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On Volumes of Complex Hyperbolic Orbifolds

Ilesanmi Adeboye & Guofang Wei

Abstract. We construct an explicit lower bound for the volume of a
complex hyperbolic orbifold that depends only on dimension.

0. Introduction

A hyperbolic orbifold is a quotient of real, complex, quaternionic or octonionic
hyperbolic space by a discrete group of isometries, usually denoted by �. An
orbifold is a manifold when � contains no elements of finite order.

The real hyperbolic 2-orbifold of minimum volume was identified by Siegal
[20]. An analogous result in dimension three was proved by Gehring and Martin
[7]. In the remaining dimensions and algebras of definition, the existence of a
hyperbolic orbifold of minimum volume is guaranteed by a theorem of Wang [22].

In this paper, we prove an explicit lower bound for the volume of any com-
plex hyperbolic orbifold that depends only on dimension. Our methods here are
similar to those of the prequel [2], which addressed the real hyperbolic case. The
complex setting provides an additional corollary, and the corresponding Lie group
curvature calculations are of independent interest.

Let Hn
C

denote complex hyperbolic n-space. The holomorphic sectional cur-
vature of Hn

C
is normalized to be −1; accordingly, the sectional curvatures are

pinched between −1 and −1/4. Let SU(n,1) denote the indefinite special unitary
group of indicated signature. This group is a Lie group, and it acts transitively by
isometries on complex hyperbolic space. With an appropriate scale of a canoni-
cal metric on SU(n,1), we define a Riemannian submersion π : SU(n,1)/� →
Hn

C
/�. The volume of a complex hyperbolic n-orbifold is thereby described in

terms of the volume of the fundamental domain of a lattice in a Lie group. The
latter is then bounded from below using results of Wang [22] and Gunther (see
e.g. [6]). In what follows, dimension will refer to complex dimension, unless oth-
erwise stated.

Theorem 0.1. The volume of a complex hyperbolic n-orbifold is bounded below
by C(n), an explicit constant depending only on dimension, given by

C(n) = 2n2+n+1πn/2(n − 1)! (n − 2)! · · ·!3!2!1!
(36n + 21)(n

2+2n)/2�((n2 + 2n)/2)

×
∫ min[0.06925

√
36n+21,π]

0
sinn2+2n−1 ρ dρ.
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The formula of Theorem 0.1 gives a lower bound of 0.002 for complex 1-orbifolds
and 2.918 × 10−9 for complex hyperbolic 2-orbifolds. Since complex hyperbolic
1-space is isometric to real hyperbolic 2-space, a sharp volume bound of π/21 for
complex hyperbolic 1-orbifolds follows immediately from the classical results of
Hurwitz [11] and Siegel [20].

As in [2], we note that volume bounds for hyperbolic orbifolds provide imme-
diate information on the order of the symmetry groups of hyperbolic manifolds.
Following Hurwitz’s formula for groups acting on surfaces, we have the following
corollary.

Corollary 0.2. Let M be an complex hyperbolic n-manifold. Let H be a group
of isometries of M . Then

|H | ≤ Vol[M]
C(n)

.

The Chern–Gauss–Bonnet formula (see e.g. [10]) describes volume in terms of
the Euler characteristic:

Vol(M) = (−4π)n

(n + 1)!χ(M).

This formula gives an explicit lower bound for the class of complex hyperbolic
manifolds. In that case the Euler characteristic is integer valued. However, there
is no such restriction for orbifolds. The formula also provides an alternate version
of Corollary 0.2.

Corollary 0.3. Let M be a finite volume complex hyperbolic n-manifold. Let H

be a group of isometries of M . Then

|H | ≤ (−4π)n

C(n)(n + 1)!χ(M).

The next section gives a definition of complex hyperbolic space and concludes
with our preferred symmetric space representation. A comprehensive treatment of
complex hyperbolic geometry can be found in [9]. Section 2 provides the back-
ground on the geometry of SU(n,1) that we will subsequently use. For more
details, the reader may consult Chapter 6 of [13] or Sections 1–3 of [2], where we
undertook a similar analysis of SOo(n,1).

