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Upper Bounds for the Minimal Number of Singular
Fibers in a Lefschetz Fibration over the Torus

Noriyuki Hamada

Abstract. In this paper, we give some relations in the mapping class
groups of oriented closed surfaces in the form that a product of a small
number of right-hand Dehn twists is equal to a single commutator.
Consequently, we find upper bounds for the minimal number of sin-
gular fibers in a Lefschetz fibration over the torus.

1. Introduction

Lefschetz fibrations were originally introduced for studying topological proper-
ties of smooth complex projective varieties and afterwards generalized to differ-
entiable category. Furthermore Donaldson and Gompf revealed the close relation-
ship between Lefschetz fibrations and 4-dimensional symplectic topology in the
late 1990s, and since then they have been extensively studied.

The information about the number of singular fibers in a Lefschetz fibration
provides us important information about the topological invariants of its total
space such as the Euler number, the signature, the Chern numbers, and so on.
In addition, it has been known that the number of singular fibers in a Lefschetz
fibration cannot be arbitrary, so it makes sense to ask what the minimal number
of singular fibers in a Lefschetz fibration is. We denote by N(g,h) the mini-
mal number of singular fibers in a nontrivial relatively minimal genus g Lef-
schetz fibration over the oriented closed surface of genus h. This minimal num-
ber has been studied by various authors. Table 1 shows previous studies about
N(g,h). Korkmaz and Ozbagci [8] proved that (1) N(g,h) = 1 if and only if
g ≥ 3 and h ≥ 2, (2) N(1, h) = 12 for all h ≥ 0, and (3) 5 ≤ N(2, h) ≤ 8 for
all h ≥ 0. The upper bound for N(2, h) in (3) follows from the existence of a
genus 2 Lefschetz fibration over the sphere with eight singular fibers, which was
constructed by Matsumoto [11]. In addition, for g = 2, Korkmaz and Stipsicz
[10] showed that N(2, h) = 5 for h ≥ 6, and furthermore Monden [12] improved
their results by showing that (1) N(2, h) = 5 for all h ≥ 3, (2) N(2,2) ≤ 6, and
(3) 6 ≤ N(2,1) ≤ 7. Ozbagci [13] proved that the number of singular fibers in a
genus 2 Lefschetz fibration over the sphere cannot be equal to 5 or 6, and Xiao
[15] constructed a genus 2 Lefschetz fibration over the sphere with seven singu-
lar fibers; hence, N(2,0) = 7. For h = 0, some estimates for N(g,0) are known.
Cadavid [1] and Korkmaz [6] independently generalized Matsumoto’s genus 2
Lefschetz fibration as above to genus g Lefschetz fibrations over the sphere with
2g + 10 singular fibers for g odd or with 2g + 4 singular fibers for g even. This
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Table 1 Previous results for N = N(g,h)

7 6 ≤ N ≤ 24 2 ≤ N ≤ 24 1 1 1 1 1
6 6 ≤ N ≤ 16 2 ≤ N ≤ 16 1 1 1 1 1
5 5 ≤ N ≤ 20 2 ≤ N ≤ 20 1 1 1 1 1
4 4 ≤ N ≤ 12 2 ≤ N ≤ 12 1 1 1 1 1
3 3 ≤ N ≤ 16 2 ≤ N ≤ 16 1 1 1 1 1
2 7 6 or 7 5 or 6 5 5 5 5
1 12 12 12 12 12 12 12

�
��g

h
0 1 2 3 4 5 6

fact shows N(g,0) ≤ 2g +10 for g odd and N(g,0) ≤ 2g +4 for g even. Stipsicz
[14] proved that for any g ≥ 2, the number of irreducible singular fibers in a genus
g Lefschetz fibration over the sphere is bounded below by (4g + 2)/5. Therefore,
we have

1

5
(4g + 2) ≤ N(g,0).

In particular, for N(g,0), there is no universal upper bound that is independent
of g.

