with
canonical singularities carrying a nonzero reflexive pluri-form, that is,
the reflexive hull of (Q}()@’m has a nonzero global section for some
positive integer m. We show that any such surface X can be obtained
from a rational ruled surface by a very explicit sequence of blow-
ups and blow-downs. Moreover, we interpret the existence of nonzero
pluri-forms in terms of semistable reduction.

1. Introduction

Recall that a projective variety X is said to be rationally connected if for any
two general points in X, there exists a rational curve passing through them; see
[ Def. 3.2 and Prop. 3.6]. It is known that for a smooth projective rationally
connected variety X, HO(X, (Q}()‘X)’”) = {0} for m > 0; see [ Cor. IV.3.8].
In [ Thm. 5.1], it is shown that if a pair (X, D) is kit and X is ratio-
nally connected, then H 0x, Q[;"]) = {0} for m > 0, where Q[;("] is the reflexive
hull of Q%. By [ Thm. 3.3], if X is factorial, rationally connected and has
canonical singularities, then H%(X, (24)!®™)) = {0} for m > 0, where (2})!®"]
is the reflexive hull of (Q}()‘X’m. However, this is not true without the assumption
of being factorial; see [ Example 3.7]. In this paper, our aim is to clas-
sify rationally connected surfaces with canonical singularities that have nonzero
reflexive pluri-forms. We will give two methods to construct such surfaces (see
Construction and Construction 1.6), and we will also prove that every such
surface can be constructed by both of these methods (see Theorem 1.3 and Theo-
rem 1.5). This gives an affirmative answer to [ Remark and Question 3.8]
The following example is given in [ Example 3.7].

ExAMPLE 1.1. Let 7/ : X’ — P! be any smooth ruled surface. Choose four dis-
tinct points g1, g2, g3, g4 in P!. For each point ¢;, perform the following sequence
of birational transformations of the ruled surface:

(i) Blow up a point x; in the fiber over g;. Then we get two (—1)-curves that
meet transversely at xlf .

(ii) Blow up the point x/. Over ¢;, we get two disjoint (—2)-curves and one
(—1)-curve. The (—1)-curve appears in the fiber with multiplicity two.
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(iii) Blow down the two (—2)-curves. We get two singular points on the fiber,
and each of them is of type Aj.

In the end, we get a rationally connected surface 7 : X — P! with canonical
singularities such that HO(X, (24)[®%) # {0}.

We will prove that every projective rationally connected surface X with canoni-
cal singularities and having nonzero pluri-forms can be constructed by a similar
method (see Construction .2) from a smooth ruled surface over P!.

CoNSTRUCTION 1.2. Take a smooth ruled surface X 0 P! and choose distinct
points g1, ..., g, in P! with r > 4. We perform a sequence of birational transfor-
mations as follows.

(i) For each g;, perform the same sequence of birational transformations as in
Example 1.1. We get a fiber surface 71 : X1 — P!. The nonreduced fibers of
Ty are wiqi, ..., T qy.

(ii) Perform finitely many times this birational transformation: blow up a smooth
point on a nonreduced fiber and then blow down the strict transform of the
initial fiber. We obtain another fiber surface p : Xy — P! (see Lemma 4.6).

(iii) Starting from X 7, perform a sequence of blow-ups of smooth points. We get
a surface X,.

(iv) Blow down some chains of exceptional (—2)-curves for X, — Xy (this is
always possible; see Section 0). We obtain a rational surface X.

Xy —X

blow-u& lf

Xr——-=X1—=Xp

o

]Pl

THEOREM 1.3. The surface obtained by Construction is a rationally con-
nected surface that carries nonzero pluri-forms. Conversely, if X is a pro-
Jective rationally connected surface with canonical singularities such that
HO(X, (Q;K)[‘X”"]) # {0} for some m > 0, then X can be constructed by the
method described in Construction

Note that if X is a rational surface obtained by Construction |.2, then there is a
fibration 7 : X — P! induced by mg. This fibration has multiple fibers over the
points g1, ..., q, that we have chosen at the beginning of the construction. In

fact, these multiple fibers are exactly the source of nonzero forms on X by the
following theorem.

THEOREM 1.4. Let X be a projective rationally connected surface with canonical
singularities and having nonzero pluri-forms. If X y is the result of an MMP, then
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X ¢ is a Mori fiber space over P! Let p: Xy — P! be the fibration. If r is the
number of points over which p has nonreduced fibers, then we have r > 4 and

HOX @Yo 2 Y X @ 1o 2 0 (81,0 (<2m+ 5 )

for m > 0. In particular, for fixed m, the number of m-pluri-forms depends only
on the number of multiple fibers.

We note that both in Theorem and in Construction , we meet a surface
named X s. We will see later (in the proof of Theorem in Section 0) that, by
choosing a good MMP, these two surfaces are identical. The points ¢y, ..., g, are

exactly the points over which p : Xy — P! has multiple fibers. By the semistable
reduction we can find a Galois cover y : E — P! such that Z — E has only
reduced fibers, where Z is the normalization of X  xp1 E. Let Y be the normal-
ization of X xp1 E. The following theorem shows that we can always choose a
finite Galois cover y that has degree 4 and the pluri-forms on X are exactly the
G-invariant pluri-forms on Y, where G is the Galois group of y.

THEOREM 1.5. Let X be a projective rationally connected surface with canonical
singularities and having nonzero pluri-forms. Let w be the composition of X —
Xr— PL. Then there is a commutative diagram

r
_

Y X
4 : 1 cover
n’l \Ln
E

14
- ]P’l
4 : 1 cover

such that E is a smooth curve of positive genus and Y is a projective surface
with canonical singularities. Both y and T are Galois covers with Galois group
G :=7/27 x Z]2Z and T is étale in codimension 1. Moreover, for all m > 0, we
have HO(X, (@)™ = HO(Y, (@))®")6 = HO(E, (L)),

Note that Y is not rationally connected since E is not rationally connected. This
theorem shows that every projective rationally connected surface with canonical
singularities that has nonzero pluri-forms can be constructed by the following
method.

