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On Some Hermitian Variations of Hodge Structure of
Calabi–Yau Type with Real Multiplication

Robert Friedman & Radu Laza

Introduction

A Hodge structure of Calabi–Yau or CY type is an effective weight n Hodge struc-
ture with hn,0 = 1. The work of Gross [Gro94] and Sheng–Zuo [SZ10] shows that
every Hermitian symmetric domain D carries a canonical R-variation of Hodge
structure (VHS) V of CY type (cf. also [FL11, §2] for more discussion). Fur-
thermore, every other equivariant R-VHS (or Hermitian VHS) of CY type on
D is obtained from V using certain standard constructions (see [FL11, Theo-
rem 2.22]). For example, each of the four rank 3 Hermitian symmetric tube do-
mains D, namely III3, I3,3, II6, and EVII (corresponding to the real Lie groups
Sp(6,R), SU(3,3), SO∗(12), and E7,3 respectively), carries a weight 3 R-VHS
of CY type with the relevant Hodge number h2,1 = 6, 9, 15, and 27 respectively,
and every primitive irreducible weight 3 Hermitian VHS of CY type that is also
of tube type is of this form. Here primitive means that the VHS is not induced
from a lower weight VHS in an obvious sense, and tube type means that the cor-
responding complex VHS is irreducible. This gives a satisfactory classification
(over R) of Hermitian VHS of CY type analogous to the classification of Satake
[Sat65] and Deligne [Del79] of totally geodesic holomorphic embeddings of Her-
mitian symmetric domains into the Siegel upper half-space Hg , or equivalently
Hermitian VHS of abelian variety type.

The analogous classification over Q of Hermitian VHS V of Calabi–Yau type
is much more difficult. The weight 2 case, or K3 type, was analyzed by Zarhin
[Zar83] and van Geemen [vG08]. A basic invariant measuring the difference be-
tween the classification over Q and over R is the algebra E := EndHg(Vs) of
Hodge endomorphisms of a general fiber Vs of V . In the Calabi–Yau type case,
E is either a totally real field or a CM field (see [Zar83] or [FL11, Prop. 3.1]).
If E = E0 is a totally real field, we say that the Hermitian VHS has weak real
multiplication by E0. In the weight 3 case, we showed in [FL11, Theorem 3.18]
that there are at most two primitive cases of Hermitian VHS of CY threefold type
defined over Q with nontrivial weak real multiplication. These cases correspond
to the domains I3,3 and II6 associated to the groups SU(3,3) and SO∗(12) re-
spectively. In the two other tube domain cases mentioned above, III3 and EVII,
nontrivial weak real multiplication cannot arise. For the SU(3,3) case, we showed
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in [FL11] that every totally real field E0 can be realized as the endomorphism al-
gebra of a Hermitian VHS of CY type defined over Q. This result is similar to
that of van Geemen [vG08] for K3 type, but the representation theory is more
involved. This paper is devoted to the remaining case of the group SO∗(12) and
the corresponding Hermitian symmetric space II6. More precisely, we prove the
following (using freely the notation of [FL11]).

Theorem 1. Let E0 be a totally real field with d = [E0 : Q]. Then there exists
an almost simple Q-group G and an irreducible weight 3 Hodge representation
ρ : G → GL(V ) with a corresponding weight 3 Hermitian VHS V such that the
generic endomorphism algebra for V has real multiplication by E0 and, over R,
V = ⊕d

i=1 Vi , where V1 corresponds to a half spin representation of the spin
double cover of the real group SO∗(12) and, for i > 1, Vi corresponds to (a Tate
twist of) a half spin representation of the spin double cover of the real group
SO(2,10).

Remark. With notations as in the theorem, V1 is a VHS of CY threefold type
with Hodge numbers (1,15,15,1). For i > 1, Vi is (up to a Tate twist) a VHS of
abelian variety type with Hodge numbers (0,16,16,0).

Arguing as in the proof of Theorem 3.18 in [FL11], it will be enough to show the
following.

Theorem 2. Let E0 be a totally real field with d = [E0 : Q], and let σ1, . . . , σd

be the different embeddings of E0 in R. We view E0 as a subfield of R via σ1.
Then there exists a geometrically almost simple group G1 defined over E0 and a
representation ρ1 : G1 → GL(V1), where V1 is an E0-vector space, such that

(i) the induced complex group G1,C
∼= Spin(12) and V1,C is the half spin repre-

sentation S+ of SO(12) in the notation of [FH91].
(ii) the induced real group G1,R is isomorphic to the spin double cover of SO∗(12).

(iii) for i > 1, viewing E0 as a subfield of R via the embedding σi , the induced
real group Gi,R is isomorphic to the spin double cover of SO(2,10).

As in [FL11], once we have the group G1 and the representation V1, we take
G = ResE0/Q G1 together with the induced representation on V = ResE0/Q V1.
Then GR = ∏d

i=1 Gi,R and V ⊗Q R = ⊕d
i=1 Vi,R, where Vi,R is the real vector

space V1 ⊗E0,σi
R. The associated Q-VHS V will have real multiplication by E0

and will split over R into a CY piece V1 and a product of Tate twists of weight
1 factors coming from the Kuga–Satake construction applied to SO(2,10), say
V2, . . . ,Vd . The Mumford–Tate domain is D1 ×D2 × · · · ×Dd , a product of dif-
ferent Hermitian symmetric domains, with Di parametrizing the Hermitian VHS
Vi as desired.

Most of the VHS of CY type occurring in geometry are not of Hermitian type.
Still, the Hermitian VHS are interesting as they provide simple test cases for mir-
ror symmetry. For example, we mention the examples of VHS of CY threefolds
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without maximal monodromy due to Rohde [Roh10], which are both geomet-
ric and of Hermitian type. Thus, an interesting question is whether the (abstract)
VHS of CY type discussed here can be realized geometrically or motivically.
Case III3 is the case of abelian threefolds. Recently, Z. Zhang has shown that case
I3,3, including the case of nontrivial real multiplication, can be realized motivi-
cally starting from a VHS of abelian variety type. At the other extreme, Deligne
showed in [Del79] that case EVII cannot be realized motivically starting from a
VHS of abelian variety type, and it is a well-known open problem to give some
motivic realization for it. It is possible that the II6 case has a motivic realization
starting with a VHS of abelian varieties, but Z. Zhang has also noted that such a
construction cannot work in the presence of nontrivial real multiplication.