1. Complex Hyperbolic Space

Let Cn,1 be a complex vector space of dimension (n + 1) equipped with the Her-
mitian form

〈z,w〉 = zJw∗ = z1w1 + z2w2 + · · · + znwn − zn+1wn+1,
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where

J =

⎛
⎜⎜⎜⎜⎜⎝

1
1

. . .

1
−1

⎞
⎟⎟⎟⎟⎟⎠

and (·)∗ represents conjugate transpose. Note that, for all z ∈ C
n,1 and λ ∈ C,

〈z, z〉 ∈R and 〈λz, λz〉 = |λ|2〈z, z〉.
Let

V− = {z ∈ C
n,1 | 〈z, z〉 < 0},

and let

P | Cn,1 − {0} →CPn

be the canonical projection onto complex projective space. Complex hyperbolic
n-space Hn

C
is defined to be the space P(V−) together with the Bergman metric.

The Bergman metric is defined by the distance function ρ given by the formula

cosh2
(

ρ(z,w)

2

)
= 〈z,w〉〈w, z〉

〈z, z〉〈w,w〉 ,

where z and w are lifts of z,w ∈ Hn
C

.
Let GL(n,C) be the group of complex nonsingular n-by-n matrices. The uni-

tary group is defined and denoted by

U(n) = {A ∈ GL(n,C) | AA∗ = I }.
Denote by U(n,1) the group of all linear transformation of Cn,1 that leave the
form 〈z,w〉 invariant, that is,

U(n,1) = {A ∈ GL(n + 1,C) | AJA∗ = J }.
The induced action of U(n,1) on CPn preserves Hn

C
and acts by isometries.

The stabilizer of the point of Hn
C

with homogeneous coordinates [0 : · · · : 0 : 1] is

U(n) × U(1) =
{(

A 0
0 eiθ

) ∣∣∣ A ∈ U(n), θ ∈ [0,2π)

}
.

We can identify U(n) with the elements of U(n) × U(1) that have determinant 1
by the map

A →
(

A 0
0 (detA)−1

)
.

Hence,

Hn
C

= U(n,1)/{U(n) × U(1)} = SU(n,1)/S{U(n) × U(1)} = SU(n,1)/U(n).
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2. The Lie Group SU(n,1)

A matrix Lie group is a closed subgroup of GL(n,C). Recall that for a square
matrix X,

eX = I + X + 1

2
X2 + · · · .

The Lie algebra of a matrix Lie group G is a vector space, defined as the set of
matrices X such that etX ∈ G for all real numbers t . The Lie algebra of GL(n,C),
denoted by gl(n,C), is the set of all n × n matrices over C.

The indefinite special unitary group

SU(n,1) = {A ∈ U(n,1) | detA = 1}
is a matrix Lie group of real dimension n2 + 2n. The Lie algebra of SU(n,1) is
defined and denoted by

su(n,1) = {X ∈ gl(n,C) | JX∗J = −X, traceX = 0}.
Definition 2.1. For each n, let ejk ∈ gl(n + 1,C) be the matrix with 1 in the
jk-position and 0 elsewhere. Furthermore, let αjk = (ejk − ekj ), βjk = (ejk +
ekj ), and hj = i(ejj − en+1,n+1). The standard basis for su(n,1), denoted by B,
consists of the following set of n2 + 2n matrices:

αjk, 1 ≤ j < k ≤ n, iβjk, 1 ≤ j < k ≤ n,

βj,n+1, 1 ≤ j ≤ n, iαj,n+1, 1 ≤ j ≤ n,

hj , 1 ≤ j ≤ n.

The Lie bracket of a matrix Lie algebra is determined by matrix operations:

[X,Y ] = XY − YX.

The following proposition describes the Lie bracket of su(n,1). The proof in-
volves a straightforward calculation and is omitted.