CoNSTRUCTION 1.6. Let Y be a projective surface with canonical singularities,
and let G be a finite subgroup of Aut(Y) whose action is étale in codimension 1.
Assume that there is a G-invariant fibration 77’ from Y to a smooth curve E of pos-
itive genus such that E/G = P! and that general fibers of 77" are smooth rational
curves. Let X =Y /G. Then X is rationally connected (see [ Thm. 1.1]),
and HO(X, (Q})[®™) =£ {0} for some m > 0.
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2. Notation and Outline of Paper

Throughout this paper, we will work over C, the field of complex numbers. Unless
otherwise specified, every variety is an integral C-scheme of finite type. A curve
is a variety of dimension 1, and a surface is a variety of dimension 2. For a variety
X, we denote the sheaf of Kéhler differentials by 2 i( We denote \” Q i( by QI;(
for p e N.

For a coherent sheaf .% on a variety X, we denote by .#** the reflexive hull
of .Z. There is an important property for reflexive sheaves.

LemMma 2.1 ([ Prop. 1.6]). Let % be a coherent sheaf on a normal vari-
ety V. Then F is reflexive if and only if F is torsion-free and for each open
U C X and each closed subset Y C U of codimension at least 2, the restriction
map F(U) — F (U \Y) is an isomorphism.

Let V be a normal variety, and let Vj be its smooth locus. We denote a canonical
divisor by Ky . Moreover, let Q[f] (resp. (Q{,)[‘@p]) be the reflexive hull of Q[\i
(resp. (Q{,)@’P ). By Lemma 2.1, it is the push-forward of the locally free sheaf
Q€O (resp. (Q{,O)g’p) to V since V is smooth in codimension 1.

Let S be a normal surface. A smooth rational curve C in S is a (—k)-curve if S
is smooth along C and the intersection number C - C = —k. A projective birational
morphism r : S — S is called the minimal resolution of singularities (or minimal
resolution for short) if S is smooth and K 5 is r-nef. There is a unique minimal
resolution of singularities for a normal surface and any resolution of singularities
factors through the minimal resolution.

Let S be a normal surface, and let 7 : S — S be the minimal resolution of
singularities of S. We say that S has canonical singularities if the intersection
number K3 - C is zero for every r-exceptional curve C. Canonical surface sin-
gularities are also called Du Val singularities. We know all of these singularities,
they are A;, D, Ex wherei > 1, j > 3, and k = 6, 7, 8. For more details on Du
Val singularities, see [ §4.1].

Let p: V — B be a fibration from a normal variety to a smooth curve. If the
nonreduced fibers of p are p*zy, ..., p*z,, then the ramification divisor of p is
the divisor defined by

R=p*zi+---+ p*z, —Supp(p*zi + -+ p*z;).

Let X be a projective rationally connected surface with canonical singularities
that carries nonzero pluri-forms. Then we can run a minimal model program for
X (for more details on MMP, see [ Sections 1.4 and 3.7]). We obtain a
sequence of divisorial contractions

X=X9—> X1 —>--— X,.

Since Ky is not pseudoeffective, neither is Kx,. Thus X,, is a Mori fiber space.
We have a Mori fibration p : X, — B. Therefore we have two possibilities: either
dimB =0 or dim B = 1. If dim B = 0, then X,, is a Fano variety with Picard
number 1. Here, a Fano variety is a normal projective variety whose anticanonical
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divisor is an ample QQ-Cartier divisor. In Section 3, we will prove that X cannot
have any nonzero pluri-form in this case. Hence we only need to deal with the
case that dim B = 1. In Section 4, we will study some properties for Mori fiber
surfaces over a curve. In the last three sections, we will prove Theorems 1.4, 1.3,
and 1.5 in this order.

3. Vanishing Theorem for Fano Varieties with Picard Number 1

The aim of this section is to prove the following theorem.

THEOREM 3.1. Let V be a Q-factorial kit Fano variety with Picard number 1.
Then HO(V, (Q%,)[‘g’m]) = {0} for any m > Q.

Before proving the theorem, we recall the notion of slopes. Let V be a normal
projective Q-factorial variety of dimension d. Let A be an ample divisor in V.
Then for a coherent sheaf .%, we can define the slope of .% with respect to A,
mwa(F), by

det.7 - Ad~!

F) =
walF) rank . %

where det.Z is the reflexive hull of A™™X7 .Z. Moreover, let
Wi (F) = sup{ua(9) | 4 < .F a coherent subsheaf}.

For any coherent sheaf .#, there is a saturated coherent subsheaf & C .% such
that ™ (F) = nua(94); see [ Prop. A.2].

PROPOSITION 3.2. Let V be a projective normal variety that is Q-factorial, and let
H be an ample divisor in 'V . Then for any two coherent sheaves % and 4 on 'V,

max((J ®g)**) max(J)+Mmax(g)

For a proof of this proposition, see [ Prop. A.14]. Now we are ready to
prove Theorem

Proof of Theorem 3.1. We may assume that dim V > 1. We will argue by contra-
diction. Assume that there is a positive integer m such that H O, (Q{,)[‘@m]) #*
{0}. Let H be an ample divisoron V.

Since HO(V, (SZ y[@mly # {0} for some m > 0, we have an injective morphism
of sheaves

Oy — (Q1)lem,
This shows that
WS (@™ = py (Ov) =0

By Proposition 3.2 we have u* (QU)) = m~! umax((@1,)1®m1) > 0.

