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On the Operator �∗ and the Beurling–Ahlfors Transform
on Radial Functions

Rodrigo Bañuelos & Adam Osȩkowski

Abstract. We study the operator �∗ that arises in the study of the ac-
tion of the Beurling–Ahlfors transform on the class of radial functions.
Using a novel estimate for pure-jump martingales, we provide a new
proof of the weak-type (1,1) estimate for �∗, originally established
by J. Gill by completely different techniques.

1. Introduction

The purpose of this paper is to study an operator closely related to the Beurling–
Ahlfors transform on the complex plane. We recall that the latter is the singular
integral operator acting on Lp(C) and defined by the formula

Bf (z) = − 1

π
p.v.

∫
C

f (w)

(z − w)2
dw,

where p.v. means the principal value, and the integration is with respect to the
Lebesgue measure on the complex plane C. This operator plays a fundamental
role in the study of quasi-conformal mappings and partial differential equations
(see [1] and references therein for an overview and applications). An important
and interesting problem concerns the precise values of the Lp norms of this oper-
ator. This question has gained considerable interest in the literature, and the long
standing conjecture of Iwaniec [10] states that

‖B‖Lp(C)→Lp(C) = p∗ − 1,

where p∗ = max{p,p/(p−1)}. Whereas the lower bound of p∗ −1 was obtained
by Lehto [11], the question about the upper bound remains open. Thus far, the best
results in this direction is the inequality ‖B‖Lp(C)→Lp(C) ≤ 1.575(p∗ − 1), estab-
lished in [2], and the bound ‖B‖Lp(C)→Lp(C) ≤ 1.4(p∗ −1) for p ≥ 1,000, proved
in [5]. Both these statements were shown by obtaining a martingale representation
of the operator B and applying the probabilistic techniques of Burkholder [6; 7].

As a Calderón–Zygmund singular integral, the Beurling–Ahlfors operator is
also of weak type (1,1); see [14]. That is, it maps L1(C) into weak-L1(C).
A problem of interest also is to determine the best constant in the weak-type (1,1)

inequality. Bañuelos and Janakiraman [3] studied the action of B on the space of
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real-valued radial functions on C. Consider the Hardy-type operator given by the
formula

�f (x) = 1

x

∫ x

0
f (y)dy − f (x), x > 0.

It was shown in [3] that � is an isometry on L2(0,∞) and that, in addition, if
f ∈ L1(0,∞) and F is the associated radial function given by F(z) = f (|z|2) for
z ∈C, then

BF(z) = z̄

z
�f (|z|2).

Using this representation, it is proved in [3] that

m({z ∈C : |BF(z)| ≥ 1}) ≤ 1

log 2
‖F‖Lp(C) (1.1)

for any real-valued radial function F and that the constant 1/ log 2 cannot be
improved (here and below, m denotes the Lebesgue measure). In particular, this
result implies that the weak-type constant of B is at least 1/ log 2. The proof of
this estimate is analytic and rests on a careful study of the operator �. There is an
alternative probabilistic approach to (1.1), invented by the authors in [4], which
is based on martingale inequalities. These estimates are of independent interest
and, remarkably, enable one to deduce the corresponding sharp weak-type (p,p)

inequalities for � in the range 1 ≤ p ≤ 2 and to obtain these for vector-valued
radial functions. See [4] for details.

There is an interesting dual problem studied by Gill in [9]. Consider the oper-
ator �∗ acting on Lp(0,∞) by the formula

�∗f (x) =
∫ ∞

x

f (y)

y
dy − f (x), x > 0.

It can be shown that this operator is the formal adjoint of �. Moreover, this is
also related to the Beurling–Ahlfors transform by the following formula: if f ∈
Lp(R+,R) and F(z) = z̄

z
f (|z|2) for z ∈ C, then

BF(z) = −�∗f (|z|2).
As previously, we can ask about the weak-type constant of �∗, and one of the
principal goals of [9] is to provide an answer to this question. Quite unexpectedly,
Gill proved that the weak-type (1,1) constant for �∗ is again 1/ log 2. This gives
an alternative proof of the fact that the weak-type constant of B is at least 1/ log 2.
Gill establishes a weak-type bound using purely analytic arguments and a clever
study of �∗. Motivated by the aforementioned results, we may wonder whether
there is a probabilistic proof of Gill’s estimate. The main objective of this paper
is to provide a positive answer to this question. As in the case of �, we will again
exploit the theory of martingales. There are two surprising issues that are worth
mentioning here. First, we will not use the martingale inequalities of [4]. As it
turns out, the study of �∗ seems to require an entirely different framework than
that presented in [4]. Second, we will accomplish our goal by considering a very
special class of martingales, the so-called pure-jump ones.
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We will study the problem in the vector-valued setting. Let H be a separable
Hilbert space over R with norm | · | and scalar product 〈·, ·〉. Without loss of
generality of the results, this space will be assumed to be �2. For any p-integrable
function f = (f1, f2, . . .) : C → H, we define Bf coordinatewise, that is, we set

Bf = (Bf1,Bf2, . . .) ∈ �2
C
.