The outline of this paper is as follows. In Section 1, we discuss some general
forms of the group SO∗(2n) defined over totally real fields. As a warm-up to the
proof of Theorem 2, we give a necessary and sufficient condition for the rational-
ity of the standard representation. The proof of Theorem 2 then consists of two
steps. In the first step, in Section 2, given an imaginary quadratic extension E of
E0, we construct a group G1 and a representation of G1 defined over E whose
tensor product with C is a half spin representation. Section 3 describes the sec-
ond and more difficult step: We prove that the representation of the group G1 is
actually defined over E0, as part of a more general discussion of the rationality of
the half spin representations for the groups described in Sections 1 and 2. We note
that the fact that the relevant half spin representation is defined over R (as opposed
to only over C) follows from the general criterion of [GGK12, Theorem IV.E.4].

1. Preliminaries

Throughout this paper, E0 will either be a totally real number field or R, and E

will be an imaginary quadratic extension of E0, hence E = C in case E0 = R.
If σ ∈ Gal(E/E0) is the nontrivial element, we denote σ(α) by ᾱ. If V1, V2 are
two E-vector spaces, an additive homomorphism f : V1 → V2 is conjugate linear
if, for all v ∈ V1 and α ∈ E, f (αv) = ᾱf (v). In particular, f is E0-linear. Our
goal in this section will be to describe the linear algebra necessary to construct
a form of the real group SO∗(2n) over E0 (as defined in [Kna02]), and also to
discuss the rationality of the standard representation. Let W be an E-vector space
of dimension 2n with E-basis e1, . . . , e2n. We write z = ∑2n

i=1 ziei , and similarly
for w. Suppose that b(z,w) is a nondegenerate E-bilinear form on W , written in
the standard form

b(z,w) =
n∑

i=1

(ziwn+i + zn+iwi),

in other words b(ei, ej ) = 0 if i, j ≤ n or i, j ≥ n + 1, and b(ei, en+j ) = δij . Let
ψ be an (E,E0)-Hermitian form on W . For the moment, we will just make the
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assumption that ψ is diagonalized in the basis e1, . . . , e2n and write

ψ(z,w) =
2n∑
i=1

aiziw̄i ,

where necessarily ai ∈ E0. Then b defines an E-linear isomorphism W → W∨,
denoted by B , via the rule B(v)(w) = b(v,w), and ψ defines a conjugate linear
isomorphism W → W∨, denoted by � , via the rule �(v)(w) = ψ(w,v). Finally,
define

J = B−1 ◦ �.

Lemma 1.1. In the above notation, J is specified by the properties that J is con-
jugate linear and that for all i ≤ n,

J (ei) = aien+i;
J (en+i ) = an+iei .

Proof. If e∗
i are the dual basis vectors in W∨ (i.e. e∗

i (ej ) = δij ), then clearly, for
i ≤ n, B(ei) = e∗

n+i and B(en+i ) = e∗
i . Moreover, �(ei) = aie

∗
i for all i. The

proof is then immediate. �

Corollary 1.2. In the above notation, J 2 is specified by the properties that J is
E-linear and that for all i ≤ n,

J 2(ei) = aian+iei;
J 2(en+i ) = aian+ien+i .

In particular, we see that J 2 = λ Id for some λ ∈ E0 ⇐⇒ aian+i = λ for all
i ≤ n, that is, there exists a λ ∈ E0 such that, for i ≤ n, an+i = λa−1

i . In terms of
the forms, this says the following.

Lemma 1.3. There exists a λ ∈ E0 such that J 2 = λ Id ⇐⇒ λ(�−1 ◦ B) =
B−1 ◦ � .

Proof. J 2 = λ Id ⇐⇒ J = λJ−1 ⇐⇒ B−1 ◦ � = λ(�−1 ◦ B). �

Let 	 : W → W ′ be an E-linear isomorphism. Then 	 defines a quadratic form
b	 on W ′ via b	(ξ, η) = b(	−1(ξ),	−1(η)). Equivalently,

b(v,w) = b	(	(v),	(w)),

so that 	 : (W,b) → (W ′, b	) is an isomorphism of quadratic spaces. For ex-
ample, B defines a form on W∨, the dual quadratic form, which we just denote
by b∨. A conjugate linear isomorphism � : W → W ′ also defines an E-bilinear
form, which we denote by b̄� , via the rule

b̄�(ξ, η) = b(�−1(ξ),�−1(η)).

Direct calculation then shows the following.
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Lemma 1.4. With b, ψ , B , � as above, there exists a λ ∈ E0 such that b̄� =
λ−1b∨ ⇐⇒ aian+i = λ for all i ≤ n.

Definition 1.5. 1) A pair of forms b, ψ satisfying either of the equivalent con-
ditions of the previous lemma will be called compatible.

2) With b, ψ compatible as above, let e1, . . . , e2n be an E-basis of W such that
b(z,w) = ∑n

i=1(ziwn+i + zn+iwi) and ψ(z,w) = ∑2n
i=1 aiziw̄i , where as before

we write z = ∑
i ziei and w = ∑

i wiei . We call e1, . . . , e2n a good basis if there
exists a λ ∈ E0 such that aian+i = λ for all i, 1 ≤ i ≤ n. If e1, . . . , e2n is a good
basis, then we call the maximal b-isotropic subspace W1, which is the span over
E of e1, . . . , en, a good isotropic subspace of W .

3) For compatible b, ψ , a good basis e1, . . . , e2n, and a good isotropic sub-
space W1 of W , we denote by D = det(ψ |W1) the discriminant a1 · · ·an of the
Hermitian form ψ |W1 with respect to the basis e1, . . . , en of W1. (More invari-
antly, det(ψ |W1) is only well defined up to a norm, that is, as an element of
E∗

0/NmE/E0(E
∗).)

For an E-vector space W , we write ResE/E0 W for the Weil restriction of scalars
of W : ResE/E0 W is just W considered as an E0-vector space. For an algebraic
group G defined over E, the restriction of scalars ResE/E0 G is similarly defined
(see also [Mil11, §I.4.b]) and is an algebraic group over E0.

Let G0 = G(W,b,ψ) be the set of E-linear isomorphisms of W preserving
b and ψ . The group G0 is the group of E0-valued points of an affine algebraic
group over E0, also denoted by G0; it is the intersection of the algebraic group
ResE/E0 SO(W,b), where SO(W,b) is the special orthogonal group of the form
b, with the special unitary group SU(W,ψ) of the Hermitian form ψ , which is
also an algebraic group defined over E0. The operator J commutes with the G0-
action on W . A straightforward argument shows the following.