Therefore, there is a nonzero saturated coherent sheaf .% C Q[” such that

i (F) > 0. Observe that rank.# < dim V; otherwise, ¥ = Q[‘}] and det.# =
Ky . Thus, ug (%) < 0, a contradiction.
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We have two possibilities, either gy (F) > 0or uy(F)=0.
Case 1. Assume that uy (%) > 0. Since V has Picard number 1, det.% is
ample, and its Kodaira—Iitaka dimension is dim V. However, this contradicts the

Bogomolov—Sommese vanishing theorem (see [ Cor. 1.3]). .
Case 2. Assume that gy (F) =0. Let 4 = det.#. Then ¢ - H{mV-D —
Since V is Q-factorial and Kklt, by [ Lem. 2.6] there exists an integer [

such that (4®/)** is isomorphic to &y. Let m be the smallest positive integer
such that (¥®™)** = ¢. We can construct the cyclic cover g : Z — V of V
corresponding to ¢; see [ Def. 2.52]. Then (¢*¥)** = 0'z. Since q is étale
in codimension 1, Z is also klt by [ Prop. 3.16], and — Kz = ¢*(—Ky) is
ample. Thus, Z is rationally connected by [ Cor. 1.3 and 1.5], and there are
natural injective morphisms

(q*g)** s (q*Q[‘;anké'z])** s Q[Zrank.ﬁ].

Hence, we have an injection 07 — Q[Zrank}\], but this contradicts [
Thm. 5.1]. O

4. Mori Fiber Surfaces over a Curve

Recall that a Mori fibration V — W is a projective fibration such that —Ky is
relatively ample and the relative Picard number is 1. A Mori fiber space V is just
a variety endowed with a Mori fibration V — W. In this section, we study a Mori
fibration from a quasi-projective surface with canonical singularities to a smooth
curve. In the first subsection, we will give some properties of the fibers. In the
second subsection, we will classify the singularities on a nonreduced fiber.

We would like to introduce some notation for this section first. Let p : S — B
be a Mori fibration, where B is a smooth curve, and S is a normal surface with
canonical singularities. Let 7 : S — S be the minimal resolution, and let p=
por: S— B.

Since S is singular at only finitely many points, p is smooth over general points
of B, and general fibers are all isomorphic to P'. Note that a point in a smooth
curve can also be regarded as a Cartier divisor, and since any two fibers of p are
numerically equivalent, we have Kg - p*z = —2 and p*z- p*z=0forany z € B
by the adjunction formula.

We recall the definition of dual graph. Let E = | E; be a collection of proper
curves on a normal surface V such that V is smooth along E. The dual graph T’
of E is defined as follows:

(1) The vertices of I" are the curves E;.
(2) Two vertices E; # Ej are connected with (E; - E;) edges.
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4.1. Some Properties of Fibers

Running a p-MMP for S, we obtain a sequence of divisorial contractions

S Y Y,

B

LEMMA 4.1. With the notation in the diagram above, the surface Z =Y, is a
ruled surface over B. Moreover, the support of p*b is an snc tree, that is, it is an
snc divisor, and its dual graph is a tree, for all points b € B.

Proof. Since pz : Z — B is the result of a p-relative MMP, Z is a smooth sur-
face. Note that Kz has negative intersection number with general fibers of pz.
Hence, the next extremal contraction in the MMP is a contraction of fiber type.
This contraction gives Z the ruled surface structure over B.

Note that S can be obtained by a sequence of blow-ups from Z. Thus, the dual
graph of the support of any fiber of p is an snc tree. O

We collect some properties for the fiber of p : S — B.

PrOPOSITION 4.2. Let 7 be a point in B. Then:

(1) the support C of p*z is an irreducible Weil divisor for every 7 € B;
(2) the coefficient of C in p*z is at most equal to 2;

(3) S is smooth along the support of p*z if and only if p*z is reduced,
(4) there exist at most two singular points of S on C.

Proof. (1) Assume the opposite and let D, D’ be two distinct components in p*z
that meet. Then D - D’ > 0 and D - D < 0 since p*z - D = 0. However, there
is a positive number A such that AD and D’ are numerically equivalent by the
definition of Mori fibration. Hence, D - D > 0. This is a contradiction.

(2) Let @ € N be the coefficient of C in p*z. Then

—2=Kgs-p'z=aKgs-C.
However, since K is a Cartier divisor, Kg - C € Z. Thus, —2 € aZ, which means
that o < 2.

(3) Note that S is Cohen—Macaulay since it is a normal surface. Therefore, the
Cartier divisor p*z is also Cohen—Macaulay. Hence, it is generically reduced if
and only if it is a reduced subscheme. Moreover, since B is a smooth curve, the
morphism p is a flat morphism.

First, we assume that p*z is reduced. Then the arithmetic genus of p*z is 0
since p is flat and general fibers of p are smooth rational curves. Hence, p*z is
isomorphic to P! (cf. [ Ex. IV.1.8(b)]). Hence, p is smooth over z since it
is flat. Thus, S is smooth along p*z.
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Conversely, assume that S is smooth along p*z. Then by adjunction formula
we have

2hN(C,00)—2=(Ks+C)-C=Kg-C <O.

Therefore, Ks - C = —2, which is equal to K - p*z. Hence, p*z is reduced.

(4) Assume that S is not smooth along C. Then p* = 2C by (2) and (3). Let c
be the strict transform of C in S, and let E = p¥z— 2C. Since E is r- exceptional,
we have

K5-E=r"Ks-E=0.
Thus,
K3-C=2""(Kz-p*2)=—
By the adjunction formula we have C?=—1(C is smooth by Lemma 4.1). Then
—1=C*>=2"'C-(p*2—E)=-2"'C - E.