Proposition 2.2. For 1 ≤ j < k ≤ n, 1 ≤ l < m ≤ n,

[αjk,αlm] = δklαjm + δkmαlj + δjmαkl + δljαmk, (2.1)

[iβjk, iβlm] = −(δklαjm + δkmαjl + δjmαkl + δljαkm), (2.2)

[hj ,hk] = 0, (2.3)

[αjk, iβlm] = i(δklβjm + δkmβjl − δjmβkl − δlj βkm), (2.4)

[αjk, hl] = i(δklβjl − δlj βkl), (2.5)

[hl, iβjk] = δklαjl + δljαkl, (2.6)

[αjk,βl,n+1] = δlkβj,n+1 − δjlβk,n+1, (2.7)

[αjk, iαl,n+1] = i(δklαj,n+1 − δljαk,n+1), (2.8)

[iβjk, βl,n+1] = i(δlkαj,n+1 + δjlαk,n+1), (2.9)

[iβjk, iαl,n+1] = −(δlkβj,n+1 + δjlβk,n+1), (2.10)

[hj ,βl,n+1] = i(δjlαj,n+1 + αl,n+1), (2.11)
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[hj , iαl,n+1] = −(δjlβj,n+1 + βl,n+1), (2.12)

[βj,n+1, βk,n+1] = αjk, (2.13)

[iαj,n+1, iαk,n+1] = αjk, (2.14)

[iαj,n+1, βk,n+1] = i(βjk − 2δjken+1,n+1). (2.15)

Remark 2.3. Proposition 2.2 illustrates a Cartan decomposition su(n,1) = k⊕p,
where

k = span{αjk, iβjk, hj ,1 ≤ j < k ≤ n},
(2.16)

p = span{βj,n+1, iαj,n+1,1 ≤ j ≤ n},
[k, k] ⊂ k, [k,p] ⊂ p, and [p,p] ⊂ k. (2.17)

2.1. The Canonical Metric of SU(n,1)

For X ∈ su(n,1), the adjoint action of X is the su(n,1)-endomorphism defined
by the Lie bracket,

adX(Y) = [X,Y ].
The Killing form on su(n,1) is a symmetric bilinear form given by

B(X,Y ) = trace(adX adY).

A positive definite inner product on su(n,1) is then defined by putting

〈X,Y 〉 =

⎧⎪⎨
⎪⎩

B(X,Y ) for X,Y ∈ p,

−B(X,Y ) for X,Y ∈ k,

0 otherwise.

By identifying su(n,1) with the tangent space at the identity of SU(n,1), we
extend 〈·, ·〉 to a left-invariant Riemannian metric over SU(n,1). We denote this
metric by g and refer to it as the canonical metric for SU(n,1).

Lemma 2.4. For X,Y ∈B,

〈X,Y 〉 =
{

4n + 4 if X = Y,

0 otherwise.

Proof. Let

kjk = span{αjk, iβjk}, 1 ≤ j < k ≤ n,

kh = span{hj , j = 1, . . . , n},
pj = span{βj,n+1, iαj,n+1}, 1 ≤ j ≤ n.

By (2.5), (2.6), (2.11), and (2.12), for each h ∈ kh, adh(kjk) ⊂ kjk and
adh(pj ) ⊂ pj . In fact, if h = ∑

s dshs , then

[h,αjk] = (dj − dk)iβjk,

[h, iβjk] = (dk − dj )αjk,
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[h,βj,n+1] =
(

dj +
∑

s

ds

)
iαj,n+1,

[h, iαj,n+1] = −
(

dj +
∑

s

ds

)
βj,n+1.

Therefore,

B(h,h) = trace((adh)2)

=
∑
j<k

trace((adh|kjk
)2) +

∑
j

trace((adh|pj
)2)

= −
∑
j,k

(dj − dk)
2 − 2

∑
j

(
dj +

∑
k

dk

)2

= −(2n + 2)

(∑
j

d2
j +

(∑
j

dj

)2)

= (2n + 2)(traceh)2.