Proposition 1.6. The algebra EndE0[G0] ResE/E0 W is equal to E[J ]. Moreover,
the representation W of G0 cannot be defined over E0 ⇐⇒ E[J ] is a division
algebra ⇐⇒ λ is not of the form NmE/E0(c) for some c ∈ E. Thus, the repre-
sentation W of G0 can be defined over E0 ⇐⇒ E[J ] is isomorphic to a matrix
algebra over E0 ⇐⇒ λ = NmE/E0(c) for some c ∈ E.

Proof. As an E[G0]-module, ResE/E0 W ⊗E0 E = W ⊕ W , where W is the con-
jugate vector space. The form ψ defines an isomorphism from W to W

∨
and b

defines an isomorphism from W to W∨, hence ψ and b together define an iso-
morphism from W to W as E[G]-modules. Thus, EndE[G0](ResE/E0 W ⊗E0 E) ∼=
M2(E). It follows that dimE0 EndE0[G0] ResE/E0 W = 4, hence is equal to E[J ]
(note that J /∈ E since J is conjugate linear). Also, EndE0[G0] ResE/E0 W is a ma-
trix algebra if ResE/E0 W is reducible, and it is a division algebra if ResE/E0 W

is irreducible. An argument as in (3.22) of [FL11] shows that E[J ] is a division
algebra ⇐⇒ λ is not a norm: every element of E[J ] can be uniquely written as
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α + β · J , α,β ∈ E. Using

(α + β · J )(ᾱ − β · J ) = αᾱ − λββ̄,

we see that a nonzero α + β · J is always invertible ⇐⇒ λ is not a norm. Thus
E[J ] is a division algebra ⇐⇒ λ is not a norm, and hence it is isomorphic to a
matrix algebra over E0 ⇐⇒ λ is a norm. �

Remark 1.7. The proof of Proposition 1.6 does not require us to know that
W ∼= W as E[G]-modules. In fact, if this were not the case, then we would have
EndE[G0](ResE/E0 W ⊗E0 E) ∼= E ⊕ E, which is commutative of dimension 2;
however, in our situation dimE0(EndE0[G0] ResE/E0 W) ≥ 4.

In Section 3, we will need to know the Lie algebra g0 of G0 (as an E0-vector
space). As is well known, the Lie algebra so(W,b) is identified with

∧2
W by

identifying v ∧ w with the linear map x �→ b(v, x)w − b(w,x)v. In particular, a
basis for so(W,b) is given by Xrs , the linear map of W corresponding to er ∧ es ,
r < s. Hence a basis is given by Xij and Xn+i,n+j for 1 ≤ i < j ≤ n as well as
Xi,n+j for i, j ≤ n. The condition that a T ∈ M2n(E0) preserves the Hermitian
form ψ is just the condition that ψ(T z,w) = −ψ(z,T w) = −ψ(T w,z) for all
z,w ∈ W . In terms of the basis e1, . . . , e2n, in which ψ is diagonalized, these
conditions read as follows: T preserves ψ ⇐⇒ ψ(T er , es) = −ψ(T es, er ) for
all 1 ≤ r, s ≤ 2n. Then a tedious calculation gives the following lemma.

Lemma 1.8. Suppose that b and ψ are compatible, and let α ∈ E0 be such that
ᾱ = −α. Then an E0-basis for g0 is given by

an+iXij + ajXn+i,n+j , 1 ≤ i < j ≤ n;
α(an+iXij − ajXn+i,n+j ), 1 ≤ i < j ≤ n;
an+iXi,n+j − an+jXj,n+i , 1 ≤ i < j ≤ n;

α(an+iXi,n+j + an+jXj,n+i ), 1 ≤ i < j ≤ n;
αXi,n+i , 1 ≤ i ≤ n.

2. Construction of the Groups

We keep the convention that E0 is a totally real number field, resp. E0 = R, and
E is an imaginary quadratic extension of E0, resp. E = C.

Definition 2.1. Let e1, . . . , e2n be the standard E-basis of W = E2n, and let
z = ∑

i ziei , w = ∑
i wiei . For δ ∈ E0 and an integer k, 1 ≤ k ≤ n, define the

Hermitian form ψδ,k by

ψδ,k(z,w) = δz1w̄1 + · · · + δzkw̄k + zk+1w̄k+1 + · · · + znw̄n

− zn+1w̄n+1 − · · · − zn+kw̄n+k

− δzn+k+1w̄n+k+1 − · · · − δz2nw̄2n.
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In other words, in the previous notation, ai = δ for 1 ≤ i ≤ k, ai = 1 for k +
1 ≤ i ≤ n, an+i = −1 for 1 ≤ i ≤ k, and an+i = −δ for k + 1 ≤ i ≤ n. Hence
aian+i = λ = −δ for all i, 1 ≤ i ≤ n, and so J 2 = −δ Id.

With the above definitions, e1, . . . , e2n is a good basis with λ = −δ, and W1 =
span{e1, . . . , en} is a good isotropic subspace of W = E2n. We can restrict ψδ,k to
the span W1 of e1, . . . , en, and in this case detψδ,k|W1 = δk . On the other hand,
there are some permutations of the good basis e1, . . . , en, en+1, . . . , e2n for which
it remains a good basis. Recall that the conditions we need are: (i) b(ei, en+i ) = 1
and all other b(ei, ej ) = 0; (ii) ψδ,k is diagonalized in the basis e1, . . . , en,

en+1, . . . , e2n, say ψ(z,w) = ∑2n
i=1 aiziw̄i ; and finally (iii) aian+i is indepen-

dent of i. Given integers a, r with 0 ≤ a ≤ k and 0 ≤ r ≤ n − k, choose the new
good basis e′

1, . . . , e
′
n, e

′
n+1, . . . , e

′
2n as follows:

(1) For i ≤ a, set e′
i = ei and e′

n+i = en+i ; here ψ(e′
i , e

′
i ) = δ and ψ(e′

n+i , e
′
n+i ) =

−1.
(2) For a + 1 ≤ i ≤ k, set e′

i = en+i and e′
n+i = ei ; here ψ(e′

i , e
′
i ) = −1 and

ψ(e′
n+i , e

′
n+i ) = δ.

(3) For k + 1 ≤ i ≤ k + r , set e′
i = ei and e′

n+i = en+i ; here ψ(e′
i , e

′
i ) = 1 and

ψ(e′
n+i , e

′
n+i ) = −δ.

