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Smoothly Slice Boundary Links Whose Derivative
Links Have Nonvanishing Milnor Invariants

Hye Jin Jang, Min Hoon Kim, & Mark Powell

Abstract. We give an example of a 3-component smoothly slice
boundary link, each of whose components has a genus one Seifert
surface, such that any metaboliser of the boundary link Seifert form
is represented by three curves on the Seifert surfaces that form a link
with nonvanishing Milnor triple linking number. We also give a gen-
eralization to m-component links and higher Milnor invariants. We
prove that our examples are ribbon and that all ribbon links are bound-
ary slice.

1. Introduction

The topological four-dimensional surgery conjecture for free groups states that
the surgery sequence discussed in [FQ90, Section 11.3] is exact when the funda-
mental group is free. A key test case is the question of whether the Whitehead
double of the Borromean rings is a topologically slice link [Fre84; CF84; Fre93;
Kru08]. One strategy to slice a boundary link L = L1 � · · · � Lm (a boundary
link is a link whose components bound disjoint Seifert surfaces in S3) is to push
these Seifert surfaces F = F1 � · · · �Fm, ∂Fi = Li , into the 4-ball B4 and then to
ambiently surger the Seifert surfaces to discs by finding a set of curves generat-
ing a half-rank submodule of H1(Fi;Z) for each i = 1, . . . ,m and finding framed
discs, pairwise disjoint, embedded in B4 � F , and with boundary these curves.

In order for such framed discs to exist, such a set of curves must be a
metaboliser for the boundary link Seifert form (see Definitions 2.4 and 2.5). Fol-
lowing [CHL10], we consider simple closed curves on the Seifert surfaces rep-
resenting a metaboliser M as a link in S3, also denoted by M , and call this the
derivative of L with respect to the metaboliser.

If a derivative is itself a slice link, then the programme works, and the original
link is slice. On the other hand, if we have a boundary link with Seifert surfaces
and we know that all of the metabolisers are not slice links, we can wonder if this
implies that the link is not slice. In the famous case of the Whitehead double of
the Borromean rings, with their obvious Seifert surfaces, all derivatives are the
Borromean rings, which are well known not to be slice; for example, they have a
nonzero Milnor triple linking number μ(123). Also, the Whitehead double of the
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Borromean rings is known not to be smoothly slice, at least with the right choices
of clasping sign [Lev12]. Indeed, with all clasping negative, according to [CT13],
it is not even 0-positive in the Cochran–Harvey–Horn filtration [CHH13].

Nevertheless, in the topological category, having derivatives with nonzero Mil-
nor invariants is known to be insufficient to deduce that a link is not slice. One
can take the Whitehead double of the Whitehead link. As proven in [Fre88], this
is a topologically slice link, and the metabolisers on the obvious Seifert surfaces
form a Whitehead link. The Whitehead link has a nonvanishing Milnor invariant
μ(1122) and so is not slice.

The main aim of this paper is to produce a smoothly slice example and to use
the Borromean rings instead of the Whitehead link.

Our example shows that it is unlikely that it is possible to use derivatives with
nontrivial Milnor invariant μ(123) to give an obstruction to a link being smoothly
slice. Note that any obstruction to topological slicing is also an obstruction to
smooth slicing.

Theorem 1.1. There exists a smoothly slice (in fact ribbon) 3-component bound-
ary link S = S1 � S2 � S3 with Seifert surfaces F = F1 � F2 � F3, each of
which is genus one and has an unknotted metabolising curve, such that for every
metaboliser M , for the boundary link Seifert form, and for any three simple closed
curves M1 � M2 � M3 representing M , where Mi ⊂ Fi , we have μM(123) �= 0.

Moreover, for i = 1,2,3, we have that Fi is a unique minimal genus Seifert
surface for Si .

It is natural to wonder whether our links are boundary slice. In the appendix
we show (Theorem A.3) the apparently well-known result that ribbon boundary
links are boundary ribbon (Definition A.2) and therefore boundary slice (Defini-
tion 2.3).

We were inspired by the recent work of Cochran and Davis [CD13]. They
found counterexamples to the thirty-year-old Kauffman conjecture, which was
that any genus one slice knot has a genus one Seifert surface on which there is a
metabolising curve J that has Arf(J ) = 0. The question has also been asked with
the signature σ(J ) replacing Arf(J ); see also [GL13].

Theorem 1.2 (Cochran–Davis). There exists a smoothly slice knot K with a
unique genus one Seifert surface F such that for every metaboliser M for Seifert
form and for any simple closed curve J representing M , where J ⊂ F , we have
Arf(J ) �= 0 and σ(J ) �= 0.

Crucially, their examples were found in a conceptual fashion, enabling their tech-
niques to be applied to our situation.

Until the work of Cochran and Davis appeared, there was plenty of evidence
for this conjecture to be true, making their discovery all the more interesting.
The following archetypal theorem of [CHL10] is one of the strongest known; it
follows previous similar theorems of D. Cooper (from his thesis but unpublished),
Gilmer [Gil83; Gil93], and Cochran, Orr, and Teichner [COT04].
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Theorem 1.3 (Cochran–Harvey–Leidy [CHL10]). If K is a genus one slice knot,
then on any genus one Seifert surface there exists a homologically essential simple
closed curve of self-linking zero that has a vanishing zeroth-order signature and
a vanishing first-order signature.

We refer to [CHL10] for the definitions of the zeroth- and first-order signatures of
a knot.

We can generalize Theorem 1.1 to replace the triple linking number with many
other Milnor invariants. In the following theorem we let I be a multi-index for
which there exists a link with nonvanishing Milnor invariant μ(I). Let m be the
number of distinct integers in I .

Theorem 1.4. Let I be a multi-index as above for which |I | is odd. Then there
exists a smoothly slice (in fact ribbon) m-component boundary link S = S1 � · · · �
Sm with Seifert surfaces F = F1 �· · ·�Fm, each of which is genus one and has an
unknotted metabolising curve, such that for every metaboliser M for the boundary
link Seifert form and for any m simple closed curves M1 � · · · � Mm representing
M , where Mi ⊂ Fi , we have μM(I) �= 0.

Moreover, for i = 1,2,3, we have that Fi is a unique minimal genus Seifert
surface for Si .

Remark 1.5. We have the following questions.