We obtain C - E = 2. This implies that C and E meet at most at two points. Hence,
S has at most two singular points on C. ]

4.2. Singularities on Nonreduced Fibers

The aim of this subsection is to give a complete list of possible multiple fibers of
p: S — B. The subject was studied in [ Section 11.5], but we will give
some elementary proofs of the results here. In the remainder of this section, we
will assume that p has a nonreduced fiber over and only over 0 € B. By Propo-
sition 4.2 this implies that p*0 = 2C, where C is the support of p*0. We denote
the strict transform of C in § by C. We will prove the following theorem.

THEOREM 4.3. Let p : S — B be a Mori fibration such that S is a quasi-projective
surface with canonical singularities and B is a smooth curve. Assume that p*0
is a multiple fiber, where 0 € B. Let r : S — S be the minimal resolution of sin-
gularities along the fiber p*0 and let p = p o r. We have the following table of
possibilities for p*0, and each of these possibilities can occur. In Table 1, the dual
graph is the one of the support of p*0 C 5, the point with label s corresponds to
C, and the other points correspond to the r-exceptional divisors.

In Table 1, we see that a multiple fiber of type (A1 + A1) is a multiple fiber that
contains exactly two singular points and both of them are of type A;. A multiple
fiber of type (D;) with i > 3 is a multiple fiber that contains exactly one singular
point that is of type D; (note that the singularity D3 is the same as A3).

We will prove the theorem by proving several lemmas (Lemma , ,
and 4.7). Note that by Proposition there exist one or two singular points of
S on C. We will first treat the case of two singular points.

LEMMA 4.4. Assume that there are two singular points on C. Then each of them
is of type Aj.
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Table 1
Type of fiber Dual graph
(A1 + A . 8 :
(D3) . : :
[¢]
)
(D;) withi > 3 : 3 s .1 s
[}
2

Proof. Let E = p*0 — 2C. As in the proof of Proposition 4.2.4, we have C-
E = 2. Since there are two singular points on C, E has exactly two connected
components. Thus, we can decompose E into D + D’ + R, where D and D’ are
the two components in E that meet C. Then we have

C-D=C-D'=1, D-D'=0 and C-R=0.
Note that both D and D’ are (—2)-curves, and hence
0=p*2-D=2C-D+D>+D -D+R-D=R-D.

This implies that R and D do not meet since both R and D are effective. By sym-
metry, R and D’ also do not meet. However, since E has exactly two connected
components, we obtain that R = 0. Hence, both of the singular points on C are of
type Aj. O

This type of fiber is the type (A 4+ Aj). Note that this type of fiber does exist by
Example 1.1. Next, we will study the case of one singular point. We will prove
that this isolated singularity is of type D; (i > 3, and the type Dj3 is just Az).

LEMMA 4.5. The isolated singularity on the fiber over O € B can only be of type
D; (i = 3).

Proof. Let Cp = C, and let Eo = p*0—2Cy. As in the proof of Proposition 4.2.4,
we have
C3=-1 and Ey-Co=2.
Since Eg - p*0 =0, we obtain E(z) =—4.
Since there is only one singular point on C and the support of p*0 is an snc tree
(see Lemma 4.1), we can decompose Eg into 2C; + E1, where C is the unique
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component in Ey that meets Co. Then C; is a (—2)-curve. Since 2Cy - p*0 =10
and Eg = —4, we have

El=—4 and C, E =2.

Thus, the support of E intersects C; at one or two points. If they intersect at two
points, then as in Lemma 4.4, E; = D + D’ where D, D’ are smooth rational
curves, and we have

D-D'=0, D-Ci=1, D -C;=1.

If £ and Cj intersect at one point, then we can decompose E; into 2C» + E»
where C; is the unique component of E; that meets C;. As before, we have

C3=-2, Ej=-4 and E;-Cp=2.

We are in the same situation as before. Hence, by induction we can decompose
Eointo 2(D1+---+ D;) + D+ D’ where D, D’ and all the D; are (—2)-curves.
Furthermore, we have

D.-D'=0, D;-D=1, D;-D'=1, Dj-Dji1=1

for1 <j<i—1,and Dj - Dy =0if k— j > 1. This shows that the singular point
is of type Dj4». (]

These types of fibers are (D;) (i > 3). Now we will prove that these kinds of fibers
exist. We will need the following lemma.

LEMMA 4.6. Let x € S be a smooth point over 0 € B, and let W be the blow-up of
S at x with exceptional divisor E C W. Let D be the strict transform of C in W.
Then we can blow down D and obtain another Mori fiber surface q : T — B.

Proof. Let W < W] be a projective compactification of W’ such that W; has
canonical singularities. If we can blow down D in Wi, then we can also blow
down D in W. Hence, we may assume that W is projective.
Wehave C-C=0,Ks-C=—1,Ky-E=—-1,E-E=—-1,and D-E=1.
Thus,
Kw-D=0 and D-D=-1.

Let H be an ample divisor on W. Then there is a positive integer k such that
(H+kD)-D =0.Let A= H +kD. Note that A is nef and big and D is the only
curve that has intersection number 0 with A. Since Kw - D = 0, for large enough
positive integer a, the divisor aA — Ky is nef and big. Hence, by the basepoint-
free theorem (see [ Thm. 3.3]) there is a positive integer b such that the
linear system |bA| is basepoint-free. Let c : W — T be the fibration induced by
the linear system |bA|. Then ¢ contracts exactly D. Since D is contracted by
W — B, the fibration W — B induces a fibration ¢ : T — B, which is also a
Mori fibration. U

We can use the elementary transformation in Lemma to construct every type
of multiple fibers mentioned previously.
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LeEmMA 4.7. If S is of type (A1 + A1) over 0 € B, then T is of type (D3) over
0e€ B.If S is of type (D;) over 0 € B, then T is of type (D;+1) over 0 € B for
i>3.