(4) For k + r + 1 ≤ i ≤ n, set e′
i = en+i and e′

n+i = ei ; here ψ(e′
i , e

′
i ) = −δ and

ψ(e′
n+i , e

′
n+i ) = 1.

In other words, given 0 ≤ a ≤ k and 0 ≤ r ≤ n − k, after permuting the good
basis {ei} by interchanging n − a − r of the ei with en+i , we arrive at another
good basis where, for i ≤ n, a of the coefficients of the ziw̄i are δ, k − a of the
coefficients are −1, r of the coefficients are 1, and n − k − r of the coefficients
are −δ. Then, defining W ′

1 = span{e′
1, . . . , e

′
n}, W ′

1 is a good isotropic subspace
of W with λ = −δ as before. Hence we have the following.

Lemma 2.2. Given 0 ≤ a ≤ k and 0 ≤ r ≤ n−k, with t = k−a and s = n−k− r ,
there exists a good isotropic subspace W ′

1 of W = E2n with λ = −δ such that
the determinant det(ψδ,k|W ′

1) = δa(−1)t (−δ)s = (−1)t+sδa+s = (−1)kλa+s . In
particular, if a + s = 2N is even, then t + s ≡ k (mod 2), hence det(ψδ,k|W ′

1) =
(−1)kδ2N .

Definition 2.3. Let Gδ,k be the group of E-linear isomorphisms from W to W

which have determinant 1 and preserve the forms b and ψδ,k . Note that Gδ,k , as a
special case of the groups G(W,b,ψ) defined in the last section, is an algebraic
group defined over E0.

We now classify the Hermitian forms ψδ,k and the groups Gδ,k in case E0 = R.
Let ψ0 = ψ1,k (for any k) be the standard Hermitian form of signature (n,n):

ψ0(z,w) =
n∑

i=1

ziw̄i −
n∑

i=1

zn+i w̄n+i .
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Let ψ−1,k be the Hermitian form of signature (2n − 2k,2k) given by

ψ−1,k(z,w) = −z1w̄1 − · · · − zkw̄k + zk+1w̄k+1 + · · · + znw̄n

− zn+1w̄n+1 − · · · − zn+kw̄n+k

+ zn+k+1w̄n+k+1 + · · · + z2nw̄2n.

Hence, for ψ0, δ = 1 and λ = −1, whereas for ψ−1,k , δ = −1 and λ = 1.

Lemma 2.4. Suppose that E0 = R. Define the basis e′
i of W by e′

i = |δ|−1/4ei

if 1 ≤ i ≤ k or n + k + 1 ≤ i ≤ 2n, and by e′
i = |δ|1/4ei if k ≤ i ≤ n + k. Then

b(e′
i , e

′
j ) = 0 if i ≤ n and j �= n + i, and b(e′

i , e
′
n+i ) = 1. Moreover:

(i) If E0 = R and δ > 0, then ψδ,k(e
′
i , e

′
j ) = δ1/2ψ0(ei, ej ). Hence there is a

transformation of W preserving b which takes ψδ,k to the standard Hermitian
form δ1/2ψ0.

(ii) If E0 = R and δ < 0, then ψδ,k(e
′
i , e

′
j ) = |δ|1/2ψ−1,k(ei , ej ). Hence there is a

transformation of W preserving b which takes ψδ,k to the standard Hermitian
form |δ|1/2ψ−1,k .

Corollary 2.5. If E0 = R and δ > 0, then Gδ,k
∼= SO∗(2n). Moreover,

ResC/R W is an irreducible R[G]-module, and its endomorphism algebra is H.

Proof. By (i) of the lemma, we may replace ψδ,k with the standard form ψ0. The
last statement then follows from Proposition 1.6. �

Corollary 2.6. If E0 = R and δ > 0, or if E0 is a totally real number field
such that there exists an embedding of E0 in R for which δ > 0, then the standard
representation W of Gδ,k , which is defined over the imaginary quadratic extension
E of E0, cannot be defined over E0.

To handle the case E0 = R and δ < 0, we may assume that δ = −1. In this case,
J 2 = Id, and hence ResC/R W is a direct sum of the +1 and −1 eigenspaces
W(+1) and W(−1) of J . It is easy to see that multiplication by

√−1 exchanges
W(+1) and W(−1), so that it is enough to consider just one of them, say W(+1).

Lemma 2.7. For E0 = R and δ < 0, G = Gδ,k
∼= G−1,k

∼= SO(2n − 2k,2k), and
the isomorphic real representations W(±1) are both isomorphic to the standard
real representation of SO(2n − 2k,2k).

Proof. Clearly, g ∈ G−1,k preserves any two of b, ψ−1,k , J ⇐⇒ it preserves
all three, and a complex linear g commuting with J defines a real linear trans-
formation of W(+1); conversely any real linear transformation of W(+1) pre-
serving the restriction of b extends uniquely to a complex linear transformation
of W preserving b, J and hence ψ−1,k . So it will suffice to find a real basis of
W(+1) which diagonalizes b|W(+1) and count the number of positive and neg-
ative eigenvalues.

Note that J : W → W is conjugate linear and satisfies J (ei) = −en+i for 1 ≤
i ≤ k, J (ei) = en+i , k + 1 ≤ i ≤ n, J (en+i ) = −ei , 1 ≤ i ≤ k, and J (en+i ) = ei



Hermitian Variations of Calabi–Yau Type with Real Multiplication 91

for k + 1 ≤ i ≤ n. Then a real basis for the 2n-dimensional real vector space
W(+1) is given by ei + en+i , k + 1 ≤ i ≤ n,

√−1(ei − en+i ), k + 1 ≤ i ≤ n,√−1(ei + en+i ), 1 ≤ i ≤ k, and ei − en+i , 1 ≤ i ≤ k. It is easy to check that this
is a diagonal basis. Moreover, for k + 1 ≤ i ≤ n,

b(ei + en+i , ei + en+i ) = b
(√−1(ei − en+i ),

√−1(ei − en+i )
) = 2,

whereas for 1 ≤ i ≤ k we have

b
(√−1(ei + en+i ),

√−1(ei + en+i )
) = b(ei − en+i , ei − en+i ) = −2.