(1) Any two genus one Seifert surfaces for each component of our example in
Theorem 1.1 are isotopic. Is the collection F of the three boundary link Seifert
surfaces together the unique minimal genus collection?

(2) Do there exist examples for multi-indices of even length? For example, is
there a smoothly slice 2-component link with genus one Seifert surfaces
whose derivatives all have nonvanishing μ(1122)?

(3) Does there exist an example with unknotted components?
(4) Does there exist a slice knot, with a minimal genus Seifert surface, all of

whose derivatives have nonvanishing Milnor invariants?

Organization of the Paper

Section 2 recalls some relevant definitions. Section 3 generalizes a result of
[CD13] to the case of infection by string links, which shows that a certain opera-
tion on a slice link yields another slice link. Section 4 proves a formula detailing
how the Milnor invariants change under infection by a string link. Section 5 gives
the construction of our example and therefore the proof of Theorem 1.1, with the
exception of the parenthetically claimed fact that the constructed link is ribbon.
This fact is shown in Section 6. The proof of Theorem 1.4 is given in Section 7.
Finally, the appendix contains a proof of the theorem that ribbon boundary links
are boundary ribbon.
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2. Definitions

Definition 2.1 (boundary link). An m-component oriented link L = L1 � · · · �
Lm ⊂ S3 is said to be a boundary link if there is a smooth embedding of m pair-
wise disjoint Seifert surfaces F = F1 � · · · � Fm ⊂ S3 such that ∂Fi = Li for
i = 1, . . . ,m.

Definition 2.2 (slice link). An m-component oriented link L = L1 � · · · �Lm ⊂
S3 is smoothly slice if there is a smooth embedding of m pairwise disjoint discs
D1 � · · · � Dm ⊂ B4 such that ∂Di = Li ⊂ S3 for i = 1, . . . ,m.

Definition 2.3 (boundary slice link). A pair (L,F ) consisting of an m-
component oriented smoothly slice boundary link L as in Definition 2.2, and
a collection of Seifert surfaces F for L as in Definition 2.1 is a boundary
slice pair if there is a smooth embedding of pairwise disjoint 3-manifolds
N = N1 � · · · � Nm ⊂ B4 such that ∂Ni = Di ∪Li

Fi .
A smoothly slice boundary link L is said to be boundary slice if there exists a

collection of Seifert surfaces F such that (L,F ) forms a boundary slice pair.

It is unknown whether all slice boundary links are boundary slice. The next defi-
nition follows [Ko87; Fri06].

Definition 2.4 (boundary link Seifert form). Let g1, . . . , gm be nonnegative in-
tegers. A (boundary link) Seifert matrix is a matrix A with entries {Aij }i,j=1,...,m

where each entry Aij is a 2gi × 2gj matrix, Aij = AT
ji for i �= j , and det(Aii −

AT
ii) = 1.
Such a matrix arises geometrically as follows. Let F = F1 � · · · � Fm be ori-

ented boundary link Seifert surfaces for a boundary link L, and let gi be the genus
of Fi . Each Seifert surface Fi has a positive side inherited from its orientation.
Given a curve γ ⊂ Fi , let γ + be the curve obtained by pushing γ off Fi in the
positive normal direction. Choose oriented curves γ i

1 , . . . , γ i
2gi

on Fi that form a
basis of H1(Fi;Z). A boundary link Seifert matrix is then defined by

(Aij )k� = lk(γ i
k , (γ

j
� )+).

The boundary link Seifert form is the form

V :
m⊕

i=1

H1(Fi;Z) ×
m⊕

i=1

H1(Fi;Z) −→ Z

represented by this matrix. Note that any change of basis must respect the direct
sum decomposition.

The next definition follows [Ko87; CHL10].

Definition 2.5 (metaboliser and derivative). (1) A metaboliser M of the bound-
ary link Seifert form is a half-rank submodule of each H1(Fi;Z) with a ba-
sis represented by curves β1

1 , . . . , β1
g1

, β2
1 , . . . , β2

g2
, . . . , βm

1 , . . . , βm
gm

, where
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Figure 1 An r-multidisc

Figure 2 A 2-component string link and its exterior

βi
j ⊂ Fi , satisfying that V (βi

k, β
j

� ) = 0 for i, j = 1, . . . ,m, k = 1, . . . , gi ,
� = 1, . . . , gj .

(2) If the boundary link Seifert form of a boundary link has a metaboliser, then
that boundary link is said to be algebraically slice.

(3) Considering the β curves as a link in S3 in their own right, we refer to this
link as a derivative link of L, with respect to the Seifert surfaces F and the
metaboliser M , and denote this link by M1 � · · · � M∑m

i=1 gi
.

The next definition follows [HL90].

Definition 2.6 (string link). (1) An r-multidisc E is an oriented disc D2 with
an ordered collection of r embeddings of open discs E1, . . . ,Er ↪→ E (see
Figure 1). We abuse notation and identify Ei with its image in E. For i =
1, . . . , r , we choose a path γi : I → E� (E1 � · · ·�Er) such that γi(0) ∈ ∂Ei

and γi(1) ∈ ∂E and such that the images of the γi are pairwise disjoint.
(2) Let pi be a point in Ei for each i = 1, . . . , r . An r-component string link J is

a smooth, proper embedding

J :
r⊔

i=1

pi × I −→ D2 × I

such that for t = 0,1, we have J (pi × t) = pi × t ∈ D2 × I for i = 1, . . . , r

(e.g., see Figure 2). Since J is smooth, there is an embedding (called a tubular
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neighbourhood of J )

ν(J ) :
r⊔

i=1

Ei × I −→ D2 × I

such that ν(J ) coincides with J on pi × I , and for t = 0,1, we have
ν(J )|Ei×t = idEi×t for i = 1, . . . , r . Abusing notation, we will often write
the image of J (resp. the image of ν(J )) as J (resp. ν(J )).

(3) For i = 1, . . . , r , choose a 0-framed parallel δi : I → ∂Ei × I of J (pi × I )

such that δi(t) = γi(0) × {t} ∈ E× I for t = 0,1. The ith longitude �i of J is
defined as the following concatenation of arcs:

�i = δi ∪ (γi × {1}) ∪ (γi(1) × I ) ∪ (−γi × {0}).
(4) Let f : D2 × I → D2 × I be the orientation-reversing diffeomorphism given

by f (x, y, t) = (x, y,1 − t) for (x, y) ∈ D2, t ∈ I . For a string link J , we
define its inverse −J by the composition f ◦ J :

−J :
r⊔

i=1

pi × I
J−→ D2 × I

f−→ D2 × I.

