Lower Bound for the Geometric Type from a Generalized Estimate in the $\bar{\partial}$ -Neumann Problem – a New Approach by Peak Functions

TRAN VU KHANH

1. Introduction

In a series of seminal papers in the Annals of Mathematics [Cat83; Cat87], Catlin proved the equivalence of the finite type of a boundary (cf. [D'A82]) with the existence of a subelliptic estimate for the $\bar{\partial}$ -Neumann problem by triangulating through the t^{ε} -property (see below)

- (i) finite type $m \Rightarrow t^{\varepsilon}$ -property with $\varepsilon = m^{-n^2 m^{n^2}}$;
- (ii) t^{ε} -property $\Rightarrow \varepsilon$ -subelliptic estimate;
- (iii) ε -subelliptic estimate \Rightarrow finite type *m* for $m \leq \frac{1}{\varepsilon}$.

Here, the t^{ε} -property of a boundary $b\Omega$ is a special case of a more general "fproperty" defined as follows. For a smooth strictly increasing function f: [1 +] ∞) \rightarrow [1, + ∞) with $f(t) \le t^{1/2}$, the f-property at z_0 means the existence of a neighborhood U of z_o , of constants C_1 , C_2 , and of a family of functions $\{\phi_{\delta}\}$ such that

- 1) ϕ_{δ} are plurisubharmonic and C^2 on U, and $-1 \le \phi_{\delta} \le 0$; 2) $\partial \bar{\partial} \phi_{\delta} \ge C_1 f (\delta^{-1})^2 I d$ and $|D\phi_{\delta}| \le C_2 \delta^{-1}$ for any $z \in U \cap \{z \in \Omega : -\delta < 0\}$ r(z) < 0, where *r* is a defining function of Ω .

The results in steps (ii) and (iii) were generalized in [KZ10; KZ12]. In particular, in [KZ10] it was shown that the f-property implies an f-estimate for any f, and in [KZ12] that an f-estimate with $\frac{f}{\log} \to \infty$ at ∞ implies that the type along a complex analytic variety has a lower bound with the rate G with

$$G(\delta) = \left(\left(\frac{f}{\log} \right)^* (\delta^{-1}) \right)^{-1}, \tag{1.1}$$

where the superscript * denotes the inverse function. Combining the above results, we obtain the following:

THEOREM 1.1 (Catlin [Cat83; Cat87]; Khanh and Zampieri [KZ10; KZ12]). Let Ω be a pseudoconvex domain in \mathbb{C}^n with C^{∞} -smooth boundary $b\Omega$, and z_o be a boundary point. Assume that the f-property holds at z_0 with $\frac{f}{\log} \nearrow \infty$ as $t \to \infty$.

Received March 1, 2013. Revision received June 10, 2013.

This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 101.01-2012.16.

Then, if $b\Omega$ has type $\leq F$ along a one-dimensional complex analytic variety Z at z_o , that is,

$$|r(z)| \le F(|z - z_o|), \quad z \in Z, z \to z_o,$$
 (1.2)

then $F(\delta) \ge \alpha G(\delta)$ for a suitable constant $\alpha > 0$ and for any δ small.

The purpose of this note is to give a short proof of Theorem 1.1, which has also the advantage of requiring only a minimal smoothness of $b\Omega$ if a slightly stronger assumption on f is given. More precisely, we prove the following:

THEOREM 1.2. Let Ω be a pseudoconvex domain of \mathbb{C}^n with C^2 -smooth boundary $b\Omega$, and z_o be a boundary point. Assume that the f-property holds at z_o with f satisfying $(g(t))^{-1} := \int_t^\infty \frac{da}{af(a)} < \infty$ for some $t \ge 1$, and set $G(\delta) = (g^*(\delta^{-1}))^{-1}$. Then, if $b\Omega$ has type $\le F$ along a one-dimensional complex analytic variety Z at z_o , then $F(\delta) \ge \alpha G(\beta \delta)$ for suitable constants $\alpha, \beta > 0$ and for any δ small.