Hence the signature of b|W(+1) is (2n − 2k,2k) as claimed. �

Corollary 2.8. Let E0 be a totally real number field with σ1, . . . , σd , the dis-
tinct embeddings of E0 in R, and let δ ∈ E0 be such that σ1(δ) > 0 and σi(δ) < 0
for i > 1 (note that such δ exist by the approximation theorem). For n = 6 and
k = 1, define the group Gδ,1 as above and let Gδ,1;i,R be the real group de-
fined by extension of scalars via the embedding σi . Then Gδ,1;1,R

∼= SO∗(12) and
Gδ,1;i,R ∼= SO(2,10) for i > 1.

3. Rationality of the Half Spin Representation

In the preceding section, we have constructed a group Gδ,1 defined over the to-
tally real number field E0 such that, for a suitable δ, the real group induced by
the embedding σ1 is isomorphic to SO∗(12) and the real groups induced by the
embedding σi , i > 1, are isomorphic to SO(2,10). Viewing Gδ,1 as a subgroup
of SO(W,b), the orthogonal group associated to b, let G1 be the inverse image
of Gδ,1 in the spin double cover Spin(W,b) of SO(W,b). Hence G1 acts on the
half spin representations S± of Spin(W,b) associated to the E-vector space W ,
where W is the standard representation of SO(W,b) and of Gδ,1. The represen-
tations S± of G1 are a priori only defined over E, and we want to find necessary
and sufficient conditions for them to be defined over E0. As in Proposition 1.6,
this amounts to deciding when the endomorphism algebra of the E0[G1]-module
ResE/E0 S± is a matrix algebra M2(E0) and when it is a division algebra.

We begin by reviewing the salient properties of the Clifford algebra C =
C(W,b) of b and the half spin representations, using Fulton–Harris [FH91] as
a reference (but our notation differs slightly from theirs) or Bourbaki [Bou59]. In
particular, for a fixed good basis e1, . . . , e2n of W , C(W,b) is the Z/2Z-graded
quotient of the tensor algebra T ∗W by the relations eiej = −ej ei , j �= n ± i, and
eien+i + en+iei = 2. (Here and in the rest of this paper, the tensor and exterior
algebras of W or W1 will always be as E-vector spaces.)

Let W1 be the good isotropic E-vector subspace of W spanned by e1, . . . , en,
and let W2 be the b-isotropic E-vector subspace of W spanned by en+1, . . . , e2n.
There is an algebra isomorphism C(W,b) ∼= End(

∧•
W1) and a corresponding

isomorphism Ceven(W,b) ∼= End(
∧even

W1) ⊕ End(
∧odd

W1). Given ei ∈ W1, ei

acts on
∧•

W1 via (ei), wedge product with ei , and en+i ∈ W2 acts via 2ι(en+i ),
the interior product with en+i viewed as an element of W∨

1 . However, to avoid
the annoying factors of 2 in what follows, we will scale b by 1/2. This does
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not change any of the calculations in an essential way but replaces the defining
relation eien+i + en+iei = 2 with eien+i + en+iei = 1, and hence en+i ∈ W2 now
acts via ι(en+i ), that is, without the factor of 2. The half spin representation spaces
of Spin(W,b) are then given by

S+ =
even∧

W1; S− =
odd∧

W1.

Here the action of the Lie algebra so(W,b) on S± is given in [FH91, p. 305]
and will be recalled later. In terms of the Bourbaki labeling of the simple roots
[Bou02], S+ has highest weight �n and S− has highest weight �n−1 in case
n = 2m is even (the only case which will concern us), whereas S+ has highest
weight �n−1 and S− has highest weight �n in case n is odd. Moreover, for n

even, there are nondegenerate Spin(W,b)-invariant forms on S± (which are either
symmetric or symplectic depending on the parity of m), and hence (S+)∨ ∼= S+,
(S−)∨ ∼= S− as E[Spin(W,b)]-modules.

The direct sum decomposition W = W1 ⊕W2 induces a Z-grading on C(W,b)

and on Ceven(W,b), where the elements in W1 have degree 1 and those in W2

have degree −1, since the only interesting relation is eien+i + en+iei = 1 which
has degree zero (the relations eiej = −ej ei , j �= i ± n, do not cause a problem).
We write

C(W,b) =
⊕
d∈Z

Cd(W,b) and Ceven(W,b) =
⊕
d∈Z

Ceven
2d (W,b).

The gradings on C(W,b) and on Ceven(W,b) correspond to the natural gradings:

End

( •∧
W1

)
∼=

⊕
d∈Z

Endd

( •∧
W1

)
,

End

(even∧
W1

)
∼=

⊕
d∈Z

End2d

(even∧
W1

)
,

End

(odd∧
W1

)
∼=

⊕
d∈Z

End2d

(odd∧
W1

)
,

where A ∈ Endd(
∧•

W1) ⇐⇒ A(
∧k

W1) ⊆ ∧k+d
W1, and similarly for the

summands End(
∧even

W1), End(
∧odd

W1).
We now describe how the half spin representations depend on the choice of the

isotropic subspace W1. In what follows, we use freely the notation of [Bou02]. Fix
once and for all a good basis e = e1, . . . , e2n, and hence isotropic subspaces W1 =
span{e1, . . . , en} and W2 = span{en+1, . . . , e2n}. Then there is a natural choice of
maximal torus T corresponding to diagonal matrices in the basis e, hence weights
εi for 1 ≤ i ≤ n. Note that, in an obvious sense, εn+i = −εi since if g ∈ T and
g(ei) = cei , then g(en+i ) = c−1en+i . The half spin representations S± depend
on the choice of the isotropic subspace W1 and hence on the good basis e =
e1, . . . , e2n. To emphasize this dependence, we shall write S±(e) where necessary.
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Now suppose, as in Lemma 2.2, that we are given another good basis e′ =
e′

1, . . . , e
′
2n, which is obtained from e by switching k of the basis vectors ei , i ≤ n,

with the corresponding basis vectors en+i . In other words, there exists a sub-
set I ⊆ {1, . . . , n} with #(I ) = k such that, for i ∈ I , e′

i = en+i and e′
n+i = ei ,

whereas for i /∈ I , e′
i = ei and e′

n+i = en+i . We obtain isotropic subspaces W ′
1 =

span{e′
1, . . . , e

′
n} and W ′

2 = span{e′
n+1, . . . , e

′
2n} as before. Let S±(e′) be the half

spin representations constructed using the isotropic subspaces W ′
1, W ′

2. Then we
have the following.

Lemma 3.1. In the notation above, if k is even, then, as Spin(2n)-modules,
S+(e′) ∼= S+(e) and S−(e′) ∼= S−(e). If k is odd, then S+(e′) ∼= S−(e) and
S−(e′) ∼= S+(e).