In the case of h = 1, it has been known that 2 ≤ N(g,1) ≤ N(g,0). The former
inequality follows by [8]. The latter inequality comes from the following observa-
tion. If a genus g Lefschetz fibration over the sphere is given, then by taking the
fiber sum of it and the trivial �g-bundle �g ×�1 over the torus, we can construct
a genus g Lefschetz fibration over the torus without changing the number of the
singular fibers. However, nontrivial upper bounds for N(g,1) have not been given
explicitly as far as the author knows. The present paper aims at giving new upper
bounds for N(g,1), i.e., in the case of Lefschetz fibrations over the torus. The
main theorem of this paper is the following.

Theorem 1.1. For the minimal number of singular fibers in a Lefschetz fibration
over the torus, the following holds:

(1) N(g,1) ≤ 6 for all g ≥ 3.
(2) N(g,1) ≤ 4 for all g ≥ 5.

In particular, there is a universal upper bound for N(g,1) that does not depend
on g.

We will prove Theorem 1.1 by concretely constructing a genus g Lefschetz fibra-
tion over the torus with six or four singular fibers for arbitrary g ≥ 3 or g ≥ 5,
respectively. This will be done by providing new relations in the mapping class
group of the surface of genus g, which are in the form that a product of six or four
right-hand Dehn twists is equal to a single commutator.
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The contents of this paper are as follows. Section 2 consists of the fundamental
concepts on Lefschetz fibrations. In particular, we illustrate the fact that Lefschetz
fibrations can be obtained from a certain type of relations in the mapping class
groups of fiber surfaces. In Section 3 we introduce Matsumoto’s relation and the
alternative 8-holed torus relation in the mapping class groups of holed surfaces,
which will be used in the proof of Theorem 1.1. Finally, in Section 4 we prove
Theorem 1.1. We regard Matsumoto’s relation and the alternative 8-holed torus
relation as relations in the mapping class groups of other closed surfaces by em-
bedding the original holed surfaces into the closed surfaces. Then we transform
the relations to new ones, which will prove Theorem 1.1.

2. Lefschetz Fibrations

We recall some basic definitions and facts about Lefschetz fibrations (for details,
see [4]). Let X4 be a connected, oriented, and closed smooth 4-dimensional man-
ifold, and �g be the connected, oriented, and closed smooth 2-dimensional man-
ifold with genus g. A smooth map f : X4 → �h is called a Lefschetz fibration
over �h if f has only finitely many critical points p1,p2, . . . , pn, around each of
which f is expressed as (z1, z2) �→ z2

1 + z2
2 by local complex coordinates com-

patible with the orientations of the manifolds. We assume that the critical val-
ues bi = f (pi) are distinct. The inverse image of a regular value (or a critical
value) is called a regular fiber (resp. a singular fiber). We will also assume that
the regular fibers are connected. Since f is a submersion on the complement of
singular fibers, the restriction f : X4 \ (f −1(b1) ∪ f −1(b2) ∪ · · · ∪ f −1(bn)) →
�h \ {b1, b2, . . . , bn} is a �g-bundle over �h \ {b1, b2, . . . , bn} for some �g . The
genus of the Lefschetz fibration is defined to be the genus of a regular fiber. Fur-
thermore, in this paper, we assume the relative minimality and the nontriviality.
A Lefschetz fibration is said to be relatively minimal if there is no fiber that con-
tains a (−1)-sphere (embedded sphere with self-intersection −1), and nontriv-
ial if it has at least one singular fiber. The singular fiber f −1(bi) is obtained by
“crushing” a simple closed curve ci , called the vanishing cycle, on a nearby reg-
ular fiber to a point. If the vanishing cycle is separating (or nonseparating), then
the corresponding singular fiber is said to be reducible (resp. irreducible). Two
Lefschetz fibrations f : X → �h and f ′ : X′ → �h are said to be isomorphic if
there are orientation-preserving diffeomorphisms � : X → X′ and ψ : �h → �h