The string link −J is easily seen to be the concordance inverse of J .

Remark 2.7. If X(J ) = (D2 × I )� ν(J ) is the exterior of the string link J with
standard orientation from D2 × I , then f restricts to an orientation-preserving
diffeomorphism between −X(J ) and X(−J ).

The following definition follows [CFT09]; a similar earlier construction also ap-
peared in [CO94].

Definition 2.8 (infection by a string link). Let L be a link in S3, and J be an
r-component string link in D2 × I .

(1) An embedding φ : E → S3 is a proper r-multidisc in (S3,L) if φ(E) inter-
sects L transversely and only inside E1, . . . ,Er . We also denote by φ the
embedding of a thickening φ : E× I → S3.

(2) Let Eφ be the image of φ, and let Eφ := φ(E1 � · · · � Er). Note that (Eφ �

Eφ) × I is homeomorphic to the exterior of the trivial r-component string
link.

(3) Let S(L,J,φ) be the link that is the image of L under the following homeo-
morphism:

(S3 � (int(Eφ �Eφ) × I )) ∪ ((D2 × I )� ν(J ))

= (S3 � (Eφ × I )) ∪ (((D2 × I )� ν(J )) ∪ (Eφ × I ))

∼= D3 ∪ D3 ∼= S3.

We say that S(L,J,φ) is the string link infection with seed L, infection link
J , and axis φ(E).
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We use the letter S since this construction is a variant of the well-known satellite
construction. The effect of infection by a string link is to tie the string link J into
the strands of L that pass through Eφ .

3. Infections on Slice Links That Produce Slice Links

First, we have a straightforward lemma, which describes infections that, starting
with a boundary link, produce a boundary link.

Lemma 3.1. Suppose that L is a boundary link with disjoint Seifert surfaces F

and φ : E → S3 is a proper r-multidisc in (S3,L). If φ(E � (E1 � · · · � Er)) is
disjoint from F , then S(L,J,φ) is also a boundary link.

Proof. The images of the Seifert surfaces F under the homeomorphism of Defi-
nition 2.8 (3) are again Seifert surfaces for S(L,J,φ). �
The main goal of this section is to prove the following lemma, which is the string
link infection version of [CD13, Theorem 3.1]. It describes a pair of string link
infections on a slice link that produces a slice link. Suppose that we start with
a slice link R and do two string link infections using multidiscs φ0 and φ1 such
that the associated handlebodies φi((E� (E1 � · · · �Er))× I ) (i = 0,1) cobound
an embedding of (E� (E1 � · · · � Er)) × I × I in the complement of slice discs
for R. Moreover, suppose that we use J and −J as infection links for φ0 and φ1,
respectively. Then the resulting double infection link is still slice.

Lemma 3.2 (link version of Theorem 3.1 of [CD13]). Let R be a slice link bound-
ing slice discs D in the 4-ball B4. Let φi : E×I → S3 be (thickenings of ) disjoint
proper r-multidiscs in (S3,R) for i = 0,1. Define � := E� (E1 � · · · � Er), an
r-punctured disc, and suppose that there is a smooth embedding � : �×I ×I →
B4 � νD with

• �|�×I×{i} = φi |�×I for i = 0,1 and
• �(x, s, t) ∈ ∂B4 if and only if t = 0,1.

Then, for any r-component string link J , the result of the double string link infec-
tion S(S(R,J,φ0),−J,φ1) is smoothly slice.

The proof closely follows that of [CD13, Section 4]. For the sake of our con-
sciences, we check the details in our string link infection case.

Proof of Lemma 3.2. Let X(J ) := (D2 × I ) � ν(J ) be the exterior of the string
link J and consider B4 � Im�. Decompose the boundary ∂(Im�) = ∂+ ∪ ∂−,
where

∂+ := (φ0(�) � φ1(�)) × I and ∂− = �(∂(� × I ) × I ).

Note that ∂(B4 � Im�) = (S3 � ∂+) ∪ ∂− and that ∂− is diffeomorphic to
∂X(J ) × I .

We are about to define a 4-manifold B by extending the infections to an infec-
tion on B4 � νD, using the cobordism defined by �. More precisely, let B be the
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4-manifold obtained by identifying B4 � Im� and X(J ) × I along a diffeomor-
phism ψ :

ψ : �(∂(� × I ) × I ) −→ ∂X(J ) × I,

which satisfies:

• ψ(�(x, s, t)) = (ν(J )(x, s), t) if (x, s) ∈ ∂(E1 � · · · � Er) × I , t ∈ I ;
• ψ(�(x, s, t)) = (x, s, t) otherwise.

Recall that ∂+ is the disjoint union of two genus r handlebodies, so its boundary is
two genus r surfaces. This is also the boundary of the exterior of an r-component
string link. The boundary ∂B is obtained by gluing S3 � ∂+ to X(J ) and −X(J )

along two genus r surfaces and ∂B is diffeomorphic to S3 as in Definition 2.8 (3).
The image of R under the map S3 � ∂+ → ∂B ∼= S3 is S(S(R,J,φ0),−J,φ1)

by definition. (Here, we used Remark 2.7 to identify −X(J ) with X(−J ).) Since
the slice discs D are disjoint from the image of �, their images in B are slice discs.
The following claim therefore implies that S(S(R,J,φ0),−J,φ1) is smoothly
slice, and so the proof of the lemma is complete once the claim has been verified.

Claim. The 4-manifold B is diffeomorphic to the 4-ball.

The rest of the proof of Lemma 3.2 comprises the proof of the claim. Recall that
Eφi

:= φi(E1 � · · · � Er). Let

V := Im� ∪ ν(Eφ0) ∪ ν(Eφ1)

and

W := X(J ) × I ∪ ν(Eφ0) ∪ ν(Eφ1).