Proof. Let X (S±(e)) denote the set of weights for S±, and similarly for
X (S±(e′)). Clearly X (S±(e′)) = φ(X (S±(e))), where φ is the isometry of
the weight lattice given by switching εi to −εi for i ∈ I with a total of k sign
changes. Hence, if W is the Weyl group of Dn, then φ ∈ W ⇐⇒ k is even.
Moreover, if φ /∈ W , then the automorphism of the Dynkin diagram correspond-
ing to φ exchanges αn−1 and αn, hence �n−1 and �n. It follows that if k is even
then X (S±(e′)) = X (S±(e)) and hence S±(e′) ∼= S±(e), whereas if k is odd
then X (S±(e′)) = X (S∓(e)) and hence S±(e′) ∼= S∓(e). �

We return to the general situation of a compatible E-bilinear form b and an
(E,E0)-Hermitian form ψ with notation as in Section 1, Definition 1.5.

Lemma 3.2. Let G1 be the neutral component of the preimage in Spin(W,b) of
the group G(W,b,ψ) which stabilizes both b and ψ in the group of units of
Ceven(W,b). Then G1 is an algebraic group defined over E0.

Proof. Let g ∈ Spin(W,b). Then gWg−1 = W , and if we define ρ(g) = gwg−1,
then ρ is the double cover homomorphism from Spin(W,b) to SO(W,b). There
is thus an induced homomorphism, also denoted by ρ, from ResE/E0 Spin(W,b)

to ResE/E0 SO(W,b). The argument that G1 is defined over E0 is then similar
to the discussion in Section 1 for the group G(W,b,ψ): By definition, G1 is
the inverse image ρ−1(SU(W,ψ)) in ResE/E0 Spin(W,b) of SU(W,ψ), which is
defined over E0. Hence G1 is defined over E0. �

With this said, we can now state the main theorem of this section as follows.

Theorem 3.3. Suppose that n = 2m is even. Let b and ψ be compatible, let W1
be a good isotropic subspace of W , and let λ = aian+i be as in Lemma 1.4 and
D = det(ψ |W1) = a1 · · ·an be as in Definition 1.5. Then:

(i) There exists a conjugate linear operator L+ ∈ EndE0[G1] ResE/E0 S+ such
that (L+)2 = (−1)mD Id if m is even and (L+)2 = (−1)mDλ Id if m is odd.

(ii) There exists a conjugate linear operator L− ∈ EndE0[G1] ResE/E0 S− such
that (L−)2 = (−1)mDλ Id if m is even and (L−)2 = (−1)mD Id if m is odd.
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Using the theorem, we can completely describe when the representations S± are
defined over E0 as follows.

Corollary 3.4. With notation and hypotheses as above,

(i) both of the representations S+ and S− can be defined over E0 ⇐⇒
(−1)mD and (−1)mDλ are norms, that is, lie in NmE/E0(E

∗) ⊆ E∗
0 .

(ii) the representation S+ can be defined over E0 and S− cannot be defined over
E0 ⇐⇒ either m is even, (−1)mD is a norm and (−1)mDλ is not a norm,
or m is odd, (−1)mD is not a norm and (−1)mDλ is a norm.

(iii) the representation S− can be defined over E0 and S+ cannot be defined over
E0 ⇐⇒ either m is odd, (−1)mD is a norm and (−1)mDλ is not a norm,
or m is even, (−1)mD is not a norm and (−1)mDλ is a norm.

(iv) neither of the representations S+ and S− can be defined over E0 ⇐⇒ nei-
ther (−1)mD nor (−1)mDλ are norms.

Proof. The argument of Proposition 1.6 shows that EndE0[G1] ResE/E0 S+ =
E[L+] and that EndE0[G1] ResE/E0 S− = E[L−]; and, moreover, that S± can be
defined over E0 ⇐⇒ (L±)2 = c± Id, where c± ∈ E0 is a norm. The various cases
of the corollary then follow from the cases in Theorem 3.3. �
For the next two corollaries, we shall apply Theorem 3.3 to the forms ψδ,k of
the preceding section. In this case, there is a fixed good basis e = e1, . . . , e2n, for
which the form ψδ,k is given by Definition 2.1. The half spin representations S±
will always mean the representations S±(e) with respect to this basis. Then we
have the following, which includes the final piece of Theorem 2, the rationality
statement for the representation S+.

Corollary 3.5. Suppose that G1 = G̃δ,k is the spin double cover of the group
Gδ,k corresponding to the form ψ = ψδ,k and that n = 2m with m ≡ k (mod 2).
Then the E[G1]-module S+ is the extension to E of an E0[G1]-module.

In particular, if k = 1 and n = 2m = 6, then the representation S+ of G1 =
G̃δ,1 is defined over E0.

Proof. For the form ψδ,k , by a choice of a good basis e′ and an isotropic subspace
W ′

1 as in Lemma 2.2, we can assume that D = (−1)kδ2N . Since m ≡ k (mod 2),

(−1)mD = (−1)m(−1)kδ2N = δ2N

is a square and hence a norm. Thus, for m even, S+(e′) can be defined over E0,
and for m odd, S−(e′) can be defined over E0. In the notation of the discus-
sion prior to Lemma 2.2, the total number of basis vectors switched is t + s,
and, moreover, t + s ≡ k ≡ m (mod 2). Hence, by Lemma 3.1, if m is even then
S+(e′) ∼= S+(e) and if m is odd then S−(e′) ∼= S+(e). In all cases S+(e) = S+ is
defined over E0. �
In case E0 = R, we have the following, which is a special case of the criterion
of [GGK12, Theorem IV.E.4] (see also [FH91, (26.27)] for the cases k = 0, n in
(ii)).
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Corollary 3.6. Let E0 = R and let n = 2m.

(i) For the spin double cover of SO∗(4m), S+ can be defined over R and S−
cannot be defined over R.

(ii) For the spin double cover of SO(2n − 2k,2k), if k ≡ m (mod 2), then both
S+ and S− as well as the standard representation are defined over R, while
if k �≡ m (mod 2), then neither S+ nor S− is defined over R.