such that f ′ ◦ � = ψ ◦ f .
There is a deep connection between Lefschetz fibrations and the surface map-

ping class groups (for details, see [11]). We fix a regular value b0 ∈ �h and an
identification ι between the regular fiber f −1(b0) and the model surface �g . Let
γ be a smooth loop in �h based at b0. Then the pull-back bundle γ ∗(f ) is de-
scribed as �g ×[0,1] with �g × 0 and �g × 1 being identified via an orientation-
preserving diffeomorphism φ from �g to itself: f −1(γ ) ∼= �g × [0,1]/(x,0) ∼
(φ(x),1). Let Mg be the mapping class group of genus g that consists of all
isotopy classes of orientation-preserving diffeomorphisms of �g . Then the map
� : π1(�g \ {b1, b2, . . . , bn}, b0) → Mg that maps γ to φ is well defined, and
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Figure 1 The oriented loop γi on �h

Figure 2 Right-hand Dehn twist tci along the simple closed curve ci

becomes an antihomomorphism. Here we do not distinguish a curve or a dif-
feomorphism from its homotopy or isotopy class, respectively, and we use this
convention throughout this paper. We call the map � the monodromy representa-
tion of the Lefschetz fibration f . Let γi be a loop on �g \ {b1, b2, . . . , bn} based
at b0 that surrounds exclusively bi with the orientation as depicted in Figure 1.
The monodromy representation � maps γi to the right-hand Dehn twist tci

along
the corresponding vanishing cycle ci : �(γi) = tci

(see Figure 2). If we change the
identification ι : f −1(b0) → �g to another one, then the monodromy represen-
tation � changes to ρ�ρ−1 for some ρ ∈ Mg . A Lefschetz fibration determines
the monodromy representation up to such a conjugation. Conversely, if an anti-
homomorphism � : π1(�h \ {b1, b2, . . . , bn}, b0) → Mg that maps each γi to a
right-hand Dehn twist is given, then we can construct a relatively minimal genus
g Lefschetz fibration over �h with its monodromy representation �. Moreover,
if g ≥ 2, then such a Lefschetz fibration is determined uniquely up to an isomor-
phism.

Furthermore, Lefschetz fibrations correspond to a certain type of relations in
the mapping class groups. The fundamental group π1(�h \ {b1, b2, . . . , bn}, b0)

has the finite presentation

π1(�h \ {b1, b2, . . . , bn}, b0) =
〈
αj ,βj , γi

∣∣∣ h∏
j=1

[αj ,βj ] =
n∏

i=1

γi

〉
,

where αj , βj (j = 1,2, . . . , h) and γi (i = 1,2, . . . , n) are the loops as indicated
in Figure 3, and [αj ,βj ] = αjβjα

−1
j β−1

j represents the commutator of αj and
βj . Thus, a monodromy representation � satisfies

∏
j [�(αj ),�(βj )] = ∏

i tci
,
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Figure 3 The generators of π1(�h \ {b1, b2, . . . , bn}, b0)

and tci
= �(γi) are right-hand Dehn twists. We call this relation the global mon-

odromy or the monodromy factorization of the Lefschetz fibration corresponding
to �. Conversely, if there is a relation in the form that “a product of n right-hand
Dehn twists is equal to a product of h commutators in Mg ,”

h∏
j=1

[φj ,ψj ] =
n∏

i=1

tci
,

then we can define the antihomomorphism � : π1(�h \ {b1, b2, . . . , bn}, b0) →
Mg by setting �(αj ) = φj , �(βj ) = ψj , and �(γi) = tci

. Consequently, we can
construct a genus g Lefschetz fibration over �h with n singular fibers such that
its vanishing cycles are the simple closed curves ci .