Similarly, we define the action of �∗ on Lp(C,H) by

�∗f = (�∗f1,�
∗f2, . . .) ∈ �2.

We shall establish the following theorem.

Theorem 1.1. Suppose that f : (0,∞) →H is an integrable function. Then

m({x ∈ (0,∞) : |�∗f (x)| ≥ 1}) ≤ 1

log 2
‖f ‖L1(C,H). (1.2)

The constant is the best possible.

In particular, this yields the following result for Beurling–Ahlfors transform (see
[3] or [4] for details). Suppose that f : (0,∞) →H is an integrable function and
let F(z) = z̄

z
f (|z|2) for z ∈C. Then

m({z ∈C : |BF(z)| ≥ 1}) ≤ 1

log 2
‖F‖1,

and the constant 1/ log 2 cannot be improved.
Unfortunately, we have not been able to establish the sharp weak-type inequal-

ity for 1 < p < 2, as in the case of � in [4], and this remains an interesting open
problem.

We have organized this paper as follows. The key ingredient of the proof of
(1.2) is a certain special function on [0,∞)2. In the next section we introduce this
object and study its properties. Section 3 is devoted to the probabilistic version
of Theorem 1.1. Finally, in Section 4, we deduce estimate (1.2) and present an
example that shows the optimality of 1/ log 2.

2. Some Special Functions and Their Properties

Let U,V : [0,∞) × [0,∞) → R be given by

U(x,y) =
{

1{x≥1} − y
log 2 if y > 0,

1 + (x+1)
log 2 log( x+1

2 ) if y = 0,

and V (x, y) = 1{x≥1} −y/ log 2. We start with some simple observations concern-
ing these functions.

Lemma 2.1. The functions U , V have the following properties.

(i) U(·,0) is of class C2 on (0,∞).
(ii) U(0,0) = 0.
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(iii) We have the majorization

U(x,y) ≥ V (x, y) for all x, y ≥ 0. (2.1)

Proof. (i), (ii) Evident.
(iii) Of course, it suffices to show the inequality for y = 0. This is equivalent

to

1{x<1} + x + 1

log 2
log

x + 1

2
≥ 0.

However, the function t �→ t+1
log 2 log t+1

2 is increasing on [0,∞), equal to −1 for
t = 0 and 0 for t = 1. This proves the claim. �

The next lemma concerns the key concavity property of U . We will write x′ =
x/|x| for x ∈ H \ {0} and x′ = 0 for x = 0. Furthermore, with a slight abuse of
notation, Ux denotes the partial derivative of U with respect to the first variable.

Lemma 2.2. Assume that x ∈ H is a vector of norm smaller than 1. Then for any
d ∈ H, we have

U(|x + d|, |d|) ≤ U(|x|,0) + Ux(|x|,0)〈x′, d〉. (2.2)

When x = 0, then Ux(|x|,0) is understood as the one-sided derivative.

Proof. It is convenient to split the reasoning into a few intermediate steps.
Step 1. Assume first that |x + d| < 1. Then the inequality is equivalent to

log 2 + (|x| + 1) log
|x| + 1

2
+ |d| +

(
log

|x| + 1

2
+ 1

)
〈x′, d〉 ≥ 0.

However, we have log |x|+1
2 + 1 ≥ 0 and 〈x′, d〉 ≥ −|d|, so the left-hand side is

not smaller than

log 2 + (|x| + 1) log
|x| + 1

2
− log

|x| + 1

2
|d|.

Now observe that

(|x| + 1) log
|x| + 1

2
≥ − log 2 and log

|x| + 1

2
|d| ≤ 0

to get the desired bound.
Step 2. Next, assume that x and d are linearly dependent and that |x + d| ≥ 1.

Then the estimate can be rewritten in the form

(|x| + 1) log
|x| + 1

2
+ |d| +

(
log

|x| + 1

2
+ 1

)
〈x′, d〉 ≥ 0. (2.3)

If 〈x′, d〉 ≤ 0, then the left-hand side equals

(|x| + 1) log
|x| + 1

2
− |d| log

|x| + 1

2
,
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which is nonnegative: we have log |x|+1
2 ≤ 0, and the assumptions |x| < 1, |x +

d| ≥ 1 imply |d| ≥ 1 + |x|. On the other hand, if 〈x′, d〉 > 0, then (2.3) becomes

(|x| + 1) log
|x| + 1

2
+

(
log

|x| + 1

2
+ 2

)
|d| ≥ 0.