Here, ν(Eφi
) is the tubular neighbourhood of Eφi

in B4 for i = 0,1. Also, ν(Eφi
)

is glued to X(J ) × I via ψ . In more detail, we have

V = �(� × I × I ) ∪ h1
0 ∪ · · · ∪ hr

0 ∪ h1
1 ∪ · · · ∪ hr

1

and

W = X(J ) × I ∪ h1
0 ∪ · · · ∪ hr

0 ∪ h1
1 ∪ · · · ∪ hr

1,

where hi
t is a four-dimensional 2-handle glued along the circle φt (∂Ei × 0) for

i = 1, . . . , r and t = 0,1 with product framing. Note that

X(J ) × I ∪ h1
0 ∪ · · · ∪ hr

0

is diffeomorphic to B4. With this identification, the image of the attaching circles
of the hi

1 forms a 0-framed r-component unlink in ∂B4. To see this, note that the
circle φ1(∂Ei × 0) bounds a disc, namely the core of hi

0 together with the annulus
∂Ei × I for all i. This observation shows that W is diffeomorphic to �r

i=1S
2 ×D2,

where � denotes the boundary connected sum. The same argument shows that V

is diffeomorphic to �r
i=1S

2 × D2.
Note that ∂V ∩ ∂B4 is the disjoint union of two 3-balls B0 � B1, where

Bi = φi(� × I ) ∪ (ν(Eφi
) ∩ ∂B4)
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for i = 0,1. Then B = (B4 � V ) ∪ W , where the gluing map is given by an em-
bedding

ψ0 : ∂V � (B0 ∪ B1) −→ ∂W.

Here, ψ0 is the restriction of ψ to ∂(�× I )× I ⊂ ∂V � (B0 ∪ B1), together with
the identity map on the intersection of the 2-handles hi

t with ∂V � (B0 ∪ B1)

for t = 0,1 and i = 1, . . . , r . We prove that B is diffeomorphic to the 4-ball by
showing that ψ0 extends to a diffeomorphism between V and W .

First, we extend ψ0 to a diffeomorphism ψ1 : ∂V → ∂W . Note that ∂V ∼=
∂W ∼= #r

i=1S
2 × S1.

To see that we can extend to such a diffeomorphism ψ1, note that ∂V � (B0 ∪
B1) and ∂W can be understood via the handle decomposition described by the
standard Heegaard diagram for #r

i=1S
2 × S1, with a genus r surface and the αj

and βj curves parallel longitudes on the j th torus connected summand of the sur-
face, with B0 and B1 the 0-handle and the 3-handle of the handle decomposition,
respectively. The boundaries ∂(� × I ) and ∂(X(J )) are both diffeomorphic to a
genus r surface �, and so ∂(�× I )× I and ∂(X(J ))× I are both diffeomorphic
to � × I , and these are identified by ψ0. Each 2-handle hi

t can be thought of as
a three-dimensional 2-handle h̃i

t product with an interval, with h̃i
t × {0} ⊂ ∂B4.

The lower boundary h̃i
t × {1} is then the 2-handle attached to αi for t = 0 and to

βi for t = 1.
Now recall that the map ψ0 is the identity when restricted to the intersection

of the 2-handles hi
t with ∂V � (B0 ∪ B1) for t = 0,1 and i = 1, . . . , r . Thus, the

surface � × I and the three-dimensional 1- and 2-handles of #r
i=1S

2 × S1 are all
identified. Therefore, ∂Bi is sent to the boundary of the 0-handle of ∂W for i = 0
and to the boundary of the 3-handle for i = 1. We have that any diffeomorphism
of the 2-sphere extends over the 3-ball, by [Mun60; Sma59]. It follows that the
diffeomorphism ψ0(Bi) extends for i = 0,1, so that as claimed ψ0 extends to a
diffeomorphism ψ1 : ∂V → ∂W .

We want to extend ψ1 to a diffeomorphism between V and W . For i = 1, . . . , r ,
each circle �(∂(γi × I × {1})), which is the image under � of a longitude of the
ith component of the trivial r-component string link, is isotopic in ∂V to the belt
sphere of 2-handle hi

1 where γi is the chosen arc in Definition 2.6 (1) and Figure 1.
(Note that each circle �(∂(γi × I ×{1})) links attaching circle of hi

1 once.) Recall
that

V = �(� × I ) ∪ h1
0 ∪ · · · ∪ hr

0 ∪ h1
1 ∪ · · · ∪ hr

1.

For i = 1, . . . , r , let Di be the cocore of the 2-handle hi
1 in V . Therefore,

V � (ν(D1) � · · · � ν(Dr)) ∼= �(� × I ) ∪ h1
0 ∪ · · · ∪ hr

0
∼= B4.

Now we consider W . Let �i be the ith longitude of J in X(J ), and let mi be the
attaching circle of hi

1. As illustrated in Figure 3, after sliding �i × {1} over the 2-
handles h1

1, . . . , h
r
1 (sufficiently many times), we can see that �i × {1} is isotopic

in ∂W to �′
i that is a meridian of mi . That is, �i × {1} is isotopic to the belt

sphere of the 2-handle hi
1. Moreover, these isotopies can be achieved disjointly.

In particular, �i ×{1} bounds a disc Di that is the cocore of the 2-handle hi
1 in W .
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Figure 3 An isotopy of �i × {1} in ∂W

To see the isotopies, consider that ∂(X(J )∪h1
0 ∪· · ·∪hr

0)
∼= S3. The longitudes

�1 ∪· · ·∪�r define a link in this S3. Attaching the 2-handles h1
1 ∪· · ·∪hr

1 performs
zero surgery on the meridians mi to the �i . Standard Kirby calculus moves now
convert the link to an unlink with zero surgery on the meridians. The hi

1 can be
thought of as helper circles to undo the link formed by the �i .

We have just seen that, up to isotopies, ψ1 identifies the framed boundary of
Di with the framed boundary of Di for i = 1, . . . , r . So, ψ1 extends to a diffeo-
morphism

ψ ′
1 : ∂V ∪ ν(D1) ∪ · · · ∪ ν(Dr) −→ ∂W ∪ ν(D1) ∪ · · · ∪ ν(Dr ).

Since V � (ν(D1) � · · · � ν(Dr)) and W � (ν(D1) � · · · � ν(Dr )) are 4-balls
and since any diffeomorphism of ∂B4 extends to a diffeomorphism of B4 by

[Cer68], ψ ′
1 extends to a diffeomorphism V

�→ W . This completes the proof that
B is diffeomorphic to B4 and therefore completes the proof of the claim and
Lemma 3.2. �

4. The Effect of String Link Infection on Milnor Invariants

The aim of this section is to prove the following lemma, which enables us to
compute Milnor invariants of links obtained by string link infection. The Milnor
invariants μL(I) of a link L were introduced by Milnor [Mil57]. Later in the
paper (Sections 5 and 7), we will apply the next lemma to compute the values of
μ(I) for the derivatives associated to our examples.

