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Lower Bound for the Geometric Type from a Generalized
Estimate in the d-Neumann Problem — a New Approach
by Peak Functions

TrRAN VU KHANH

1. Introduction

In a series of seminal papers in the Annals of Mathematics [ ; ], Catlin
proved the equivalence of the finite type of a boundary (cf. [ 1) with the
existence of a subelliptic estimate for the 3-Neumann problem by triangulating
through the #°-property (see below)
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(i) finite type m = t°-property with ¢ = mnm .
(ii) r°-property = e-subelliptic estimate;

(iii) e-subelliptic estimate = finite type m for m < 1

o
Here, the °-property of a boundary b2 is a special case of a more general “ f-
property” defined as follows. For a smooth strictly increasing function f : [1 +
o) — [1, +00) with f(z) < 12 the f-property at z, means the existence of a
neighborhood U of z,, of constants Cy, C», and of a family of functions {¢s} such
that

1) qﬁé are plurisubharmonic and C 2onU,and —1 < ¢s <0;
2) 39¢s > C1 f(8~12%Id and |Dgs| < C287 forany z e UN{z € Q: —8 <
r(z) < 0}, where r is a defining function of 2.

The results in steps (ii) and (iii) were generalized in [ ; ]. In particular,
in [ ] it was shown that the f-property implies an f-estimate for any f, and
in [ ] that an f-estimate with é — 00 at oo implies that the type along a

complex analytic variety has a lower bound with the rate G with

* -1
G(a>=<<li) (6‘)) , (1.1)
0g

where the superscript * denotes the inverse function. Combining the above results,
we obtain the following:

THEOREM 1.1 (Catlin [ ; ]; Khanh and Zampieri [ ; 1. Let
Q be a pseudoconvex domain in C"* with C*°-smooth boundary b2, and z, be a
boundary point. Assume that the f-property holds at z, with é JSooast — oo.

Received March 1, 2013. Revision received June 10, 2013.
This research is funded by Vietnam National Foundation for Science and Technology Development
(NAFOSTED) under grant number 101.01-2012.16.

209


http://www.lsa.umich.edu/math/outreach/michiganmathematicaljournal

210 TrRAN VU KHANH

Then, if b2 has type < F along a one-dimensional complex analytic variety Z at
2o, that is,

r@| = F(lz=2z0l), z€Z,2— 2, (1.2)

then F(8) = aG () for a suitable constant o > 0 and for any & small.

The purpose of this note is to give a short proof of Theorem 1.1, which has also
the advantage of requiring only a minimal smoothness of b<2 if a slightly stronger
assumption on f is given. More precisely, we prove the following:

THEOREM 1.2. Let Q be a pseudoconvex domain of C" with C?-smooth bound-
ary b2, and z, be a boundary point. Assume that the f-property holds at z,
with f satisfying (g(t))~! := ftoo % < 00 for some t > 1, and set G(§) =
(g*(8~1)~. Then, if bQ has type < F along a one-dimensional complex ana-
lytic variety Z at z,, then F () > aG(B6) for suitable constants «, B > 0 and for

any & small.

Some remarks are in order. First, the C°°-smoothness of the boundary in the
results of Catlin and Khanh—Zampieri (Theorem 1.1) is required since they ap-
plied the regularity of the 3-Neumann problem. In Theorem 1.2, the condition of
smoothness is reduced because of the use of a plurisubharmonic peak function.
However, in the construction of the family of the plurisubharmonic peak func-
tions, we need a slightly stronger hypothesis on f (e.g., f(¢) =logt - log®(logt)
with 0 < ¢ < 1), which fulfills the hypothesis in Theorem but does not in The-
orem |.2. Finally, the statements of the two theorems are equivalent in the cases
ft)=loglt for B> 1or f(r)=1° forany 0 < & < %

2. Proof of Theorem

The proof of Theorem follows immediately from Theorems and 2.2. In
[ ], we showed that there exists a family of plurisubharmonic functions with
good estimates.

THEOREM 2.1. Under the assumptions of Theorem 1.2, for a fixed constant 0 <
n < 1, there are a neighborhood V of z, and positive constants c1, ¢z, c3 such that
the following holds. For any w € V N bS2, there is a plurisubharmonic function
Yy on VN Q verifying

(D Ww (@) = Yu@) <carlz = 2|",

(2) Yw(z) ==G"(c2lz — wl), and

(3) Yr(2)(2) = —c38p(2)"

for any z and 7' in V N Q (where 8p(z) and 7 (z) denote the distance and pro-
Jjection of 7 to the boundary, respectively).

Using Theorem 2.1 for w =z, we get the following:
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THEOREM 2.2. Let  be a C*-smoothly pseudoconvex domain in C*, and z,, be
a boundary point. Assume that there are a neighborhood V of z, and a plurisub-
harmonic function ¥ on V N Q such that

—c1lz = 2" <Y (@) = -GN (2lz —z0]), zEV N, 2.1

for suitable c1, c» > 0andn € (0, 1]. If b2 has type < F along a one-dimensional
complex analytic variety Z, then F(8) > aG(B6) for some a, B > 0 and for any
small §.

Proof. Let Q2 be a domain in C" and assume that there is a function F and an
one-dimensional complex analytic variety Z passing through z, such that (1.2)
is satisfied for z € Z. Then, in any neighborhood U of z,, there are constants
c3, ¢4 > 0 and a family {Zs} of one-dimensional complex manifolds Zs C U de-
fined by 5 : A — U with hs(0) = z,, such that

8 =sup|hs(r) — zo| = |h5(0)] = c38 (2.2)
teA
and
sup [8p(hs(1))| < caF (8), (2.3)
teA

where A denotes the unit disc in C.

Let v be the outward normal vector to b2 at z,. From (2.3) we have hg(t) —
c4F(8)v e QN U for any ¢ € A. Applying the submean value inequality to the
subharmonic function v (hs(t) — c4 F(8)v) on A, we get

1 2 .
V(2o —c4F(§)v) < E/o Y (hs(e"”) — ca F (8)v)db. 2.4
Now, we use the first inequality in (2.1) for the left-hand side term of (2.4):
—¥ (2o — caF(§)v) < c1c F"(5)".

For the right-hand side term of (2.4), we use the second inequality of (2.1):

1 [ 0
o VY (hs(e'”) — caF(8)v)do
0
1 (2 .
> | Gealhs(e) = caF B)v =z db. 2.5)
0

Using (2.2) and the Jensen inequality for the increasing, convex function G", we
get

G"(c2¢38) < G"(c2|h5(0)))

1 2 .
< G”(Z/ Czlha(ele)—CF(3)V_Z0|d9)
0

2

1 .
< — G"(ca|hs(e'®) — CF(8)v — z,|) db. (2.6)
2 0
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Combining (2.4), (2.5), and (2.6), we obtain
F($§) = aG(BS)

with o = (ci / '7C4)’1 and S = cac3. The proof of Theorem is completed. [

REMARK 2.3. In the case G () = ¢, the result was obtained by Fornaess and
Sibony [ ].
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