3. Mapping Class Groups of Holed Surfaces

We will use the following notation:

• � = �k
g : the compact oriented surface of genus g with k boundary components,

• Diff+(�, ∂�): the group of orientation-preserving self-diffeomorphisms of �

that are the identity on the boundary,
• Diff+0 (�, ∂�): the normal subgroup of Diff+(�, ∂�) consisting of all ele-

ments isotopic to the identity relative to the boundary,
• M(�) = Diff+(�, ∂�)/Diff+0 (�, ∂�): the mapping class group of �,
• Mk

g = M(�k
g), �g = �0

g , Mg = M0
g .

We will use the functional notation for the product of Mk
g , namely, for two ele-

ments φ and ψ in Mk
g , the product ψφ means that we first apply φ and then ψ .

In order to simplify the notation, we will denote a right-hand Dehn twist along a
curve α also by α itself. A left-hand Dehn twist along α will be denoted by α.
However, if we need to distinguish a Dehn twist from a curve or would like to
emphasize a Dehn twist to be a mapping class, we will use the notation tα .
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Figure 4 The curves for Matsumoto’s relation

Figure 5 The curves for Matsumoto’s relation with boundary

3.1. Matsumoto’s Relation

Matsumoto [11] constructed a genus 2 Lefschetz fibration over the sphere on
(S2 × T 2)�4CP 2 with eight singular fibers. The global monodromy of the Lef-
schetz fibration is

1 = (B0B1B2C)2,

where the curves are as indicated in Figure 4.
Korkmaz [7] mentioned without proof that the relation

δ1δ2 = (B0B1B2C)2

holds in M2
2, where δ1 and δ2 are as depicted in Figure 5. For completeness, we

give a proof here. It is convenient to recall the following well-known lemma.

Lemma 3.1 [3]. Let α and β be simple closed curves in �k
g .

(1) If α does not intersect with β , then tαtβ = tβ tα .
(2) If α intersects with β transversally at exactly one point, then tβ tαtβ = tαtβ tα .
(3) For any φ ∈ Mk

g , we have tφ(α) = φtαφ−1.

In particular, a conjugate of a right-hand Dehn twist is also a right-hand Dehn
twist.

Lemma 3.2. We have δ1δ2 = (B0B1B2C)2 in M2
2.



Upper Bounds for the Minimal Number 281

Figure 6 The curves for the chain relations

Proof. The argument here is based on the proof of Lemma 2.3 (3) in [5]. We start
from the chain relation

δ1δ2 = (a1a2a3a4a5)
6,

where the curves are as depicted in Figure 6 (cf. [3]). We consider this relation as
δ1δ2 = {(a1a2a3a4a5)

3}2 and deform the part of (a1a2a3a4a5)
3 as follows:

(a1a2a3a4a5)
3

= a1a2a3a4a5a1a2a3(a4)(a5)a1a2a3a4a5

= a1a2a3a4a5a1a2a3(a1)a2a4a3a5a4a5

= a1a2a3a4a5(a1a2a1)a3a2a4a3a5a4a5

= a1a2a3a4a5a2a1(a2a3a2)a4a3a5a4a5

= a1a2a3a4a5a2a1a3a2(a3a4a3)a5a4a5

= a1a2a3(a4)(a5)a2a1a3a2a4a3a4a5a4a5

= a1(a2a3a2)a1a4a3a2a5a4a3(a4a5)
2 = a1a3a2(a3)a1a4a3a2a5a4a3(a4a5)

2

= a1a3a2a1(a3a4a3)a2a5a4a3(a4a5)
2 = a1a3a2a1a4a3(a4)a2a5a4a3(a4a5)

2

= a1a3a2a1a4a3a2(a4a5a4)a3(a4a5)
2 = a1a3a2a1a4a3a2a5a4(a5)a3(a4a5)

2

= (a1)a3a2a1a4a3a2a5a4a3a5(a4a5)
2 = a3(a1a2a1)a4a3a2a5a4a3a5(a4a5)

2

= a3a2a1(a2)a4a3a2a5a4a3a5(a4a5)
2 = a3a2a1a4(a2a3a2)a5a4a3a5(a4a5)

2

= a3a2a1a4a3a2(a3)a5a4a3a5(a4a5)
2 = a3a2a1a4a3a2a5(a3a4a3)a5(a4a5)

2

= a3a2a1a4a3a2a5a4a3a4a5(a4a5)
2 = a3a2a1a4a3a2a5a4a3(a4a5)

3.