Lemma 4.1. Let I be a multi-index that contains the indices {1, . . . ,m}, and let
ki be the number of occurrences of the index i in I (ki ≥ 1). Let L = L1 � · · · �
Lm be an m-component link with μL(I ′) = 0 whenever |I ′| < |I |, and let J be
an m-component string link whose closure Ĵ has μĴ (I ′) = 0 whenever |I ′| <

|I |. Let φ : E → S3 be a proper m-multidisc in (S3,L) such that for each i =
1, . . . ,m, φ(Ei) only intersects L at Li . Denote the algebraic intersection number
between φ(Ei) and Li by ni for i = 1, . . . ,m. Then S(L,J,φ) is also a link with
μS(L,J,φ)(I

′) = 0 whenever |I ′| < |I |, and

μS(L,J,φ)(I ) = μL(I) + μĴ (I ) ·
m∏

i=1

n
ki

i .
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Figure 4 Internal band sums of S(L,J,φ) that produce L′

Proof. Suppose that all intersection points in φ(Ei) ∩ Li have been made trans-
verse and that φ(Ei)∩Li contains αi positive and βi = αi −ni negative intersec-
tion points, i = 1, . . . ,m. Let J ′ be the oriented string link generated by taking
αi parallel copies of ith component Ji of J and βi parallel copies of r(Ji), which
is Ji with opposite orientation, for i = 1, . . . ,m. Let L′ be the split union of L

and Ĵ ′, the closure of J ′. Then S(L,J,φ) can be considered as the outcome of
performing certain internal band sums of L′. This is shown in Figure 4, which we
now explain.

We start by looking at S(L,J,φ). Recall, from Definition 2.6 (1), the paths
γi (i = 1, . . . ,m) in the m-multidisc φ that connect φ(∂Ei) and the boundary of
the m-multidisc. These paths γi determine

∑m
i=1(αi + βi) arcs as shown on the

top right of Figure 4. These arcs induce bands, which we denote b, connecting
components of S(L,J,φ) to themselves, as shown on the bottom left of Figure 4.
The result of band sums along these bands is the split union of Ĵ ′ and L, i.e., L′,
the salient part of which can be seen on the bottom right of Figure 4.

Note that a band sum can be annulled by dual band sum, that is, another band
sum along the cocore of original band (see Figure 5). Hence, reversing the above
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Figure 5 A dual band sum annuls the original band sum

operation with the dual band sum, S(L,J,φ) can be seen to be the result of inter-
nal band sums of L′ along the dual bands of b.

Using this interpretation of the operation of string link infection as performing
band sums (cf. [Coc04, Section 10]), we can apply [Coc90, Theorem 8.13], which
states that the first nonvanishing Milnor invariants are additive under exterior band
sums, namely band sums that join a split link. In fact, the band sums we use are
slightly more general than those of [Coc90, Definition 8.7] since one component
of L is connected to several components of Ĵ ′. However, the proof of [Coc90,
Theorem 8.13] easily generalizes, once the contribution to the Milnor invariant
from Ĵ ′ is interpreted in the appropriate sense, which we describe now.

In Ĵ ′, each parallel copy of Ĵi is labeled with an index j for j ∈ {1, . . . ,
∑

i αi +∑
i βi}. Define a function h : {1, . . . ,

∑
i αi +∑

i βi} → {1, . . . ,m} that sends the
index of a parallel copy of Ĵi to i. The integer h(j) records which component of
S(L,J,φ) the parallel copy labeled j will become part of after the band sums
since all parallel copies of Ĵi will belong to the ith component of S(L,J,φ). We
need to take the sum ∑

{I ′|h(I ′)=I }
μĴ ′(I ′),

where we can apply the function h to a multi-index in the obvious way.
First, we note that reversing the orientation on a single component Li of a link

changes the sign of a Milnor invariant μL(I) by (−1)ki , where ki is the number
of times that i appears in I [Mil57, page 296].

Choose a parallel copy of Ĵi for each occurrence of i in I and do this for all
i = 1, . . . ,m. Let I ′ be the multi-index that arises by replacing each occurrence
of i in I by the index of the parallel copy of Ĵi chosen. Note that h(I ′) = I .

By [Mil57, Theorem 7], the Milnor invariant of the collection of parallel copies
is

μĴ (I ) ·
∏
j∈I ′

r
λj

j ,

where rj ∈ {±1} is −1 if the parallel copy of a component of Ĵ with index j

chosen uses the reverse orientation and is +1 otherwise, and λj is defined to
be the number of times that j appears in I ′. Note that if λj is even, then rj
makes no difference to the Milnor invariant. We need to sum over all possible
choices of parallel copies, to obtain the contribution to μS(L,J,φ)(I ). For each
i in I , we have to make ki choices, and there are αi + βi choices each time.
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Thus, there are
∏m

i=1(αi +βi)
ki possible choices, whose contribution with sign is∏m

i=1(αi − βi)
ki = ∏m

i=1 n
ki

i .
Therefore, the total contribution of Ĵ ′ to the Milnor invariant is

μĴ (I ) ·
m∏

i=1

n
ki

i .

Combining this with the additivity of the first nonvanishing Milnor invariants un-
der exterior band sums, it follows that

μS(L,J,φ)(I ) = μL(I) + μĴ (I ) ·
m∏

i=1

n
ki

i ,

as required. �

5. Construction of Our Example

In this section, we construct the slice boundary link promised in Theorem 1.1.
Let R = R1 � R2 �R3 be a 3-component split link each of whose components are
the seed ribbon knot used by Cochran and Davis [CD13, Figures 6 and 10] (see
Figure 7). The Cochran–Davis seed knot was shown to have a unique genus one
Seifert surface, up to isotopy, in [Hor10, page 2213]. We denote the unique Seifert
surface for Ri by F ′

i , i = 1,2,3.
Our example is obtained by a double string link infection on R that satisfies

the conditions in Lemmas 3.1 and 3.2, using a string link J for our infection link
whose closure has unknotted components, pairwise linking numbers vanishing,
and μĴ (123) = u �= 0. We take J to be a string link representative of the Bor-
romean rings, to be definite. We choose an orientation of J so that μĴ (123) = 1.

