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Generalized Maximum Principles and the
Characterization of Linear Weingarten Hypersurfaces

in Space Forms

Cícero P. Aquino, Henrique F. de Lima, &
Marco Antonio L. Velásquez

1. Introduction and Statement of the Main Results

Many authors have approached the problem of characterizing hypersurfaces im-
mersed with constant mean curvature or with constant scalar curvature in a Rie-
mannian space form Qn+1

c of constant sectional curvature c. For instance, in the
seminal work [8], Cheng and Yau introduced a new self-adjoint differential op-
erator � acting on smooth functions defined on Riemannian manifolds. As a by-
product of such an approach, they were able to classify closed hypersurfaces Mn

with constant normalized scalar curvature R satisfying R ≥ c and nonnegative
sectional curvature immersed in Qn+1

c . Later on, Li [12] extended the results
of Cheng and Yau [8] in terms of the squared norm of the second fundamental
form of the hypersurface Mn. Shu [19] applied the generalized maximum prin-
ciple of Omori [16] and Yau [21] to prove that a complete hypersurface Mn in
the hyperbolic space Hn+1 with constant normalized scalar curvature and non-
negative sectional curvature must be either totally umbilical or isometric to a
hyperbolic cylinder H1(−√

1 + r2) × Sn−1(r) of Hn+1. Brasil Jr., Colares, and
Palmas [4] used the generalized maximum principle of Omori–Yau to character-
ize complete hypersurfaces with constant scalar curvature in Sn+1. By applying
a weak Omori–Yau maximum principle stated by Pigola, Rigoli, and Setti [17],
Alías and García-Martínez [2] studied the behavior of the scalar curvature R of a
complete hypersurface immersed with constant mean curvature into a real space
form Qn+1

c , deriving a sharp estimate for the infimum of R. More recently, Alías,
García-Martínez, and Rigoli [3] obtained another suitable weak maximum prin-
ciple for complete hypersurfaces with constant scalar curvature in Qn+1

c and gave
some applications in order to estimate the norm of the traceless part of its second
fundamental form. In particular, they extended the main theorem of [4] for the
context of Qn+1

c .
Li [13] studied the rigidity of compact hypersurfaces with nonnegative sec-

tional curvature immersed into a unit sphere with scalar curvature proportional to
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mean curvature. Next, Li et al. [14] extended the results of [8] and [13] by consid-
ering linear Weingarten hypersurfaces immersed in the unit sphere Sn+1, that is,
hypersurfaces of Sn+1 whose mean curvature H and normalized scalar curvature
R satisfy R = aH + b for some a, b ∈ R. In this setting, they showed that if Mn

is a compact linear Weingarten hypersurface with nonnegative sectional curvature
immersed in Sn+1 such that R = aH +b with (n−1)a2 +4n(b−1) ≥ 0, then Mn

is either totally umbilical or isometric to a Clifford torus Sk(
√

1 − r2) × Sn−k(r),
where 1 ≤ k ≤ n − 1.

Thereafter, Shu [20] obtained some rigidity theorems concerning linear Wein-
garten hypersurfaces with two distinct principal curvatures immersed in Qn+1

c .
More recently, the second author [9] used Hopf’s strong maximum principle in
order to obtain a suitable characterization of complete linear Weingarten hyper-
surfaces immersed in Hn+1. Under the assumption that the mean curvature attains
its maximum and supposing an appropriated restriction on the norm of the second
fundamental form, he proved that such a hypersurface must be either totally um-
bilical or isometric to a hyperbolic cylinder H1(−√

1 + r2) × Sn−1(r) of Hn+1.
Here, our purpose is to establish characterization theorems concerning com-

plete linear Weingarten hypersurfaces immersed in a Riemannian space form
Qn+1

c . First, assuming an appropriated restriction on the norm of the traceless
part � of the second fundamental form of Mn, we apply the generalized maxi-
mum principle of Omori–Yau jointly with Hopf’s strong maximum principle in
order to obtain the following result.