Since each element of su(n,1) can be diagonalized, for each X ∈ su(n,1), there
is a matrix A such that AXA−1 ∈ kh. By the invariance of B and trace, B(X,X) =
2(n + 1) trace(X2). By polarization,

B(X,Y ) = 2(n + 1) trace(XY), X,Y ∈ su(n,1). (2.18)

Hence, when X �= Y ∈ B, we have 〈X,X〉 = 4(n + 1) and 〈X,Y 〉 = 0. �

Corollary 2.5. The matrix representation for the canonical metric g of SU(n,1)

is the square n2 + 2n diagonal matrix⎛
⎜⎜⎜⎝

4n + 4
4n + 4

. . .

4n + 4

⎞
⎟⎟⎟⎠ .

We will be interested in the metric on SU(n,1) that induces holomorphic sectional
curvature −1 on the quotient SU(n,1)/U(n). To this end, we scale the canonical
metric by a factor of 1

n+1 . Formally:

Definition 2.6. Let g be the canonical metric on SU(n,1). The metric g̃ on
SU(n,1) is defined by

g̃ = 1

n + 1
g.

Finally, a canonical metric on a Lie algebra g induces a norm given by

‖X‖ = 〈X,X〉1/2.

Let
N(adX) = sup{‖adX(Y)‖ | Y ∈ g,‖Y‖ = 1},
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C1 = sup{N(adX) | X ∈ p,‖X‖ = 1} and
(2.19)

C2 = sup{N(adX) | X ∈ k,‖X‖ = 1}.
The appendix to [22] includes a table of the constants C1 and C2 for noncom-

pact and nonexceptional Lie groups. The values for SU(n,1) are

C1 = C2 = (n + 1)−1/2.

However, with respect to the scaled canonical metric g̃, we have

C1 = C2 = 1. (2.20)

2.2. The Sectional Curvatures of SU(n,1)

A connection ∇ on the tangent bundle of a manifold can be expressed in terms of
a left-invariant metric by the Koszul formula. For any left-invariant vector fields
X, Y , Z, we have

〈∇XY,Z〉 = 1

2
{〈[X,Y ],Z〉 − 〈Y, [X,Z]〉 − 〈X, [Y,Z]〉}.

The curvature tensor of a connection ∇ is defined by

R(X,Y )Z = ∇X∇Y Z − ∇Y ∇XZ − ∇[X,Y ]Z.

In [2], we derived the curvature formulas for the canonical metric of a semisimple
noncompact Lie group. These formulas also apply to g̃, as it is simply a scale of
the canonical metric. Let U,V,W ∈ k and X,Y,Z ∈ p denote left-invariant vector
fields.

Proposition 2.7.

R(U,V )W = 1

4
[[V,U ],W ], (2.21)

R(X,Y )Z = −7

4
[[X,Y ],Z], (2.22)

R(U,X)Y = 1

4
[[X,U ], Y ] − 1

2
[[Y,U ],X], (2.23)

R(X,Y )V = 3

4
[X, [V,Y ]] + 3

4
[Y, [X,V ]]. (2.24)

In particular,

〈R(U,V )W,X〉 = 0, (2.25)

〈R(X,Y )Z,U 〉 = 0, (2.26)

〈R(U,V )V,U〉 = 1

4
‖[U,V ]‖2, (2.27)

〈R(X,Y )Y,X〉 = −7

4
‖[X,Y ]‖2, (2.28)

〈R(U,X)X,U〉 = 1

4
‖[U,X]‖2. (2.29)
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The sectional curvature of the planes spanned by X,Y ∈ g is denoted and defined
by

K(X,Y ) = 〈R(X,Y )Y,X〉
‖X‖2‖Y‖2 − 〈X,Y 〉2

.

Proposition 2.8. The sectional curvature of SU(n,1) with respect to the metric
g̃ at the planes spanned by standard basis elements is bounded above by 1/4.