Using Lemmas 3.1 and 3.2, we will prove that the resulting link is a smoothly
slice boundary link. Then, using Lemma 4.1, we will calculate that the Milnor
triple linking numbers of the derivatives with respect to the genus one Seifert
surfaces for the infected link induced from the F ′

i are nonzero.
Let XR := S3 � νR be the exterior of R. For each i = 1,2,3, choose two dis-

joint, oriented curves xi , yi and an arc zi between xi and yi in XR as in Figure 6.
These are (three copies of) the same curves used by Cochran and Davis in [CD13,
Section 5]. Our Figure 6 is copied from [CD13, Figure 6]; we include it here for
the convenience of the reader. The isotopy between the two diagrams in Figure 6
is explained in [CD13, Figure 7]. Note that xi , yi correspond to the curves η1, η2
in [CD13, Figure 6] and zi corresponds to the core of the band between η1 and η2
in [CD13, Figure 8].

From the proof of [CD13, Proposition 5.1], there are an annulus Ai (i = 1,2,3)
and slice discs D of R such that xi � −yi forms the oriented boundary of Ai and
Ai lies in B4 � νD. Note that it can be arranged that each Ai contains the arc zi .

Let Y = ∨3
i=1 I , where the wedge uses basepoints {0} ∈ I for each I . Let Y0

be the three end points of Y coming from {1} ∈ I . We fix the genus one Seifert
surface F ′ = F ′

1 � F ′
2 � F ′

3 of R as in Figure 6. For each i = 1,2,3, choose an arc
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Figure 6 An isotopy of the curves xi and yi

Figure 7 The Seifert surface F ′ of R and ι(Y × I )

connecting the base point of S3 to an interior point of zi that intersects neither R,
the xj , the yj , D, nor F ′. This extends to an embedding

ι : Y × I −→ XR

such that

• ι(Y0 × I ) is z1 � z2 � z3;
• ι((Y � Y0) × I ) is disjoint from xi , yi , R, and F ′.
The image of the map ι is illustrated in Figure 7. Push ι((0,1) × Y) very slightly
into B4. A thickening of Im(ι) ∪ (A1 � A2 � A3) in B4 gives an embedding

� : � × I × I −→ B4 � νD,

where � = E � (E1 � E2 � E3). Denote φt = �|�×I×t : � × I → XR for t =
0,1. Then φ0(∂Ei × I ), φ1(∂Ei × I ) are annulus neighborhoods of xi , yi in S3,
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Figure 8 The Seifert surface Fi and its derivatives ai , bi

respectively, for i = 1,2,3. Since xi and yi bound discs in S3 that intersect R

transversely, we can extend φ0, φ1 to thickenings of two 3-multidiscs in S3.
With this notation, by Lemma 3.2, S(S(R,J,φ0),−J,φ1) is smoothly slice in

B4 for any 3-component string link J . Moreover, S(S(R,J,φ0),−J,φ1) is again
a boundary link by Lemma 3.1 since the image of ι does not meet F ′. Thus, we
have that S(S(R,J,φ0),−J,φ1) is a smoothly slice boundary link for any string
link J .

From now on, let S = S1 � S2 � S3 denote the link S(S(R,J,φ0),−J,φ1);
recall that J is a string link representative for the Borromean rings.

Let F = F1 � F2 � F3 be the Seifert surface of S arising as the image of F ′
under the homeomorphism in Definition 2.8 (3). Note that each Si is ambient
isotopic to the original Cochran–Davis seed knot, so is a slice knot, and as re-
marked above, the Cochran–Davis seed knot was shown to have a unique genus
one Seifert surface in [Hor10, p. 2213]. There are exactly two derivative knots
on each Fi , which are shown in Figure 8. The curves ai in Figure 8 are unknots,
so the components individually satisfy the strong Kauffman conjecture that there
is a slice metaboliser. Once again, Figure 8 comes from [CD13], this time, their
Figure 10, and we include it here for the benefit of the reader.

Theorem 5.1. Each derivative M of S with respect to F has a nonzero Milnor
triple linking number μM(123) �= 0.

Proof. Note that there are exactly two derivatives for Cochran–Davis’ seed knot
with respect to its unique genus one Seifert surface. Let {ai, bi} be the set of
the derivatives for Fi , i = 1,2,3. Here, ai is the unknotted curve on the Seifert
surface Fi shown on the left of Figure 8, while bi is the trefoil which passes
around both bands of the copy of Fi drawn on the right of Figure 8. Hence, there
are exactly eight derivatives of F , each of which is a 3-component link of the
form c1 � c2 � c3, where ci ∈ {ai, bi} for i = 1,2,3. The Seifert matrix for F
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Table 1

#{i ∈ {1,2,3} | ci = bi} 0 1 2 3
μc1�c2�c3

(123) 7 −5 1 −2

(with respect to the most natural basis) is the block sum

3⊕
i=1

(
3 2
1 0

)
.

Note that the links c1 � c2 � c3 are obtained from a 3-component split link
(whose components are either the unknot or the trefoil) by double string link
infection along φ0 and φ1, by J and −J , respectively. So, using Lemma 4.1, we
can calculate μc1�c2�c3

(123).
From Figure 8,

lk(ai, xi) = 2, lk(bi, xi) = −1,

lk(ai, yi) = 1, lk(bi, yi) = 1.

By applying Lemma 4.1 twice (with multi-index 123) we have

μc1�c2�c3
(123) = μU(123) + μĴ (123) ·

3∏
i=1

lk(ci, xi) + μ−̂J (123) ·
3∏

i=1

lk(ci, yi),

where U is the unlink. For indices i, j , k with {i, j, k} = {1,2,3},
μai�aj �ak

(123) = 0 + 1 · 2 · 2 · 2 − 14 = 7,

μai�aj �bk
(123) = 0 + 1 · 2 · 2 · (−1) − 14 = −5,

μai�bj �bk
(123) = 0 + 1 · 2 · (−1)2 − 14 = 1,

μbi�bj �bk
(123) = 0 + 1 · (−1)3 − 14 = −2.