Proof. We will compute the dual graph of the support of the fiber g*0, where
T — T is the minimal resolution, and ¢ is the composition of T — T — B. Let
W be the same as in Lemma 4.6. From the construction of T we know that 7 — T
factors through T — W and the last morphism is also the minimal resolution
of W. Since W — § is a blow-up of a smooth point of S, the surface 7' can be
obtained by blowing up the same point in S.
If the fiber p*0 is of type (A + A1), then the dual graph of the support of p*0

in S is

1 s 2

[ ] [e] L]

where s represents C.Blow up the point we mentioned before; the new graph is

This graph is the dual graph of the support of g*0, and the point with label ¢
corresponds to the strict transform of the support of ¢*0 in T. The graph shows
that there is only one singular point of 7" on ¢*0 that is of type D3. Hence, the
fiber ¢*0 is of type (D3).

If p*0 is of type D;, then from the proof of Lemma 4.5 we know that the dual
graph of the support of p*0 is

1 3 4
° )

(o=

[
2

where the point with label s corresponds to C (if i =3, then s is just connected to
the point with label 3). By blowing up the point, we obtain the dual graph of the
support of g*0, which is

1
°

[ JO8)

°
2

The point with label 7 corresponds to the strict transform of the support of g*0
in 7. This implies that ¢*0 is of type (Dj41). ]
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Proof of Theorem 4.5. We can deduce the theorem from Lemmas , s
and 4.7. O

Now we will show that every singular fiber can be obtained from a smooth fiber
by the methods we mentioned before.

LEMMA 4.8. The singular fiber p*0 of p : S — B can be obtained from a smooth
ruled surface S1 — B by the method of Example 1.1 followed by a finite sequence
of elementary birational transformations described in Lemma

Proof. Let S — Z be the result of a p-MMP. Then Z — B is a ruled surface by
Lemma 4. 1. Moreover, S can be obtained from Z by a sequence of blow-ups.

If p*0 is of type (A1 + Ay), then S can be obtained from Z by two blow-ups
as in the first two steps of Example |.1. Blowing down the two (—2)-curves in S,
we obtain S. In this case, we take S| = Z.

If p*0 is of type (D;), then the dual graph of p*0 is

1
°

4 i K

3
Y ® -+ @O

[ ]
2

Note that the curve corresponding to the point s is a (—1)-curve. Hence, we
may blow down this curve and the curves that correspond to the points in the
graph that do not meet the point s (this is always possible by the next lemma).
Then we will obtain another Mori fiber surface py : U — B. The fiber pj;0 is
of type (D;_1) if i > 3 and of type (A1 + Ay) if i = 3. Moreover, U is smooth
around the image of the curve corresponding to s. If we perform the birational
transformation in Lemma for U, then we will obtain S.

We can conclude the lemma by induction. (]

The following lemma shows that we can contract some connected collection of
(—2)-curves in a surface.

LEMMA 4.9. Let E =\, 4~; Ex be a connected collection of (—2)-curves in a
smooth surface V whose dual graph is the same as the one of the support of the
exceptional set of a minimal resolution for a canonical surface singularity. Then
there exists a morphism ¢ : V — W such that W has canonical singularities and
¢ contracts exactly E.

Proof. We have Ky - E; =0 for every k. The intersection matrix {Ey - E;} is
negative definite by [ Lem. 3.40]. Thus, there is a contractionc: V — W
contracting exactly E by [ Prop. 4.10]. Note that ¢ is also the minimal
resolution of W and Ky = ¢* K. Hence, W has canonical singularities. O
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5. Proof of Theorem

We will first prove Theorem 1.4. Let X be a projective rationally connected
surface with canonical singularities that has nonzero pluri-forms. Run an MMP
for X. We will get a sequence of divisorial contractions

X:XO—)X1—>—>Xn:Xf

The rational surface X s is a Mori fiber surface over P! by Theorem 3.1. Let
p:Xr— P! be the Mori fibration. Let f : X — X r be the composition of the

sequence of the birational morphisms above, and let 7 = p o f : X — P!. Then
for any m € N, there is an injection HO(X, (Q})[®")) — HO(X, (sz}(f)[@""]).

5.1. Source of Nonzero Reflexive Pluri-forms

In this subsection, we will find out the source of nonzero pluri-forms on X 7. Let
U be the smooth locus of X ¢. Then the morphism of locally free sheaves on U

P = Qp
factors through
¢ P ® Ou(R) — Q).
where R is the ramification divisor of p. Let V be the largest subset of U such that
for any point x € V, the evaluation of ¢ at x is injective. Then codim X (\V > 2.
By Lemma 2.1 this implies that H%(X , (Q;(f)@m]) = HO%(V, (2},)®™) for any
m e N.
Consider the exact sequence of sheaves on V

0— p*Q&Dl ® Oy (R) —> Q{, -9 -0,

where ¢ is isomorphic to Q%/ /P! /torsion. It is an invertible sheaf on V since

9 ® ky is of rank 1 at every point x of V, where k, is the residue field of x (see
[ Ex. I1.5.8]). Then there is a filtration (see Lemma at the end of this
subsection) over V

Q" =F92.F1 227,

such that for every i € {0,...,s — 1}, the quotient .%; /.%;4 is isomorphic to
@R @ (p*QIlP)1 ® Oy (R))®"~%) with 0 < a; < m an integer. Moreover, we

have 7, = (p*Qy, ® Oy (R)®" = (p*Qp,)®" @ Oy (mR).

LEmMMA 5.1. With the previous notation, there is a natural isomorphism
HY (X, (@ )1®") = HOP', 051 (=2m) ® p.Ox (mR))

forallm > 0.