Now, we use another chain relation

σ = (a4a5)
6,

where σ is as depicted in Figure 6. This relation can be changed into the form
(a4a5)

3 = (a5a4)
3σ . Therefore, we have

(a1a2a3a4a5)
3 = a3a2a1a4a3a2a5a4a3(a5a4)

3σ

= a3a2a1a4a3a2a5a4a3(a5)a4a5(a4a5a4)σ

= a3a2a1a4a3a2(a5a4a5)a3a4a5a5a4a5σ
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= a3a2a1a4a3a2a4a5(a4a3a4)a5a5a4a5σ

= a3a2a1a4a3a2a4(a5)a3a4(a3)a5a5a4a5σ

= a3a2a1a4a3a2a4a3(a5a4a5)a5a3a4a5σ

= a3a2a1a4a3a2a4a3a4(a5a4a5)a3a4a5σ

= a3a2a1a4a3a2(a4a3a4)a4(a5a4a3a4a5)σ

= a3a2a1a4(a3a2a3)a4a3a4(a5a4a3a4a5)σ

= a3a2a1(a4)a2a3a2(a4)a3a4(a5a4a3a4a5)σ

= a3a2a1a2(a4a3a4)a2a3a4(a5a4a3a4a5)σ

= (a3a2a1a2a3)(a4a3a2a3a4)(a5a4a3a4a5)σ.

Thus, we have δ1δ2 = {(a3a2a1a2a3)(a4a3a2a3a4)(a5a4a3a4a5)σ }2. Finally,
conjugating both sides of this equation by a4a5a4, we obtain

δ1δ2 = {(a4a5a4a3a2a1a2a3a4a5a4)(a4a5a4a4a3a2a3a4a4a5a4)

· (a4a5a4a5a4a3a4a5a4a5a4)σ }2.

Note that δ1, δ2, and σ do not intersect with a4 nor a5. By Lemma 3.1 (3),
each factor of the right-hand side is the right-hand Dehn twist along the curve
ta4 ta5 ta4 ta3 ta2(a1), ta4 ta5 ta4 ta4 ta3(a2), ta4 ta5 ta4 ta5 ta4(a3), and σ , respectively. Fur-
thermore, we can observe that ta4 ta5 ta4 ta3 ta2(a1) = B0, ta4 ta5 ta4 ta4 ta3(a2) = B1,
ta4 ta5 ta4 ta5 ta4(a3) = B2, and σ = C. This concludes the proof. �

3.2. k-Holed Torus Relations

Korkmaz and Ozbagci [9] systematically constructed k-holed torus relations,
which represent the product of the right-hand Dehn twists along the simple closed
curves δi parallel to the boundary components of the k-holed torus �k

1 as the prod-
uct of twelve right-hand Dehn twists along certain essential simple closed curves
αj in the form

δ1δ2 · · · δk = α1α2 · · ·α12 in Mk
1

for 1 ≤ k ≤ 9. For example, they started with the well-known 1-holed torus rela-
tion

δ1 = (αβ)6,

where the curves are as depicted in Figure 7. This relation is also known as the
chain relation, which already appeared in the proof of Lemma 3.2. By combin-
ing the 1-holed torus relation with the lantern relation (see also [9]), which is a
relation on the sphere with four boundary components, they obtained the 2-holed
torus relation

δ1δ2 = (α1α2β)4,

which is also well known, where the curves are as depicted in Figure 8. A general
form of the lantern relation is

δ1δ2δ3δ4 = αβγ,
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Figure 7 1-holed torus

Figure 8 2-holed torus

Figure 9 4-holed sphere

where the curves are as depicted in Figure 9. They successively constructed the
(k + 1)-holed torus relation by combining the k-holed torus relation with the
lantern relation until they obtained the 9-holed torus relation.