Here, μĴ (123) = 1 and μ−̂J (123) = −1.
For a short version, see Table 1. Since all the numbers in the bottom row are

nonzero, this completes the proof of Theorem 5.1 and therefore of Theorem 1.1.
�

Remark 5.2. If instead of a string link representative of the Borromean rings, we
had used a string link J as our infection link, whose closure has μĴ (123) = u �=
0,1, then the only change would be that the numbers in the bottom row of Table 1
are multiplied by u. This is easy to see from the applications of Lemma 4.1 used
to compute these numbers.

6. Stabilizing to Obtain a Ribbon Derivative Link

In this section, as advertised, we show how to stabilize the Seifert surfaces Fi

of S with an S-equivalence so that there is a ribbon derivative link. This will in
turn imply that S is a ribbon link. Thus, the nonvanishing Milnor invariants of the
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Figure 9 The Seifert surface after surgery to make it genus two, to-
gether with a basis for first homology and the infection curves xi

and yi

derivative links are not particularly robust, as far as stabilization is concerned. We
remark that ribbon links are boundary slice, as shown in Theorem A.3, so we also
prove that S is boundary slice.

We note that Proposition 6.1 provides an alternative to Lemma 3.2 for showing
that S is smoothly slice.

In [CD13, Section 7], it is claimed that the Seifert surface for their knot sta-
bilizes to a surface with a slice derivative link, although details are not given in
their preprint. We thank Chris Davis for helpful discussions concerning this. For
the convenience of the reader, we now show how to achieve this stabilization, with
the necessary adaptation to our link case.

Proposition 6.1. The link S constructed in Section 5 is a ribbon link.

Proof. Figure 9 shows the result of an ambient surgery on S0 ×D2 ⊂ F ′
i , together

with the infection curve xi and yi . This is a modification of the right-hand side of
Figure 6. The new cylinder S1 × D1 has been attached so as to tube along part
of the infection curve yi . We call these new genus two Seifert surfaces G′

i for
i = 1,2,3 and let G′ := G′

1 � G′
2 � G′

3.
The curves xi and yi should be regarded as lying underneath the Seifert surface

G′
i , except for where xi loops around the left-hand band, and where the yi curve

passes through the tube.



440 H. J. Jang, M. H. Kim, & M. Powell

A basis {e1
i , e

2
i , e

3
i , e

4
i } for H1(G

′
i;Z) is also shown. The curves e1

i and e2
i were

generators of H1(Fi;Z), whereas the curves e3
i , e4

i are a meridian and longitude
of the new tube.

With respect to this basis, the Seifert matrix is given by

V :=

⎛
⎜⎜⎝

3 1 1 0
2 0 0 0
1 0 0 0
0 0 1 0

⎞
⎟⎟⎠ .

A metaboliser for the Seifert form is generated by {e2
i , e

3
i }. Both curves are

unknotted. Now note that

lk(e2
i , xi) = lk(e2

i , yi) = 2

and that
lk(e3

i , xi) = lk(e3
i , yi) = 1.

Let
L′ := e2

1 � e3
1 � e2

2 � e3
2 � e2

3 � e3
3

be the derivative link representing the metaboliser obtained by taking the direct
sum of the submodules of H1(G

′;Z) generated by {e2
i , e

3
i } for i = 1,2,3.

We perform the double infection by using a string link representative J of the
Borromean rings and 3-multidiscs determined by the curves xi and yi , as in Sec-
tion 5. Let G denote the image of G′ under the homeomorphism of Definition 2.8
(3). The image of the link L′ is then a derivative for the link S with respect to the
Seifert surfaces G, which we denote L:

L := S(S(L′, J,φ0),−J,φ1).

Here, as in Section 5, the 3-multidiscs φ0 and φ1 are determined by the curves
xi and yi . However, as is consistent with the linking number observations made
above, for each i = 1,2,3, the curves xi and yi are isotopic in S3 � ν(e2

i � e3
i ).

This isotopy is not obvious, but follows along the lines of the isotopy depicted
in [CD13, Figure 7], except restricted by the curves e2

i and e3
i . In fact, the whole

collection of curves e2
i � e3

i � xi � yi is isotopic to the link shown in Figure 10.
Thus, L is isotopic to the link S(L′, J # −J,φ0), which is the result of a single

infection by the string link J # −J . Since this latter is a ribbon string link, the
link L is ribbon. Using parallel copies of the ribbon discs for L, we can surger G

into a disjoint collection of ribbon discs for S. This completes the proof that S is
a ribbon link. �

Remark 6.2. Recall that for each component Si of S, one of the metabolising
curves bi on Fi is a left-handed trefoil. As in the statement of Theorem 1.1, each
surface Fi has a slice metabolising curve, namely the unknotted curve ai . There-
fore, each component Si , considered as a knot, satisfies the Kauffman conjecture
in the strongest sense: for any genus one Seifert surface, there is a slice derivative
knot. Recall that the genus one Seifert surface for each component is unique up
to isotopy.
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Figure 10 The curves e2
i

� e3
i

� xi � yi from Figure 9 after an isotopy

If one desires, one may modify our example by tying a right-handed trefoil into
the left-hand band of Fi with a satellite construction in such a way that no twists
are introduced. In the language of Definition 2.8, this is achieved with infection
by a 1-component string link representative of the right-handed trefoil using a
1-multidisc that intersects the left-hand band of Fi in an arc that cuts the band.
When performing this infection, we must be sure to avoid affecting the curves xi

or yi ; that is, they should be disjoint from the 1-multidisc.
Let S† be the new link, and let F † be the induced Seifert surfaces. Now, all

the derivative links of F † comprise slice knots, but still are not slice by virtue of
their Milnor invariants. The link S† is still ribbon since the proof of this section,
in particular, the link type of e2

i � e3
i � xi � yi , is unchanged. The only caveat is

that after this alteration without further proof we no longer know that the minimal
genus Seifert surface F

†
i for each component is unique.

7. Generalization to Other Milnor Invariants

In this section we give a generalization of Theorem 1.1 to many other Milnor
invariants promised in Theorem 1.4. Cochran [Coc90, Theorem 7.2] associated
an integer δ(I ) to a multi-index I giving the minimal nonnegative integer that can
be realized as a Milnor invariant with the given multi-index μL(I) of any link L.
If no link can have nonzero Milnor invariant with the given index, then δ(I ) = 0.

For a multi-index I , recall from Section 4 that we denote the number of oc-
currences of the index i by ki . In the following theorem, we suppose that I is a
multi-index with δ(I ) �= 0, and we let m be the number of distinct integers in I .