Some remarks are in order. First, the C^{∞} -smoothness of the boundary in the results of Catlin and Khanh–Zampieri (Theorem 1.1) is required since they applied the regularity of the $\bar{\partial}$ -Neumann problem. In Theorem 1.2, the condition of smoothness is reduced because of the use of a plurisubharmonic peak function. However, in the construction of the family of the plurisubharmonic peak functions, we need a slightly stronger hypothesis on f (e.g., $f(t) = \log t \cdot \log^{\varepsilon} (\log t)$ with $0 < \varepsilon \le 1$), which fulfills the hypothesis in Theorem 1.1 but does not in Theorem 1.2. Finally, the statements of the two theorems are equivalent in the cases $f(t) = \log^{\beta} t$ for $\beta > 1$ or $f(t) = t^{\varepsilon}$ for any $0 < \varepsilon \le \frac{1}{2}$.

2. Proof of Theorem 1.2

The proof of Theorem 1.2 follows immediately from Theorems 2.1 and 2.2. In [Kha13], we showed that there exists a family of plurisubharmonic functions with good estimates.

THEOREM 2.1. Under the assumptions of Theorem 1.2, for a fixed constant $0 < \eta \le 1$, there are a neighborhood V of z_o and positive constants c_1, c_2, c_3 such that the following holds. For any $w \in V \cap b\Omega$, there is a plurisubharmonic function ψ_w on $V \cap \Omega$ verifying

- (1) $|\psi_w(z) \psi_w(z')| \le c_1 |z z'|^{\eta}$,
- (2) $\psi_w(z) \leq -G^{\eta}(c_2|z-w|)$, and
- (3) $\psi_{\pi(z)}(z) \ge -c_3 \delta_{b\Omega}(z)^{\eta}$

for any z and z' in $V \cap \overline{\Omega}$ (where $\delta_{b\Omega}(z)$ and $\pi(z)$ denote the distance and projection of z to the boundary, respectively).

Using Theorem 2.1 for $w = z_0$, we get the following:

THEOREM 2.2. Let Ω be a C^2 -smoothly pseudoconvex domain in \mathbb{C}^n , and z_o be a boundary point. Assume that there are a neighborhood V of z_o and a plurisub-harmonic function ψ on $V \cap \Omega$ such that

$$-c_1|z - z_o|^{\eta} \le \psi(z) \le -G^{\eta}(c_2|z - z_o|), \quad z \in V \cap \Omega,$$
(2.1)

for suitable $c_1, c_2 > 0$ and $\eta \in (0, 1]$. If $b\Omega$ has type $\leq F$ along a one-dimensional complex analytic variety Z, then $F(\delta) \geq \alpha G(\beta \delta)$ for some $\alpha, \beta > 0$ and for any small δ .

Proof. Let Ω be a domain in \mathbb{C}^n and assume that there is a function F and an one-dimensional complex analytic variety Z passing through z_o such that (1.2) is satisfied for $z \in Z$. Then, in any neighborhood U of z_o , there are constants $c_3, c_4 > 0$ and a family $\{Z_\delta\}$ of one-dimensional complex manifolds $Z_\delta \subset U$ defined by $h_\delta : \overline{\Delta} \to U$ with $h_\delta(0) = z_o$ such that

$$\delta = \sup_{t \in \overline{\Delta}} |h_{\delta}(t) - z_o| \ge |h_{\delta}'(0)| \ge c_3 \delta$$
(2.2)

and

$$\sup_{t\in\overline{\Delta}} |\delta_{b\Omega}(h_{\delta}(t))| < c_4 F(\delta), \tag{2.3}$$

where Δ denotes the unit disc in \mathbb{C} .