But |d| ≥ |x + d| − |x| ≥ 1 − |x|, so the left-hand side is not smaller than

2 log
|x| + 1

2
+ 2(1 − |x|),

which is nonnegative for |x| < 1.
Step 3. Finally, assume that |x + d| ≥ 1 and x, d are not necessarily linearly

dependent. We carry out the following optimization. If we add to d a vector h

that is orthogonal to x, then the product 〈x′, d〉 does not change. On the other
hand, both |d| and |x + d| do change. Now choose h so that the norm |d| is
minimized (but the condition |x + d| ≥ 1 still holds). This procedure shows that
it suffices to consider the case where x and d are linearly dependent or where we
have |x + d| = 1. The first possibility has been already analyzed in Step 2, so let
us focus on the second one. Then we have 〈x′, d〉 = (1 − |x|2 − |d|2)/2, and (2.2)
reads

(|x| + 1) log
|x| + 1

2
+ |d| +

(
log

|x| + 1

2
+ 1

)
1 − |x|2 − |d|2

2
≥ 0.

However, |d| ∈ [1 − |x|,1 + |x|], and the left-hand side is a concave function of
|d|. Thus, it suffices to check the estimate for |d| = 1 − |x| or |d| = 1 + |x|. In
both these cases, x and d are linearly dependent, which takes us back to Step 2
above and completes the proof. �

3. A Martingale Inequality

As we have already announced in the Introduction, the heart of the matter lies
in proving an appropriate martingale inequality. Let us start with introducing
the necessary background. Suppose that (�,F ,P) is a probability space filtered
by (Ft )t≥0, a nondecreasing family of sub-σ -fields of F such that F0 contains
all the events of probability 0. Let X = (Xt )t≥0 be an adapted continuous-time
martingale taking values in the Hilbert space H whose trajectories are right-
continuous and have limits from the left. We will denote by �Xt the jump of
X at time t : �Xt = Xt −Xt−, t > 0. Furthermore, X∗ = supt≥0 |Xt | and ‖X‖1 =
supt≥0 ‖Xt‖1 will stand for the maximal function and the first moment of a pro-
cess X, respectively. We impose the following crucial, “structural” assumptions
on X.

1◦ The martingale is a pure-jump process. That is, its continuous part Xc is 0 (see
Chapter II in Protter [13]).

2◦ With probability 1, X has at most one nonzero jump.

In particular, this means that the process X immediately stops when the jump
occurs. We are ready to formulate the main result of this section.
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Theorem 3.1. For any martingale X satisfying 1◦ and 2◦, we have

P(X∗ ≥ 1) ≤ EU(|X0|,0) + 1

log 2
‖(�X)∗‖1. (3.1)

The constant is the best possible.

In particular, if X is assumed to start from 0, then (3.1) takes the nicer form

P(X∗ ≥ 1) ≤ 1

log 2
‖(�X)∗‖1,

in which 1/ log 2 is also the best. This inequality can be regarded as a “dual-type”
to the sharp estimate from [4]

P((�X)∗ ≥ 1) ≤ 1

log 2
‖X‖1,

valid for arbitrary martingales (i.e., not necessarily satisfying 1◦ and 2◦). This was
shown in the discrete-time setting by Cox and Kemperman [8]; consult also [4]
for the vector-valued setting. It should be stressed here that the requirements 1◦
and 2◦ are absolutely necessary in (3.1). For instance, the inequality fails to hold
for continuous-path martingales (which explains the importance of 1◦) and for
random walks with sufficiently small jumps (this is why we assume that at most
one jump occurs).

With the functions U and V from Section 2 at hand, our approach is similar
to that used in [4]. It exploits the properties of these special functions and can
be regarded as yet another extension of Burkholder’s technique (for the detailed
explanation of the method, see Burkholder [7], Wang [15], and the recent mono-
graph by the second author [12]).

Proof of (3.1). By standard approximation argument we may assume that H is
finite-dimensional: H = R

d for some d ≥ 1. Fix a martingale X as in the state-
ment. Obviously, we may restrict ourselves to those X that are bounded in L1

since otherwise there is nothing to prove. Furthermore, we may assume that X is
bounded away from 0. Indeed, having proved the claim in this special class, we
pick an arbitrary X, a small positive number a, apply the estimate to an H × R-
valued martingale (X,a) (which is bounded away from 0), and let a go to 0 at the
end. Introduce the stopping time

τ = inf{s ≥ 0 : |Xs | ≥ 1 or (�X)∗s > 0}.
The function U(·,0) is of class C2 on (0,∞); therefore, the function x �→ U(|x|,
0) is of class C2 on H \ {0}. An application of Itô’s formula for processes with
jumps (see Chapter II in Protter [13]) yields

U(|Xτ∧t |, (�Xτ∧t )
∗) = I0 + I1 + I2, (3.2)
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where
I0 = U(|X0|,0),

I1 =
∫ τ∧t

0+
Ux(|Xs−|,0)〈X′

s−,dXs〉,

I2 =
∑

0<s≤τ∧t

[U(|Xs |, |�Xs |) − U(|Xs−|,0) − Ux(|Xs−|,0)〈Xs−,�Xs〉].