Proof. Both cases are reduced to Corollary 3.4: (i) In this case, ψ = ψ0 and λ =
−1. Beginning with the good basis e = e1, . . . , e2n, by Lemma 2.2, if e′ is the good
basis obtained by switching m of the ei to en+i , then D = (−1)m in the new basis.
If m is even, by Lemma 3.1, S±(e′) = S±(e), but for m odd, S±(e′) = S∓(e).
By Corollary 3.4, as λ = −1 and (−1)mD = 1, if m is even then S+(e′) can be
defined over R and S−(e′) cannot be defined over R, whereas if m is odd then
S−(e′) can be defined over R and S+(e′) cannot be defined over R. Thus, in all
cases, S+(e) can be defined over R and S−(e) cannot be defined over R.

(ii) In this case, ψ = ψ−1,k , λ = 1, and D = (−1)k , hence (−1)mD =
(−1)k+m. Thus, if k ≡ m (mod 2), then both (−1)mD and (−1)mDλ are equal
to 1, hence lie in NmC/RC∗, and so both S+ and S− are defined over R. If k �≡ m

(mod 2), then both (−1)mD and (−1)mDλ are equal to −1, and so neither S+
nor S− is defined over R. �

In particular, even if the standard representation W can be defined over E0 (for
which Proposition 1.6 gives the necessary and sufficient condition that λ is a
norm), it is not always the case that the half spin representations can be defined
over E0.

Remark 3.7. The condition that (−1)mD is a norm, where D = det(ψ |W1), is not
intrinsically defined: it depends on the choice of a good isotropic subspace. For
example, switching e1 and en+1 as in the discussion before Lemma 2.2 replaces
D with DλmodE2

0 , and it is certainly possible that one of (−1)mD, (−1)mDλ

is a norm but the other is not. Thus the condition that S+ can be defined over E0

would appear to depend on the choice of W1. However, the operation of switching
e1 and en+1 also switches S+ and S− by Lemma 3.1, so the final result is in fact
consistent.

Proof of Theorem 3.3. We shall use the Hodge �-operator associated to ψ |W1

and the volume form e1 ∧ · · · ∧ en as defined in [FL11, §3.5], and its natu-
ral generalization to forms of arbitrary degree. In case n = 2m is even, � maps∧even

W1 to
∧even

W1 and
∧odd

W1 to
∧odd

W1. The operator � is conjugate lin-
ear and hence E0-linear, and, by an argument along the lines of Lemma 3.21
of [FL11], �� = (−1)k(n−k)D Id and hence is equal to D Id on forms of even
degree and −D Id on forms of odd degree. Note, however, that there is no rea-
son to expect that � will commute with the G1-action induced by the inclusion
G1 ⊆ Spin(W,b). Next we use the following.
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Lemma 3.8. As operators from
∧k

W1 to
∧k∓1

W1,

�(ei)� = (−1)n(k+1)Daiι(en+i );
�ι(en+i )� = (−1)nk+1Dλ−1an+i(ei).

Proof. For I = {i1, . . . , ik}, a subset of {1, . . . , n} with i1 < · · · < ik , and using
the shorthand eI for ei1 ∧ · · · ∧ eik and aI = ai1 · · ·aik , we have �eI = εI,I ′aI eI ′
as in [FL11, §3.5], where I ′ = {1,2, . . . , n} − I is the complementary index set
and εI,I ′ = ±1 is a sign factor only depending on k. Hence

�(ei ∧ �eI ) =
{

0 if i /∈ I ;
�(εI,I ′aI ei ∧ eI ′) = ±DaieI−{i} if i ∈ I.

With some care as to the sign, one checks that

�(ei)� = (−1)n(k+1)Daiι(en+i ).

This proves the first equality in the lemma. To prove the second equality, use

�ι(en+i )� = (−1)n(k+1)D−1a−1
i � �(ei)� �

and the fact that a−1
i = λ−1an+i . �

Corollary 3.9. With notation as above, as operators on
∧k

W1,

�(ei) = (−1)kaiι(en+i )�;
�ι(en+i ) = (−1)k+n+1λ−1an+i(ei)�.

Definition 3.10. Define L+ : ResE/E0 S+ → ResE/E0 S+ and L− :
ResE/E0 S− → ResE/E0 S− as follows: in all cases, L±|∧k

W1 = (−1)dλ−d�,
where d = [ k−m

2 ]. Explicitly, for m even, L+ : ∧m+2d
W1 → ∧m−2d

W1 is given

by (−1)dλ−d� and L− : ∧m+2d+1
W1 → ∧m−2d−1

W1 by (−1)dλ−d�. For m

odd, L+|∧m+2d+1
W1 = (−1)dλ−d� and L−|∧m+2d

W1 = (−1)dλ−d�.

We can now complete the proof of Theorem 3.3. Clearly, the operators L± are
conjugate linear. It is easy to check that if m is even then L2+ = D Id = (−1)mD Id
and L2− = Dλ Id = (−1)mDλ Id, whereas if m is odd then L2+ = −Dλ Id =
(−1)mDλ Id and L2− = −D Id = (−1)mD Id. Finally, we must show that the L±
commute with the action of G1. Since G1 is connected, it suffices to show that the
L± commute with the action of g1 = g0, for which we have written down a basis
in Lemma 1.8. By [FH91], for r < s, the element Xrs ∈ so(W,b) corresponding
to the element er ∧es ∈ ∧2

W1 then corresponds to the element eres −b(er , es) of
C(W,b), and hence is equal to eres except for the case r = i, s = n + i, in which
case it corresponds to the element eien+i − 1

2 (with our scaling conventions on b in
this section). Thus for example if 1 ≤ i < j ≤ n, then Xij corresponds to eiej , and
hence via the isomorphism Ceven(W,b) ∼= End(

∧even
W1)⊕End(

∧odd
W1) to the

operator (ei)(ej ), and similarly Xn+i,n+j corresponds to ι(en+i )ι(en+j ). Now
a brute force computation completes the proof. For example, for 1 ≤ i < j ≤ n, to
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see that L± commutes with T = an+i(ei)(ej ) + aj ι(en+i )ι(en+j ), we let both
sides act on

∧k
W1. With d = [ k−m

2 ], we must compare the two expressions

T L± = (−1)dλ−dan+i(ei)(ej )� + (−1)dλ−daj ι(en+i )ι(en+j )�;
L±T = (−1)d+1λ−d−1an+i � (ei)(ej ) + (−1)d−1λ−d+1aj � ι(en+i )ι(en+j ).