However, we introduce an alternative version of the Korkmaz–Ozbagci 8-holed
torus relation, which will be used to prove Theorem 1.1 (2).

Lemma 3.3 (alternative 8-holed torus relation). Let δ1, δ2, . . . , δ7, α1, α2, . . . , α8,
β , σ1, σ3, σ5, and σ7 be the curves on �8

1 as depicted in Figure 10. Then we have

δ1δ2δ3δ4δ5δ6δ7δ8 = α1α3α5α7σ1σ3σ5σ7β
′′′β ′′β ′β

in M8
1, where β ′ = α6α2βα2α6, β ′′ = α8α4β

′α4α8, and β ′′′ = α6α2β
′′α2α6.
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Figure 10 8-holed torus

Figure 11 The 4-holed torus relation and the lantern relations

Proof. Consider the 8-holed torus in Figure 11. We combine the Korkmaz–Oz-
bagci [9] 4-holed torus relation with four lantern relations. The 4-holed torus
relation on the subsurface bounded by {γ1, γ3, γ5, γ7} is

γ1γ3γ5γ7 = (α8α4βα2α6β)2.

The four lantern relations are

δ1δ2α2α8 = α1σ1γ1, δ3δ4α4α2 = α3σ3γ3,

δ5δ6α6α4 = α5σ5γ5, δ7δ8α8α6 = α7σ7γ7.
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Combining the four lantern relations, we have

δ1δ2α2α8δ3δ4α4α2δ5δ6α6α4δ7δ8α8α6 = α1σ1γ1α3σ3γ3α5σ5γ5α7σ7γ7.

Using the commutativity relation (Lemma 3.1 (1)) and multiplying both sides by
α2

2α
2
4α

2
6α

2
8, we obtain

δ1δ2δ3δ4δ5δ6δ7δ8 = α2
2α

2
4α

2
6α

2
8α1σ1γ1α3σ3γ3α5σ5γ5α7σ7γ7

= α2
2α

2
4α

2
6α

2
8α1α3α5α7σ1σ3σ5σ7γ1γ3γ5γ7

= α1α3α5α7σ1σ3σ5σ7α
2
2α

2
4α

2
6α

2
8γ1γ3γ5γ7.

Then we can substitute the 4-holed torus relation to obtain

δ1δ2δ3δ4δ5δ6δ7δ8 = α1α3α5α7σ1σ3σ5σ7α
2
2α

2
4α

2
6α

2
8(α8α4βα2α6β)2

= α1α3α5α7σ1σ3σ5σ7α
2
2α

2
4α

2
6α

2
8

· α8α4(α2α6α8α4α2α6α6α2α4α8α6α2)β

· α2α6(α8α4α2α6α6α2α4α8)β

· α8α4(α2α6α6α2)β

· α2α6β

= α1α3α5α7σ1σ3σ5σ7α
2
2α

2
4α

2
6α

2
8α

2
2α2

4α2
6α2

8

· (α6α2α4α8α6α2βα2α6α8α4α2α6)

· (α6α2α4α8βα8α4α2α6) · (α6α2βα2α6) · β
= α1α3α5α7σ1σ3σ5σ7β

′′′β ′′β ′β.

This gives the claimed relation. �

4. Proof of the Upper Bounds

Now, we prove Theorem 1.1 by constructing Lefschetz fibrations with the claimed
number of singular fibers. Matsumoto’s relation will be used for the proof of The-
orem 1.1 (1), and the alternative 8-holed torus relation will be used for (2).