Proof. Fix some m > 0. For a general point z € P!, the support C of the fiber p*z
is isomorphic to P! and is contained in V. Since p is smooth along C, we have

Gc=0c(=2) and (p*Qp ® Ov(R))|c = Oc.
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Thus, (%;/.%;+1)|c is isomorphic O¢(—2a;) for i < s. Since a; > 0, we have
HYV, %/ F;41) =0 and HO(V, %) = HO(V, Z; ;1) for i <s. This implies
that
HO(V, (@})®™) = HO(V, (p*QL)®" ® Oy (mR)).
By Lemma 2.1 this isomorphism induces the isomorphism
HO(X, (@) = HO(X, (p*Qh)®" ® Ox (mR)).

Note that the right-hand side above is isomorphic to H OP!, pa(( p*Q]}M)‘@’” ®
Ox(mR))). By the projection formula it is isomorphic to HO(P!, (Q]%DI)@” ®
p«Ox(mR)). Hence,

HO(X 7, (@ ™) = HO (P!, Opi (=2m) ® p.Ox(mR)). O

Note that p,Ox (mR) is a torsion-free sheaf of rank 1 on P!. Thus, it is an invert-
ible sheaf, and there is a k € Z such that Op: (k) is isomorphic to p,Ox(mR). In
the following lemma, we will compute the integer k.

LEMMA 5.2. Assume that the nonreduced fibers of p: Xy — P! are over
21, ..., 2r. Then for m € N, we have p,Ox(mR) = Op1 ([51(z1 + -+ + 2,)) =
ﬁﬂnl([%]}’), where [-] is the integer part. In particular, HO(Xf, (Q;f)[@"]) =
HO(P', Opi (—2m + [21r)).

Proof. Since the problem is local around every point z;, we may assume that
r =1 for simplicity. From Proposition 4.2.1 and Proposition 4.2.2 we know that
R is irreducible and p*z; = 2R. We may assume that p,Ox(mR) = Op1 (k - z1),
and we have to prove that k =[5 ].

Note that y € HO(P!, Op1 (k - z1)) is just a rational function on P!, which can
only have a pole at z; with multiplicity at most k. Its pull-back to X is a rational
function, which can only have pole along R with multiplicity at most 2k. Thus, k
is the largest integer such that 2k < m, thatis, k = [%]. O

In the following lemma, we will prove the existence of a filtration on (Q}/)[@’m'.

LEMMA 5.3. Let 0 > & — % — & — 0 be an exact sequence of locally free
sheaves on a variety X. Then for any m > 0, there is a positive integer s and a
filtration

FOM=Fg2F12--- 2 F=E"
such that for every i € {0,...,s — 1}, the quotient .%;/.%; 11 is isomorphic to
@O @ §OM=a) \where 0 < a; < m is an integer.
Proof. We will prove by induction. If m = 1, then the assertion is true (s = 1 and
F1 = &). Assume that the assertion is true for m = k. Then we have a filtration

FOK = Z0D.F1 D D.F =&

such that .%; /.%; 1 is isomorphic to ¥®% @ £&®*~4) where a; > 0 is an integer.
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Consider the exact sequence
0> &QF » Zk+t) g g 79k 5.
By hypothesis of induction we have a filtration
EQRIFIH =60 F)2ERF12--26Q F =&,

Since ¥ @ Z® is the quotient of ZFO*+D by & @ .Z®K, we have a filtration,
induced by the above filtration on . ®*,

FOKD) _ s S A D ... D HDERFH

such that .74/ is isomorphic to 4 ® (9%% ® &%) and J4 /(& ®
FO) =@ g £ Hence, we obtain the fibration

FED = MDD DHDEQF D26 R F =T,

which satisfies the conditions in the lemma. O

5.2. Back to the Initial Variety

We have studied X r, and now we have to reverse the MMP and pull back pluri-
forms to the initial variety X. Our aim is to prove that

HOX, (@) = HO(X 7, (2 )1E™).
We will need the following proposition.

PROPOSITION 5.4. Let S be a projective surface that has at most canonical sin-
gularities. Let ¢ : S — T be a divisorial contraction in an MMP. Let E be the
exceptional divisor, and let x be the image of E. Then T is smooth at x.

Proof. 'We suppose the opposite. Let r : S — Sand T T — T be the minimal
resolutions. Let E be the strict transform of E in S. We have a commutative

diagram
T

——

Then K5 - E= r*KS E= Ks - rS*E Ks - E <0 by the definition of MMP.
Since K5 is rr-nef, E must be contracted by ¢. Since E is over x, C(E) is con-
tained i inan exceptional divisor D of T, Let D be the Stl‘lCt transform of D in S.
Then D is contracted by rg for D #* E, and the i image of DinTisa point. Thus,
D is a (—2)-curve in S since S has canonical singularities.

Since T has canonical singularities, D is also a (—2)-curve. Note that ¢ is the
composition of a sequence of blow-ups of smooth points (see [ Cor. V.5.4)).
Moreover, for ¢, we have to blow up the point x that is contained in D. Hence, the
self-intersection number of D is less than (—2). We obtain a contradiction. O

H

rs

<~ W



740 WENHAO OuU

By Proposition 5.4, every exceptional divisor of f : X — X is over a smooth
point of X . Now we can prove the isomorphism we mentioned at the beginning
of this subsection.

LEMMA 5.5. The natural injection HO(X, (Q},()[@’m]) — HO(Xf, (Q}(f)[@’m]) is
an isomorphism.

Proof. Let X, — X be a projective birational morphism that is the minimal reso-
lution for the singular points of X lying over smooth points of X . Then there is
a natural injection

H (X, (@5 )@ > HOx, (@))1®™).

By Proposition 5.4, f~! is an isomorphism around the singular points of X f-
Hence, all exceptional divisors of X, — X are over smooth points of X ¢. This
implies that X, can be obtained from X y by a sequence of blow-ups of smooth
points (see [ Cor. V.5.4)).