Theorem 7.1. Let I be a multi-index as above for which |I | is odd. Then there
exists a smoothly slice (in fact ribbon) m-component boundary link S = S1 �
· · · � Sm with Seifert surfaces F = F1 � · · · � Fm, each of which is genus one and
has an unknotted metabolising curve, such that for every metaboliser M , for the
boundary link Seifert form, and for any m simple closed curves M1 � · · · � Mm

representing M , where Mi ⊂ Fi , we have μM(I) �= 0.
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Moreover, for i = 1,2,3, we have that Fi is a unique minimal genus Seifert
surface for Si .

Proof. The proof is analogous to the construction in Section 5. Take m copies of
the Cochran–Davis seed knot as R = R1 � · · · � Rm. Let J be an m-component
string link whose closure Ĵ has the Milnor invariant μĴ (I ) = δ(I ) and μĴ (I ′) = 0
whenever |I ′| < |I |. Such a string link can be produced by Cochran’s realization
theorem [Coc90, Theorem 7.2]. Let xi and yi , i = 1, . . . ,m, be copies of the
curves shown in Figures 6 and 8. The collections x1 � · · · � xm and y1 � · · · � ym

determine m-multidiscs φ0(E) and φ1(E), respectively. Define � := E � (E1 �
· · · � Em). Just as in Section 5, φ0(� × I ) and φ1(� × I ) cobound an embedding
� × I × I in the complement of a collection of slice discs for R. By Lemma 3.2,
the double infection S := S(S(R,J,φ0),−J,φ1) is a slice link.

The individual knots are still copies of the Cochran–Davis seed knot, so have
unique genus one Seifert surfaces with an unknotted metaboliser, the curve ai

from Figure 8. The proof that S is a ribbon link follows analogously to the proof
given in Section 6; neither the number of components nor the infection string link
were relevant to that proof.

A metaboliser consists of curves c1 � · · · � cm where ci is either of the type ai

or of the type bi for each i = 1, . . . ,m, where the curves ai and bi are depicted in
Figure 8. Computing as in the proof of Theorem 5.1 and using the general version
of Lemma 4.1, we see that the Milnor invariants of the metabolisers are given by
the formula

μc1�···�cm
(I ) = δ(I ) ·

(( ∏
{i|ci=ai }

2ki

)
·
( ∏

{i|ci=bi }
(−1)ki

)
− 1

)
.

Since ki ≥ 1 for all i, this could only be zero when ci = bi for all i. But then∏
{i|ci=bi }

(−1)ki =
m∏

i=1

(−1)ki = (−1)
∑m

i=1 ki = −1

since by hypothesis
∑m

i=1 ki = |I | is odd. It follows that μb1�···�bm
(I ) =

−2δ(I ) �= 0. �

Appendix. Ribbon Boundary Links Are Boundary Ribbon

Definition A.1. An oriented link L = L1 �· · ·�Lm is ribbon if it is the boundary
of m pairwise disjoint discs D = D1 � · · · � Dm embedded in B4 in such a way
that the radial Morse function on B4 restricts to a Morse function on each Di

which has no critical points of index 2.

A link is a ribbon boundary link if it is both a ribbon link and a boundary link.
Let F be the free group on m generators. Recall that we denote the exterior of
a link L by XL := S3 � νL and that a link is a boundary link if and only if its
exterior admits a map π1(XL) → F with the images of the meridians generating
F [Smy66; Gut72].
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Any collection of Seifert surfaces {Fi} induces such a map: let Fi × [−1,1]
be a regular neighbourhood of Fi and map Fi × [−1,1] → [−1,1] → S1

i , where
the codomain is the ith S1 in a wedge of m circles

∨
m S1 each of which has

−1 ∈ S1
i as its basepoints. The first map is projection, and the last map is given by

t �→ eπit . Map the exterior of the regular neighbourhood of the Seifert surfaces to
the basepoint of

∨
m S1. This defines a map XL → ∨

m S1 = BF . The induced
map on fundamental groups gives a map π1(XL) �F as required.

Definition A.2 (boundary ribbon). A ribbon boundary link is said to be a bound-
ary ribbon if there is a homomorphism π1(B

4 � νD) → F that extends the ho-
momorphism π1(XL) → F . Thus, there is a map B4 � νD → BF = ∨

m S1 ex-
tending the map to

∨
m S1 defined by the Seifert surfaces. Then by transversality

there are 3-manifolds R1 � · · · � Rm embedded in B4, with ∂Ri = Fi ∪Li
Di for

i = 1, . . . ,m.

As far as the authors are aware, the next theorem has not appeared in the literature
before, although it is well known to the experts.

Theorem A.3. Ribbon boundary links are boundary ribbon.

The proof below was told to the authors by Kent Orr, whom we thank for allowing
us to include this in our paper.

Proof of Theorem A.3. Let G be a group, let Gk be the kth lower central sub-
group, and let θk : G/Gk → (G/Gk)/(Gk−1/Gk)

�→ G/Gk−1 be the canonical
map. The nilpotent completion Ĝ of a group G can be constructed as the sub-
group of the infinite product

∏∞
k=1 G/Gk , given by elements (g2, g3, g4, . . . ),

gk ∈ G/Gk , for which θk(gk) = gk−1, k ≥ 3. There is a homomorphism G → Ĝ,
and taking nilpotent completion is a functor; see, for example, [BS77].

Let YD := B4 � νD. Note that the maps XL → YD and XL → BF , given
respectively by inclusion and the fact that L is a boundary link, induce iso-
morphisms H1(XL;Z)

�→ H1(YD;Z), H1(XL;Z)
�→ H1(F;Z) and surjections

H2(XL;Z) � H2(YD;Z), H2(XL;Z) � H2(F;Z) ∼= 0. Stallings’ theorem
[Sta65] thus implies that all three groups π1(XL), π1(YD), and F have isomor-
phic nilpotent completions with isomorphisms induced functorially. The proof is
now contained in Figure 11, as explained below.

Since the upper left vertical map π1(XL) � π1(YD) is surjective and since the
diagram commutes the image in F̂ of all three groups on the left-hand side is the
same. But F injects into its nilpotent completion since F is residually nilpotent;
that is, the bottom horizontal map is an injection. Thus, the image of F in F̂ is
F , and so the image of π1(YD) in F̂ is also F . We have a map π1(YD) → F as
required. �
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