Proof of Theorem 1.1 (1). We embed the surface �2
2 into �3+k (k ≥ 0) as in Fig-

ure 12. Then, by Lemma 3.2 we have

δ1δ2 = (B0B1B2C)2

= B0B1B2CB0B1B2C.

Since B0 commutes with δ1 and δ2, by conjugating both sides of the equation by
B0 we get

δ1δ2 = B1B2CB0B1B2CB0.

Multiplying both sides by B2B1, we obtain

B2B1δ1δ2 = CB0B1B2CB0.
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Figure 12 Embedding �2
2 in �3+k

Figure 13 �3+k \ (B2 ∪ δ1) and �3+k \ (B1 ∪ δ2) are both connected

Then the term on the left-hand side is a commutator. To see this, by using the
commutativity relation we first rearrange it as

B2B1δ1δ2 = (B2δ1)(B1δ2).

We observe that if one cuts �3+k along B2 and δ1, then the resulting surface is
still connected. If one cuts �3+k along B1 and δ2, then the resulting surface is
also connected (see Figure 13). By the classification of surfaces, this observation
implies that there exists an element φ ∈M3+k such that φ(δ1) = B1 and φ(B2) =
δ2. Therefore, we have

(B2δ1)(B1δ2) = B2δ1φ(δ1)φ(B2)

= B2δ1φδ1φ
−1φB2φ

−1

= (B2δ1)φ(δ1B2)φ
−1

= [B2δ1, φ].
Consequently, we obtain

[B2δ1, φ] = CB0B1B2CB0︸ ︷︷ ︸
6

.

As we have mentioned before, this relation enables us to construct, for all g =
k + 3 ≥ 3, a genus g Lefschetz fibration over the torus with six singular fibers,
i.e., N(g,1) ≤ 6 for all g ≥ 3. �
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Figure 14 Embedding �8
1 in �5+k

Proof of Theorem 1.1 (2). For the alternative 8-holed torus relation, the similar
procedure as above works well as follows. Embed the 8-holed torus �8

1 into �5+k

(k ≥ 0) as in Figure 14. By Lemma 3.3 we have

δ1δ2δ3δ4δ5δ6δ7δ8 = α1α3α5α7σ1σ3σ5σ7β
′′′β ′′β ′β.

We rearrange this as follows:

β ′′′β ′′β ′β = σ 7σ 5σ 3σ 1α7α5α3α1δ1δ2δ3δ4δ5δ6δ7δ8

= δ2δ4δ6δ8σ 1σ 3σ 5σ 7 · δ7δ5δ3δ1α7α5α3α1.

Here let us assume that there is a mapping class φ ∈ �5+k such that

φ(α1) = δ2, φ(δ1) = σ1,

φ(α3) = δ4, φ(δ3) = σ3,

φ(α5) = δ6, φ(δ5) = σ5,

φ(α7) = δ8, φ(δ7) = σ7,

as described in Figure 15.
Then we have

δ2δ4δ6δ8σ 1σ 3σ 5σ 7 · δ7δ5δ3δ1α7α5α3α1

= φ(α1)φ(α3)φ(α5)φ(α7)φ(δ1)φ(δ3)φ(δ5)φ(δ7) · δ7δ5δ3δ1α7α5α3α1

= φα1φ
−1φα3φ

−1φα5φ
−1φα7φ

−1φδ1φ
−1φδ3φ

−1φδ5φ
−1φδ7φ

−1

· δ7δ5δ3δ1α7α5α3α1

= φα1α3α5α7δ1δ3δ5δ7φ
−1δ7δ5δ3δ1α7α5α3α1

= [φ,α1α3α5α7δ1δ3δ5δ7].
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Figure 15 The action of φ on the curves

Figure 16 The action of ψ and ψ̃ on the curves

Therefore, we obtain

[φ,α1α3α5α7δ1δ3δ5δ7] = β ′′′β ′′β ′β︸ ︷︷ ︸
4

,

which provides a genus g Lefschetz fibration over the torus with four singular
fibers for g = 5 + k ≥ 5; hence, we get that N(g,1) ≤ 4 for g ≥ 5.