The term I1 has zero expectation by the properties of stochastic integrals. In ad-
dition, there is at most one summand in I2, and it is nonpositive by (2.2). Conse-
quently, integrating both sides of (3.2) gives EU(|Xτ∧t |, (�Xτ∧t )

∗) ≤ EU(|X0|,
0), and combining this with (2.1) yields

P(|Xτ∧t | ≥ 1) ≤ EU(|X0|,0) + 1

log 2
E(�Xτ∧t )

∗

≤ EU(|X0|,0) + 1

log 2
‖(�X)∗‖1.

Next, for each ε > 0, we have

{X∗ ≥ 1} ⊂
⋃
t≥0

{|Xτ∧t | ≥ 1 − ε},

and the events on the right are increasing. Consequently, applying the preceding
inequality to the martingale X/(1 − ε) and letting t → ∞ give

P(X∗ ≥ 1) ≤ EU(|X0|,0) + 1

(1 − ε) log 2
‖(�X)∗‖1.

Since ε > 0 was arbitrary, the result follows.
The sharpness. This will be clear by the example considered in the next section.

�
4. The Weak-Type Bound for �∗

Proof of (1.2). By standard approximation, it suffices to prove the assertion for
a bounded function f : [0,∞) → H supported on a finite interval [0,M]. Fur-
thermore, modifying f in a small neighborhood of 0 if necessary, we may restrict
ourselves to the functions that have finite limits at 0. For such f , we have (from
[9]) that ��∗f = f . Next, consider the probability space

(�,F ,P) =
(

[0,M],B([0,M]), m(·)
M

)
,

where, as above, m denotes the Lebesgue measure. For any t ∈ [0,M], let Ft be
the smallest complete σ -field that contains the interval [0,M − t] and all Borel
subsets of [M − t,M]; for t > M , put Ft = F . Obviously, (Ft )t≥0 is a filtration,
and the function g = �∗f ∈ L1((0,∞)) restricted to [0,M], can be regarded
as an integrable random variable. Note that this random variable has mean zero:
indeed,

1

M

∫ M

0
g(s)ds = 1

M

∫ M

0

∫ M

s

f (y)

y
dy − f (s)ds = 0, (4.1)
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by Fubini’s theorem. The function g gives rise to the martingale

X = (Xt )t≥0 = (E(g|Ft ))t≥0.

Let us analyze the properties of this process. First, we easily check that for almost
all ω ∈ �,

Xt(ω) =
{

g(ω) if t ≥ M − ω,
1

M−t

∫ M−t

0 g(s)ds if t < M − ω,
(4.2)

and hence the martingale X is pure-jump; actually, it has at most one jump almost
surely (for a given ω ∈ �, X is continuous on [0,M − ω) and (M − ω,∞)).
Furthermore, by (4.1) and (4.2) we have X0 = 1

M

∫ M

0 g(s)ds = 0, and hence
U(|X0|,0) = 0 (see Lemma 2.1 (ii)). Next, recall that �g = ��∗f = f , so

(�X)∗(ω) = |�XM−ω| =
∣∣∣∣ 1

ω

∫ ω

0
g(s)ds − g(ω)

∣∣∣∣ = |�g(ω)| = f (ω).

Consequently, by (3.1),

m({x ∈ (0,M) : |�∗f (x)| ≥ 1}) = m({x ∈ (0,M) : |g(x)| ≥ 1})
≤ MP(X∗ ≥ 1)

≤ 1

log 2
M‖(�X)∗‖1 = 1

log 2

∫ M

0
|f (x)|dx.

Letting M → ∞ gives

m({x ∈ (0,∞) : |�∗f (x)| ≥ 1}) ≤ 1

log 2
‖f ‖L1([0,∞)),

which is the claim. �

Sharpness. We use the example constructed by Gill [9]. Put f (x) = χ(1/2,1](x)/x;
then �∗f (x) = χ[0,1/2](x) − χ(1/2,1](x), and hence

m(|�∗f | ≥ 1) = 1 and ‖f ‖1 = log 2.

In consequence, we also obtain that inequality (3.1) is sharp since otherwise it
would be possible to improve the constant in (1.2). �
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