Proof. Since the basis elements are mutually orthogonal, the sectional curvature
at the plane spanned by any distinct elements X,Y ∈B is given by

K(X,Y ) = 〈R(X,Y )Y,X〉
‖X‖2‖Y‖2

.

By (2.27), (2.28), (2.29), and Proposition 2.2 the largest sectional curvature
spanned by basis directions are the planes spanned by hj , iαj,n+1 or hj , βj,n+1,
and

K(hj , iαj,n+1) = (1/4)‖[hj , iαj,n+1]‖2

‖hj‖2‖iαj,n+1‖2
= 1

4

‖ − 2βj,n+1‖2

4 · 4
= 1

4
. (2.30)

�

Proposition 2.9. The sectional curvatures of SU(n,1) with respect to g̃ are
bounded above by

1

4
+ 2 · 1

4
+ 2 · 6

4
· (2n + 1) + 2 · 3

4
· (2n + 1) = 36n + 21

4
.

Proof. Again with U,V ∈ k and X,Y ∈ p, we have, by (2.25) and (2.26),

〈R(X + U,Y + V )Y + V,X + U 〉
= 〈R(X,Y )Y,X〉 + 〈R(U,V )V,U〉 + 〈R(U,Y )Y,U〉

+ 〈R(X,V )V,X〉 + 2〈R(X,Y )V,U 〉 + 2〈R(X,V )Y,U 〉.
Assume that ‖U + X‖ = 1, ‖V + Y‖ = 1, and 〈U + X,V + Y 〉 = 0. Write

U =
∑
j<k

(ajkαjk + bjkiβjk) +
∑
j

cjhj ,

V =
∑
j<k

(a′
jkαjk + b′

jkiβjk) +
∑
j

c′
j hj ,

X =
n∑

j=1

(ej iαj,n+1 + fjβj,n+1), Y =
n∑

j=1

(e′
j iαj,n+1 + f ′

jβj,n+1).

Note that ∑
j<k

|ajk|2 + |bjk|2 + c2
j ,

∑
j<k

|a′
jk|2 + |b′

jk|2 + |c′
j |2,

n∑
j=1

e2
j + f 2

j ,

n∑
j=1

|e′
j |2 + |f ′

j |2 ≤ 1

4
.
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By (2.21) and (2.23),

R(U,V )V = 1

4
[[V,U ],V ] = −1

4
adV ◦ adV (U)

and

R(U,Y )Y = −1

4
[[Y,U ], Y ] = 1

4
adY ◦ adY(U).

Therefore, by (2.20),

〈R(U,V )V,U〉 ≤ 1

4
C2

2 = 1

4
and

〈R(U,Y )Y,U〉 ≤ 1

4
C2

1 = 1

4
.

By (2.24) we have

〈R(X,Y )V,U 〉 = −3

4
(〈[U,X], [V,Y ]〉 + 〈[V,X], [U,Y ]〉).

From (2.7)–(2.12) we have

‖[U,Y ]‖2 =
∥∥∥∥
[∑

j<k

(ajkαjk + bjkiβjk) +
∑
j

cjhj ,

n∑
l=1

(e′
l iαl,n+1 + f ′

l βl,n+1)

]∥∥∥∥
2

=
∥∥∥∥∑

l

{(∑
j

(alj e
′
j + blj f

′
j + cjf

′
l ) + clf

′
l

)
iαl,n+1

+
(∑

j

(alj f
′
j − blj e

′
j − cj e

′
l) − cle

′
l

)
βl,n+1

}∥∥∥∥
2

= 4
∑

l

{(∑
j

(alj e
′
j + blj f

′
j + cjf

′
l ) + clf

′
l

)2

+
(∑

j

(alj f
′
j − blj e

′
j − cj e

′
l) − cle

′
l

)2}

≤ 4
∑

l

(
2
∑
j

(a2
lj + b2

lj + c2
j ) ·

∑
j

(|e′
j |2 + |f ′

j |2 + |f ′
l |2) + 2c2

l |f ′
l |2

)