Now we need to prove the existence of such a map φ. We construct φ explicitly.
Consider the holed tori �4

1 and �2
1 in Figure 16. Keeping subsurfaces of �5+k in

mind, we first observe the following lemma.

Lemma 4.1. (1) In the mapping class group M4
1, set

ψ = tτ tδtδ′ tτ tτ tαtδtτ .

Then ψ maps the pair of simple closed curves (α, δ) to (δ′, σ ) on �4
1 .

(2) In the mapping class group M2
1, the element

ψ̃ = tτ tδtδtτ tτ tαtδtτ

maps the pair (α, δ) to (δ, σ ) on �2
1 .
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Figure 17 The Dehn twists for the definition of φ

Proof. (1) One can easily check that tτ tαtδtτ maps the pair (α, δ) to (δ,α) and
tτ tδtδ′ tτ maps the pair (δ,α) to (δ′, σ ). Then (2) immediately follows from (1).

�

We continue the proof for Theorem 1.1 (2). Let us define the mapping class φ ∈
M5+k as follows:

φ := τ1δ1δ1τ1τ1α1δ1τ1 · τ3δ3δ3τ3τ3α3δ3τ3

· τ5δ5δ5τ5τ5α5δ5τ5 · τ7δ7δ8τ7τ7α7δ7τ7,

where the curves are as depicted in Figure 17. Then, by Lemma 4.1 we can easily
see that φ satisfies the required conditions. This completes the proof. �

Remark 4.1. (1) We can apply the similar procedure as above to the (possibly,
suitably modified) k-holed torus relation (2 ≤ k ≤ 8) to obtain a genus g Lefschetz
fibration over the torus with 12 − k singular fibers for g ≥ 2 (k = 2), g ≥ 3 (k =
3,4), g ≥ 4 (k = 5,6), or g ≥ 5 (k = 7,8), respectively. So it might be interesting
to ask whether the number of singular fibers in a genus g Lefschetz fibration
over the torus can be arbitrary. In other words, for any n ≥ N(g,1), can we find
a commutator in Mg which can be written as a product of n right-hand Dehn
twists? We have eliminated the case k = 9 in the above argument even though we
might have N(g,1) ≤ 3. It is because there is a difficulty to apply our technique
to the 9-holed torus relation caused by the complexity of simple closed curves
appearing in it. The author does not know whether an alternative version of the
9-holed torus relation can be applied.

(2) There is a possibility that the monodromy of Xiao’s fibration [15] can be
used to prove N(g,1) ≤ 5 for all g ≥ 3. As we mentioned in Section 1, Xiao
has discovered a genus 2 Lefschetz fibration over the sphere with seven singular
fibers. Although the exact monodromy of Xiao’s fibration has not been known yet,
by the existence of such a Lefschetz fibration we know that there exists a relation
in M2 such as

c1c2c3c4c5c6c7 = 1,
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where the curves ci are essential simple closed curves in �2. Moreover, from
the information of the abelianization of M2 we can deduce that four of ci are
nonseparating and the other three are separating. In addition, let us assume that
the relation can be lifted in M2

2 in the form

c̃1c̃2c̃3c̃4c̃5c̃6c̃7 = δ1δ2,

where the curves c̃i are simple closed curves in �2
2 such that P(c̃i) = ci for the

natural homomorphism P : M2
2 → M2, and δ1 and δ2 are the simple closed

curves in �2
2 parallel to the boundary components. Then our technique used to

prove Theorem 1.1 can be applied to the above relation by embedding �2
2 into

�3+k (k ≥ 0). This argument would imply that N(g,1) ≤ 5 for all g ≥ 3. Note
that the assumption of the existence of {c̃i} is equivalent to the existence of a
genus 2 Lefschetz fibration over the sphere with seven singular fibers and two
disjoint (−1)-sections (cf. [2]).
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