Xa
resoluti}V w\:’v-up

X ——— Xy

Then we have a natural isomorphism HO(Xa,(Qka)[@"]) = HO(Xf,
(Y )'®™), which implies that H(X, ()" = HO(Xf, (@) )I®™). O

We can conclude Theorem

Proof of Theorem 1.4. By Theorem we have a Mori fibration p: Xy —
P!. Lemmas 5.2 and 5.5 show that HO(X, (2})1®™) = HO(X, (Q}(f)@””) x~
HO(P, Opi (—2m + [51r)). O

6. Proof of Theorem

We will prove Theorem 1.3 in this section. If X is a projective rationally connected
surface with canonical singularities such that H 0(X, (Qx)[®mly =£ {0} for some
m > 0 and X ¢ is the result of an MMP, then X and X ; are isomorphic around
the singular locus of X s by Proposition 5.4. The proof of Lemma gives us
an idea of how to reconstruct X from X . First, we construct the surface X, (the
surface defined in the proof of Lemma 5.5) that can be obtained from X by
a sequence of blow-ups of smooth points. Then we blow down some exceptional
(—2)-curves for X, — Xy, and we obtain X. Note that these are just the birational
transformations mentioned in steps (iii) and (iv) of Construction

In order to contract the (—2)-curves in the transformation above, we want to
use Lemma 4.9. Thus, we have to study the structure of the exceptional set of
X, — Xy.
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LEMMA 6.1. Denote a germ of smooth surface by (0 € S). Let h : §' — S be the
composition of a sequence of blow-ups of smooth points over 0 € S. Let D be the
support of h*0. Then any (—2)-curve in D meets at most two other (—2)-curves.
In other words, the dual graph of D cannot contain a subgraph as below such
that each vertex of the subgraph corresponds a (—2)-curve.

Proof. Assume the opposite. We know that we can reverse the process of blow-
ups of smooth points by running an MMP relatively to S. Thus, these four curves
will be successively contracted during the MMP. The first one contracted cannot
be the curve corresponding to the point with label 2 since after the contraction, the
dual graph of the remaining curves is a tree by an analogue result of Lemma
Without loss of generality, we may assume that the curve corresponding to the
point with label 1 is the first one contracted.

If the curve corresponding to the point 3 (or 4) is contracted secondly, then
the self-intersection number of the curve corresponding to the point 2 becomes at
least 0. If the curve corresponding to the point 2 is contracted secondly, a further
contraction will also produce a curve with self-intersection number at least 0.

However, this curve of self intersection at least O is over 0 € S; it must have
negative self-intersection number by the negativity theorem (see [ Lem.
3.40]). This leads to a contradiction. U

In particular, by Lemma every connected collection of (—2)-curves in D has
a dual graph

This is the dual graph of the exceptional set of the minimal resolution for the
singularity of type A;. By Lemma it is possible to contract such a chain of
(—2)-curves.

Now we can prove Theorem

Proof of Theorem 1.3. First, let X be a projective rationally connected surface
with canonical singularities that carries nonzero pluri-forms. We will prove that
X can be constructed by the method of Construction 1.2. Let f : X — X7 be the
result of an MMP, and let X, be the surface defined in the proof of Lemma
The surface X can be obtained from X, by a contraction of chains of (—2)-curves
by Lemmas s , and . By the proof of Lemma 5.5, X, can be obtained
from X s by a sequence of blow-ups of smooth points. Since X y — P! is a Mori
fibration and X s has canonical singularities, X s can be obtained from a smooth
ruled surface Xo — P! by the method of steps (i) and (ii) of Construction (see
Lemma 4.8). Thus, X can be constructed by the method of Construction



742 WENHAO OuU

Now, let X be a surface constructed by the method of Construction 1.2. We
will prove that X carries nonzero pluri-forms. Since Xy — P! is a Mori fibra-
tion, by running an f-relative MMP we obtain that X 7 is the result of this MMP

(this is why we use the same notation X 7). After Lemma 5.2, we know that X ¢
carries nonzero pluri-forms. By Lemma this shows that X carries nonzero
pluri-forms. O

7. Proof of Theorem

We would like to prove Theorem in this section. In [ Remark and
Question 3.8], for X in Example , we can find a smooth elliptic curve E and
a smooth ruled surface Y (which is X in [ 1) such that P! is the quotient

of E by Z/27Z and X is the quotient of ¥ by the same group. In this section, we
would like to construct such a surface Y for any rationally connected surface X
with canonical singularities and having nonzero pluri-forms.

We will first construct the curve E.

PROPOSITION 7.1. Let q1, ..., q, be r different points on P* with r > 4. Then there
exist a smooth curve E and a 4 : 1 Galois cover y : E — P! with Galois group
G =7/27 x Z/27 such that y is exactly ramified over the q; and the degrees of
ramification are all equal to 2.

Proof. Since r > 4, we can find an elliptic curve D anda2: 1 covera : D — P!
such that o is ramified exactly over g1, g2, g3, q4. Let a’l({qi}) = {s;,1;} for
i >4, andlet ™' ({g;}) = {s;} fori =1,2.

If r > 4, then Op ((r —4)s1)®? is isomorphic to Op (3", 4 5i + ;-4 ). Thus,
we can construct a ramified 2 : 1 cyclic cover of E, with respect to the line bundle
Op((r —4)s1),

B:E—D
such that E is smooth and f is ramified exactly over {s;,#; | i > 4} (see [
Def. 2.50]).