+ 4
∑

l

(
2
∑
j

(a2
lj + b2

lj + c2
j )

·
∑
j

(|f ′
j |2 + |e′

j |2 + |e′
l |2) + 2c2

l |e′
l |2

)

≤ 8
∑

l

(
1

4

[
1

4
+ n|f ′

l |2
]

+ c2
l |f ′

l |2
)
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+ 8
∑

l

(
1

4

[
1

4
+ n|e′

l |2
]

+ c2
l |e′

l |2
)

≤ 2n + 1.

Here we define akj = −ajk , bkj = bjk , bjj = 0. Hence,

〈R(X,Y )V,U 〉 ≤ 6

4
· (2n + 1).

Similarly, by (2.23),

〈R(X,V )Y,U 〉 ≤ 3

4
· (2n + 1). �

3. The Volume of Complex Hyperbolic Orbifolds

This section concludes with a proof of Theorem 0.1. We begin by assembling
the required prerequisites. First, a result due to H. C. Wang is used to produce a
value such that the fundamental domain of any discrete subgroup � of SU(n,1)

contains a metric ball of that radius. Next, a comparison theorem of Gunther is
employed in order to bound from below the volume of a ball in SU(n,1). In the
third subsection, a Riemannian submersion from the quotient of SU(n,1) by �

onto the complex hyperbolic orbifold defined by � is constructed.

3.1. H. C. Wang’s Result

Let G be a semisimple Lie group without compact factor. Let C1 and C2 be the
corresponding constants as defined in (2.19). The number RG is defined to be the
least positive zero of the real-valued function

F(t) = expC1t − 1 + 2 sinC2t − C1t

expC1t − 1
. (3.1)

The following result (Theorem 5.2 in [22]) gives Wang’s quantitative version
of the well-known result of Kazhdan and Margulis [14].

Theorem 3.1 (Wang). Let G be a semisimple Lie group without compact factor,
let e be the identity of G, let ρ be the distance function derived from a canonical
metric, and let

BG = {x ∈ G | ρ(e, x) ≤ RG}.
Then for any discrete subgroup � of G, there exists g ∈ G such that BG ∩
g�g−1 = {e}.
In addition, Wang showed that the number RG is less than the injectivity radius
of G. Consequently, the volume of the fundamental domain of any discrete sub-
group � of G, when viewed as a group of left translations of G, is bounded from
below by the volume of a ρ-ball of radius RG/2.

By (2.20) and (3.1),
RSU(n,1) ≈ 0.277 . . . . (3.2)
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3.2. Gunther’s Result

Let V (d, k, r) denote the volume of a ball of radius r in the complete simply con-
nected Riemannian manifold of dimension d with constant curvature k. A proof
of the following comparison theorem can be found in [6, Theorem 3.101].

Theorem 3.2 (Gunther). Let M be a complete Riemannian manifold of dimen-
sion d . For m ∈ M , let Bm(r) be a ball that does not meet the cut-locus of m.

If the sectional curvatures of M are bounded above by a constant b, then

Vol[Bm(r)] ≥ V (d, b, r).

Proposition 3.3. Let � be a discrete subgroup of SU(n,1). Then

Vol[SU(n,1)/�] ≥ V (d0, k0, r0),

where d0 = n2 + 2n, k0 = 36n+21
4 , and r0 = 0.1385.

Proof. The inequality is immediate from Theorems 3.1 and 3.2. The values of d0,
k0, and r0 follow from Definition 2.1, Proposition 2.9, and (3.2), respectively. �

3.3. Riemannian Submersions

Let (M,g) and (N,h) be Riemannian manifolds, and q : M → N a surjective
submersion. The map q is said to be a Riemannian submersion if

g(X,Y ) = h(dqX,dqY ) whenever X,Y ∈ (Kerdq)⊥x for some x ∈ M.

The following elementary results are proved in [2].