Let v be the outward normal vector to $b\Omega$ at z_o . From (2.3) we have $h_{\delta}(t) - c_4 F(\delta)v \in \Omega \cap U$ for any $t \in \overline{\Delta}$. Applying the submean value inequality to the subharmonic function $\psi(h_{\delta}(t) - c_4 F(\delta)v)$ on $\overline{\Delta}$, we get

$$\psi(z_o - c_4 F(\delta)\nu) \le \frac{1}{2\pi} \int_0^{2\pi} \psi(h_\delta(e^{i\theta}) - c_4 F(\delta)\nu) d\theta.$$
(2.4)

Now, we use the first inequality in (2.1) for the left-hand side term of (2.4):

$$-\psi(z_o - c_4 F(\delta)\nu) \le c_1 c_4^{\eta} F^{\eta}(\delta)^{\eta}.$$

For the right-hand side term of (2.4), we use the second inequality of (2.1):

$$-\frac{1}{2\pi} \int_{0}^{2\pi} \psi(h_{\delta}(e^{i\theta}) - c_{4}F(\delta)\nu) d\theta$$
$$\geq \frac{1}{2\pi} \int_{0}^{2\pi} G^{\eta}(c_{2}|h_{\delta}(e^{i\theta}) - c_{4}F(\delta)\nu - z_{o}|) d\theta.$$
(2.5)

Using (2.2) and the Jensen inequality for the increasing, convex function G^{η} , we get

$$G^{\eta}(c_{2}c_{3}\delta) \leq G^{\eta}(c_{2}|h_{\delta}'(0)|)$$

$$\leq G^{\eta}\left(\frac{1}{2\pi}\int_{0}^{2\pi}c_{2}|h_{\delta}(e^{i\theta}) - CF(\delta)\nu - z_{o}|d\theta\right)$$

$$\leq \frac{1}{2\pi}\int_{0}^{2\pi}G^{\eta}(c_{2}|h_{\delta}(e^{i\theta}) - CF(\delta)\nu - z_{o}|)d\theta.$$
(2.6)

Combining (2.4), (2.5), and (2.6), we obtain

$$F(\delta) \ge \alpha G(\beta \delta)$$

with $\alpha = (c_1^{1/\eta} c_4)^{-1}$ and $\beta = c_2 c_3$. The proof of Theorem 1.2 is completed. \Box

REMARK 2.3. In the case $G(t) = t^m$, the result was obtained by Fornaess and Sibony [FS89].

ACKNOWLEDGMENTS. This article was written while the author was a visiting member at the Vietnam Institute for Advanced Study in Mathematics (VIASM). He would like to thank the institution for its hospitality and support.

References

- [Cat83] D. Catlin, Necessary conditions for subellipticity of the $\bar{\partial}$ -Neumann problem, Ann. of Math. (2) 117 (1983), no. 1, 147–171.
- [Cat87] _____, Subelliptic estimates for the ∂-Neumann problem on pseudoconvex domains, Ann. of Math. (2) 126 (1987), no. 1, 131–191.
- [D'A82] J.P. D'Angelo, Real hypersurfaces, orders of contact, and applications, Ann. of Math. (2) 115 (1982), no. 3, 615–637.
- [FS89] J.E. Fornaess and N. Sibony, Construction of P.S.H. functions on weakly pseudoconvex domains, Duke Math. J. 58 (1989), no. 3, 633–655.
- [Kha13] T.V. Khanh, Boundary behavior of the Kobayashi metric near a point of infinite type, 2013, arXiv:1302.0789.
- [KZ10] T.V. Khanh and G. Zampieri, Regularity of the ∂-Neumann problem at point of infinite type, J. Funct. Anal. 259 (2010), no. 11, 2760–2775.
- [KZ12] _____, Necessary geometric and analytic conditions for general estimates in the $\bar{\partial}$ -Neumann problem, Invent. Math. 188 (2012), no. 3, 729–750.

Tan Tao University Tan Tao avenue, Tan Duc e-city Long An province Vietnam

khanh.tran@ttu.edu.vn