Using Corollary 3.9, it follows that

(−1)d−1λ−d+1aj � ι(en+i )ι(en+j )

= (−1)d−1+k−1λ−d+1ajλ
−1an+i(ei) � ι(en+j )

= (−1)d−1+k−1+kλ−dajan+ian+j (ei)(ej )�

= (−1)dλ−dan+i(ei)(ej )�.

The other terms are similar. This concludes the proof of Theorem 3.3. �

Remark 3.11. We sketch another proof for the somewhat mysterious fact that
the operators L± commute with the action of G1, the main point of the proof of
Theorem 3.3. Let 	 : W → W ′ be an E-linear isomorphism, and let b	 be the
induced bilinear form on W ′ defined in Section 1. Then there is an induced iso-
morphism of E-algebras 	∗ : C(W,b) → C(W ′, b	). For example, the form b

induces an isomorphism B∗ : C(W,b) → C(W∨, b∨). Given a conjugate linear
isomorphism � : W → W ′, there is the induced E-bilinear form b̄� defined in
Section 1. Using � to define (naturally) a conjugate linear isomorphism from the
tensor algebra of W to the tensor algebra of W ′, it is easy to see that � carries
the defining relation v ⊗ v − b(v, v) · 1 to �(v) ⊗ �(v) − b(v, v) · 1, which is
just the defining relation �(v) ⊗ �(v) − b̄�(�(v),�(v)) · 1. Hence � induces a
conjugate linear isomorphism, denoted by �∗, from C(W,b) to C(W ′, b̄�). Note
that �∗ as well as 	∗ preserve the decomposition into even and odd degrees. Fi-
nally, if t ∈ E∗, define ht : T ∗W → T ∗W by: ht is multiplication by t [k/2] on the
graded homogeneous piece T kW . Then ht : T evenW → T evenW is an algebra iso-
morphism which descends to an algebra isomorphism (also denoted by ht ) from
Ceven(W,b) to Ceven(W, t−1b). Moreover, the action of ht descends to an opera-
tor ht from Codd(W,b) to Codd(W, t−1b), which is compatible with its structure
as a module over Ceven(W,b).

In particular, if b and ψ are compatible forms as defined in Definition 1.5,
we have the E-linear algebra isomorphism B∗ : C(W,b) → C(W∨, b∨) and the
conjugate linear algebra isomorphism �∗ : C(W,b) → C(W∨, λ−1b∨). Combin-
ing, we have a conjugate linear isomorphism J ∗ = (B∗)−1 ◦ �∗ : C(W,b) →
C(W,λ−1b) with (J ∗)2 = λ Id. Composing J ∗ with the operator hλ−1 gives a
conjugate linear algebra isomorphism

L = hλ−1 ◦ J ∗ = hλ−1 ◦ (B∗)−1 ◦ �∗ : Ceven(W,b) → Ceven(W,b).

Note that L sends Ceven
2d (W,b) to Ceven

−2d (W,b), and a calculation gives L2 = Id, so
that L is a conjugate linear involution of Ceven(W,b). A straightforward argument
shows that L(g) = g for all g ∈ G1, hence L(gξ) = gL(ξ). Similarly, there is a
conjugate linear map M : Codd(W,b) → Codd(W,b) of the form hλ−1 ◦ J ∗. It
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satisfies M2 = λ Id and, for all ξ ∈ Ceven(W,b) and η ∈ Codd(W,b), M(ξη) =
L(ξ)M(η). In particular, for g ∈ G1,

M(gη) = L(g)M(η) = gM(η).

Via the algebra isomorphism

Ceven(W,b) ∼= E = End

(even∧
W1

)
⊕ End

(odd∧
W1

)
,

view L as an involution on E . Then a computation using Lemma 3.8 shows that
L preserves the two factors in the direct sum and can be computed as follows. For
A ∈ End2d(

∧even
W1),

L(A) = (−1)dλ−dD−1 � A � ,

and for A ∈ End2d(
∧odd

W1),

L(A) = (−1)d+1λ−dD−1 � A � .

There are similar formulas for M.
There is no reason to expect L or M to induce operators on S± which com-

mute with G1. However, if α ∈ ∧m
W1, say, is nonzero, then Ceven(W,b) · α =

E · α is equal to S+ if m is even to and S− if m is odd since S± is a simple
Ceven(W,b)-module. Similarly, Codd(W,b) · α = S− if m is even and S+ if m is
odd. Hence, depending on the parity of m, S± ∼= E/I even

α , where I even
α is the left

ideal in E corresponding to the kernel of evaluation at the point α. In particular,
if L(I even

α ) = I even
α , there is an induced conjugate linear action of L on S± which

commutes with the G1-action and satisfies L2 = Id. Explicitly, the action of L is
given by L(A ·α) = L(A) ·α. Now suppose that α ∈ ∧m

W1 satisfies �α = tα for
some t ∈ E. It is easy to see that this happens ⇐⇒ (−1)mD = NmE/E0(c) for
some c ∈ E. Then it is straightforward to check that L(I even

α ) = I even
α and hence

that there is an induced action of L on S±. Explicitly, for η ∈ ∧m+2d
W1, and

using (−1)mD = t t̄ ,

L(η) = (−1)m+dλ−dD−1 t̄ (�η) = (−1)dλ−d(t−1�)(η).

Thus, up to the scalar t−1 ∈ E∗, the operator L is exactly L± depending on the
parity of m. Using S∓ = Codd(W,b) ·α, a similar argument shows that if �α = tα

for some t ∈ E, then the operator M preserves the Ceven(W,b)-submodule I odd
α

of Codd(W,b) given by

I odd
α = {A ∈ Codd(W,b) : A · α = 0}.

Then, as before, M defines a conjugate linear operator on S∓ which commutes
with the G1-action and which is L∓ up to multiplication by an element of E∗.
Thus we reprove the fact that L+ and L− commute with the action of G1 in a
slightly more conceptual fashion, under the assumption that (−1)mD is a norm.
Finally, if (−1)mD is not a norm, we can pass to quadratic extensions E′

0 and
E′ = EE′

0 of E0 and E, respectively, so that (−1)mD is a square in E′
0 and

hence lies in NmE′/E′
0
(E′)∗. There is then an operator induced by L or M on
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(ResE/E0 S±) ⊗ E′
0 = ResE′/E′

0
(S± ⊗E E′), and it is a multiple of L± ⊗ IdE′

0
by

a nonzero element of (E′)∗. Thus L± ⊗ IdE′
0

commutes with the action of G1, and
hence the same must be true for L±. This then gives another proof of Theorem 3.3
in general.
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