Lemma 3.4. Let G be a semisimple Lie group, and let g be its Lie algebra with
Cartan decomposition g = k ⊕ p. Let K be the maximal compact subgroup of
G with Lie algebra k. Then, with respect to the canonical metric, K is totally
geodesic in G.

Lemma 3.5. Let K → M
q→ N denote a fiber bundle, where q is a Riemannian

submersion, and K is a compact and totally geodesic submanifold of M . Then for
any subset Z ⊂ N ,

Vol[q−1(Z)] = Vol[Z] · Vol[K].
Let X, Y be orthonormal vector fields on N , and let X̃, Ỹ be their horizontal lifts
to M . O’Neill’s formula (see e.g. [6, p. 127]) relates the sectional curvature of the
base space of a Riemannian submersion with that of the total space:

Kb(X,Y ) = Kt(X,Y ) + 3

4
‖[X,Y ]⊥‖2, (3.3)

where Z⊥ represents the vertical component of Z.
Recall the definitions and notation of Section 2 and consider the quotient map

π : SU(n,1) → SU(n,1)/U(n).
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The restriction of the inner product 〈X,Y 〉, defined on su(n,1) = k ⊕ p, to
deπ(p) = Tπ(e) SU(n,1)/U(n), induces a Riemannian metric on the quotient
space. With respect to these metrics, the map π is a Riemannian submersion.

We now show that if SU(n,1)/U(n) is equipped with the restriction of the
scaled canonical metric g̃, it has constant holomorphic sectional curvature −1. It
then follows that π is a Riemannian submersion from SU(n,1) to Hn

C
, complex

hyperbolic n-space.
Let X ∈ p represent both a unit vector field on SU(n,1)/U(n) and its hor-

izontal lift. Write X = ∑n
j=1(aj iαj,n+1 + bjβj,n+1). Since ‖X‖ = 1, we have∑

j (a
2
j + b2

j ) = 1
4 .

From the identification of complex structure(
0 ξ∗
ξ 0

)
←→ ξ for ξ ∈C,

JX = ∑n
k=1(−bkiαk,n+1 + akβk,n+1). By (2.28) the holomorphic sectional cur-

vature

Kt(X,JX) = 〈R(X,JX)JX,X〉 = −7

4
‖[X,JX]‖2.

By (2.13)–(2.15),

[X,JX]⊥ = [X,JX]
=

∑
j,k

(akbj − ajbk)αjk +
∑
j �=k

(aj ak + bjbk)iβjk + 2
∑
j

(a2
j + b2

j )hj

= 2

{∑
j<k

[(akbj − ajbk)αjk + (aj ak + bjbk)iβjk] +
∑
j

(a2
j + b2

j )hj

}
.

Hence,

Kb(X,JX)

= −‖[X,JX]‖2

= −4 · 4

{∑
j<k

[(akbj − ajbk)
2 + (aj ak + bjbk)

2] +
(∑

j

(a2
j + b2

j )
2
)}

= −4 · 4

[∑
j

(a2
j + b2

j )
∑

k

(a2
k + b2

k)

]
= −1.

For a discrete group � < SU(n,1) and complex hyperbolic orbifold Q =
�\Hn

C
, the map π induces another Riemannian submersion

π ′ : SU(n,1)/� → Q.

The fibers of π ′ on the smooth points of Q are totally geodesic embedded copies
of U(n).
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3.4. Main Result

We now give a proof of Theorem 0.1, which is restated for convenience.

Theorem 0.1 The volume of a complex hyperbolic n-orbifold is bounded below
by C(n), an explicit constant depending only on dimension, given by

C(n) = 2n2+n+1πn/2(n − 1)! (n − 2)! · · ·!3!2!1!
(36n + 21)(n

2+2n)/2�((n2 + 2n)/2)

×
∫ min[0.06925

√
36n+21,π]

0
sinn2+2n−1 ρ dρ.