If r = 4, then Op(s; — 52)®%2 = Op, and we can construct a 2 : 1 cyclic cover

of E, with respect to the nontrivial invertible sheaf Op(s; — 52),

B:E—D

such that E is a smooth elliptic curve and g is étale.
Finally, in both cases, the composition

y=aoB:E— P!
is a4 : 1 cover that is exactly ramified over the g; and the degrees of ramification
are all equal to 2.
We will show that y is a Galois cover with Galois group G = Z /27 x Z/27Z.
For simplicity, we assume that r > 4. For the case of r = 4, the argument is sim-
ilar. We only need to prove that we can lift the action of Aut(D/P') = Z/2Z on

D to E. There is a natural action of Aut(D/P') on Op. Let & = Op((4 —r)s1).
Then .# can be regarded as an ideal sheaf on D. Since s is invariant under the
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action of Aut(D /IP’I) on D, the sheaf .#, as a subsheaf of &'p, is stable under the
action of Aut(D/]P’l) on Op. This gives an action of Aut(D/]P’l) on .#. Hence,
Aut(D/ P') acts (diagonally) on the sheaf &' @ .#. There is a rational function A
on D such that the divisor associated to 4 is

Zsi —i—Zti +2(4—r)s).

i>4 i>4
By multiplying & we have a morphism from .#®2 to &p. This morphism gives an

OUp-algebra structure on Op @ .#. By construction, with this J'p-algebra struc-
ture, the sheaf Op @ .# is isomorphic to B, O as Op-algebras. Note that since

D st =a*<2q,-) and 24— r)s1 = o* (4= r)q),

i>4 i>4 i>4
the rational function /4 is the pullback of a rational function on P'. Hence, & is
invariant under the action of Aut(D/P') on @p. This shows that the action of
Aut(D/P') on Op @ .# is compatible with the ¢p-algebra structure induced
by k. Thus, we obtain an extension of the action of Aut(D/P') on &p to Of.
This proves that we can lift the action of Aut(D /IPI) onDtoE.

Since y is a Galois cover, we have E/G =P!. O

REMARK 7.2. What we want in the proposition is to construct a finite morphism
y : E — P! that is exactly ramified over the ¢; and all of the ramified degrees are
equal to 2. Note that the finite cover y we constructed is of degree four and the
one in [ Remark and Question 3.8] is of degree two. However, if r is odd,
then the Hurwitz theorem (see [ Cor. IV.2.4]) shows that it is not possible
to have a 2 : 1 cover satisfying the condition.

Now we will prove Theorem

Proof of Theorem 1.5. Let qi,...,q, be all of the points in P! over which
p:Xyr— P! has multiple fibers. Let y : E — P! be the 4 : 1 cover constructed
in Proposition 7.1. Let Z be the normalization of the fiber product X  xp1 E. Let
q:Z— EandI'y: Z — Xy be the natural projections. Then I's is étale over
the smooth locus of X ¢, and g has only reduced fibers.

We know that we can reconstruct X from X  (see Section 6). Since I'y : Z —
Xy is étale over the smooth locus of X ¢, every operation we do with X ¢ can be

done in the analogue way with Z. After the operations, the surface Y £, 7 we
obtained is just the normalization of X xpi1 E. We have a commutative diagram
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Then T is étale over the smooth locus of X, and X = Y/G where G is the
Galois group of y. The sheaf F*(Qg}g’m]) is a G-sheaf on X (the action of G on X
is trivial), which is reflexive (see [ Prop. 1.7]). Then (F*(Qg,@)m]))G is also
[®m]
X

reflexive (see [ Lem. B.4]) and is isomorphic to €2 since I" is étale

over the smooth locus of X. Thus, we have
HO(Y. (@)™ = HO(X, (@3'®™).
Moreover, for any m > 0, the natural morphism
HOY, (@18 - HO(Z, (@))lem))
is an isomorphism by the same argument as in the proof of Lemma 5.5. Since

every fiber of ¢ is reduced and general fibers of ¢ are smooth rational curves, by
the same argument as Lemma we have

HO(Y, @)y = HOE, (@L)®m).
Hence, we obtain the isomorphisms
HO(x, (@emy = gOy, (@))lemh ¢ = gOE, (@L)®™)C. O
Now we want to compute the dimension of H Ox, (Q;)[@”"]) in function of multi-

ple fibers of X  — P! with the previous formula. We will first prove the following
lemma.

LEMMA 7.3. Let R, be the ramification divisor of the finite morphism y : E —
PL. Then (v« Ok (R)))° = Op1.

Proof. We have HO(U, (y.0g(R,)%) = H(y =1 (U), Ok (R,)) for any open
set U C P!, Let 6 be a rational function on E such that 8 represents a nonzero el-
ement in H(y =1 (U), O (R,))Y. Since 6 is G-invariant, it can also be regarded
as a rational function on U. Since 6 can only have simple poles at the support of
R on y~!(U), it cannot have any pole on U. Thus, (y; ﬁE(Ry))G = Opr. O

With the notation in the proof of Theorem 1.5, we have

(Q)®om = <y*ﬁ1}>1 (—Zm + [%}(m T +qr))) ® O <<m - 2[%])19).

By the projection formula we have y*(QL-)@’” = Op1 (—2m+[51r) @y« Op((m—
2[5 Ry). By taking the G-invariant part we obtain

(@) = Gy (—2m " [%}) ® (y*ﬁg((m - 2[§]>Ry>>G.

The previous lemma implies that (y*(Q}E)‘@’")G = (Op1 (—=2m + [5]r)). Hence,

HOX, (@ = HYE, (@) ®)C = HOP!, (r(25)®™ %)

= (s on (-2 4 [2])).

We recover the same formula as in Theorem
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ExampLE 7.4. We will give some examples. Let h(m,r) be the dimension of
HO(P', Op1 (—2m+[%1r)). This is just the number of m-pluri-forms as a function
of the number r of multiple fibers of X ; — P!.

If r=4,then h(m,4) =1if m > Ois even and h(m,4) =0 if m is odd.

If r =5,then h(2,5) =2, h(3,5) =0and h(m,5) > 0 if m > 4.

If r > 6, then h(m,r) > 0 form > 2.
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