Proof. Let Q be a complex hyperbolic n-orbifold. By the last paragraph of the
previous subsection, Proposition 3.3, and Lemma 3.5,

V (d0, k0, r0) ≤ Vol[SU(n,1)/�] ≤ Vol[π−1(Q)] = Vol[Q] · Vol[U(n)].
The proof follows from the following two observations.

The volumes of the classical compact groups are given explicitly in [8, p. 399].
For the unitary group, the volume with respect to the metric g̃ is

Vol[U(n)] = 2nπ(n2+n)/2

(n − 1)! (n − 2)! · · ·!3!2!1! .
The complete simply connected Riemannian manifold with constant curvature

k > 0 is the sphere of radius k−1/2. By explicit computation we have

V (d, k, r) = 2(π/k)d/2

�(d/2)

∫ min[rk1/2,π]

0
sind−1 ρ dρ. �

4. Volume Bounds

In this section, we give an outline of current results on complex hyperbolic vol-
ume. The isometries of complex hyperbolic space are classified into three types:
elliptic, parabolic, and loxodromic (see e.g. [9]). A finite volume complex hyper-
bolic orbifold Hn

C
/� is: a manifold when � does not contain elliptic elements;

closed (or compact) when � does not contain parabolic elements and cusped (or
noncompact) when it does; and arithmetic when � can be derived by a specific
number-theoretic construction (see e.g. [4]).

4.1. Complex Hyperbolic Manifolds

In [10], Hersonsky and Paulin used the Chern–Gauss–Bonnet formula to prove
that the smallest volume of a closed complex hyperbolic 2-manifold is 8π2. The
work of Prasad and Yeung [17; 18] and Cartwright and Steger [3] on the classifi-
cation of fake projective planes has produced 51 explicit examples. An article by
Yeung [24] shows that this list is exhaustive. Xie, Wang, and Jiang [23] give, for
each dimension n, an explicit lower bound for the largest number such that every
complex hyperbolic n-manifold contains an embedded ball of that radius.
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4.2. Cusped Complex Hyperbolic Manifolds

Parker [16] proved that the smallest volume of a cusped (and so of any) complex
hyperbolic 2-manifold is 8π2/3 and found one such example. A total of eight
such manifolds are given by Stover [21]. Volume bounds for noncompact complex
hyperbolic manifolds in terms of dimension and the number of cusps were given
by Hersonsky and Paulin [10] and Parker [16]. These bounds were later improved
by Hwang [12] using methods from algebraic geometry. Kim and Kim [15] give a
bound that is sharper than [12] in the case where a complex hyperbolic manifold
has exactly one cusp.

4.3. Complex Hyperbolic Orbifolds

Parker [16] also proved that the volume of a cusped complex hyperbolic 2-
orbifold is bounded below by 1/4. He identified two orbifolds with volume π2/27
and conjectured them to be the cusped complex hyperbolic 2-orbifolds of mini-
mum volume. Extending a result for the real hyperbolic case [1], Fu, Li, and
Wang [5] obtained a lower bound for the volume of a complex hyperbolic orb-
ifold, depending on dimension and the maximal order of torsion in the orbifold
fundamental group.

4.4. Arithmetic Complex Hyperbolic Orbifolds

The smallest known complex hyperbolic 2-manifolds, closed or cusped, are arith-
metically defined. Stover [21] proved that the orbifolds considered by Parker [16]
are the smallest volume cusped arithmetic complex hyperbolic 2-orbifolds. In [4],
Emery and Stover determine, for each dimension n, the smallest volume cusped
arithmetic complex hyperbolic orbifold. It is shown that, as n varies, minimum
volume among all cusped arithmetic complex hyperbolic orbifolds is realized in
dimension 9. Smaller volume orbifolds have been found in the compact case. For
example, Sauter [19] exhibited a closed arithmetic complex hyperbolic 2-orbifold
with volume π2/108.

Acknowledgments. The authors are grateful to Dick Canary, Ben McRey-
nolds, and Matthew Stover for useful conversations.
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