Theorem 1.1. Let Mn be a complete linear Weingarten hypersurface immersed
in a Riemannian space form Qn+1

c , n ≥ 3, such that R = aH + b with a ≤ 0 and
(n− 1)a2 + 4n(b − c) ≥ 0. Suppose that H is bounded on Mn and that R ≥ α for
some positive constant α when c = 0 or c = −1 and that R > n−2

n
when c = 1. If

sup
M

|�|2 ≤ n(n − 1)R2

(n − 2)(nR − (n − 2)c)
,

then

i. either |�| ≡ 0 and Mn is totally umbilical, or
ii. supM |�|2 = n(n − 1)R2/((n − 2)(nR − (n − 2)c)). In addition, if b > c and

|�|(p) = supM |�| at some point p ∈ Mn, then |�|2 ≡ n(n − 1)R2/((n −
2)(nR − (n − 2)c)), and Mn is isometric to a
(a) Clifford torus S1(

√
1 − r2) × Sn−1(r) when c = 1,

(b) circular cylinder R× Sn−1(r), when c = 0,
(c) hyperbolic cylinder H1(−√

1 + r2) × Sn−1(r) when c = −1,
where r = √

(n − 2)/(nR).

Afterwards, we use an extension of a generalized maximum principle at the in-
finity of Yau [22] stated by Caminha [6] to derive another characterization result.
More precisely, we get the following:
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Theorem 1.2. Let Mn be a complete linear Weingarten hypersurface immersed
in a Riemannian space form Qn+1

c , n ≥ 3, such that R = aH +b with (n−1)a2 +
4n(b − c) > 0. Suppose that H is bounded on Mn and that R > 0 when c = 0 or
c = −1 and that R > n−2

n
when c = 1. If ∇H has integrable norm on Mn and

sup
M

|�|2 ≤ n(n − 1)R2

(n − 2)(nR − (n − 2)c)
,

then

i. either |�| ≡ 0 and Mn is totally umbilical, or
ii. |�|2 ≡ n(n − 1)R2/((n − 2)(nR − (n − 2)c)), and Mn is isometric to a

(a) Clifford torus S1(
√

1 − r2) × Sn−1(r) when c = 1,
(b) circular cylinder R× Sn−1(r) when c = 0,
(c) hyperbolic cylinder H1(−√

1 + r2) × Sn−1(r) when c = −1,
where r = √

(n − 2)/(nR).

The proofs of Theorems 1.1 and 1.2 are given in Section 4.

2. Preliminaries

In this section we will introduce some basic facts and notation that will appear
along the paper. In what follows, we will suppose that all considered hypersur-
faces are orientable and connected.

Let Mn be an n-dimensional hypersurface in a real space form Qn+1
c . We

choose a local orthonormal frame {eA} in Qn+1
c , with dual coframe {ωA}, such

that, at each point of Mn, e1, . . . , en are tangent to Mn, and en+1 is normal to
Mn. We will use the following convention for the indices:

1 ≤ A,B,C, . . . ≤ n + 1, 1 ≤ i, j, k, . . . ≤ n.

In this setting, denoting by {ωAB} the connection forms of Qn+1
c , we have that

the structure equations of Qn+1
c are given by

dωA =
∑

i

ωAi ∧ ωi + ωAn+1 ∧ ωn+1, ωAB + ωBA = 0, (2.1)

dωAB =
∑
C

ωAC ∧ ωCB − 1

2

∑
C,D

KABCDωC ∧ ωD, (2.2)

KABCD = c(δACδBD − δADδBC). (2.3)

Next, we restrict all the tensors to Mn. First of all, ωn+1 = 0 on Mn, so∑
i ωn+1i ∧ ωi = dωn+1 = 0, and by Cartan’s lemma [7] we can write

ωn+1i =
∑
j

hijωj , hij = hji . (2.4)

This gives the second fundamental form of Mn, B = ∑
ij hijωiωj en+1. Fur-

thermore, the mean curvature H of Mn is defined by H = 1
n

∑
i hii .
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The structure equations of Mn are given by

dωi =
∑
j

ωij ∧ ωj , ωij + ωji = 0, (2.5)

dωij =
∑

k

ωik ∧ ωkj − 1

2

∑
k,l

Rijklωk ∧ ωl. (2.6)

Using the structure equations, we obtain the Gauss equation

Rijkl = c(δikδjl − δilδjk) + (hikhjl − hilhjk), (2.7)

where Rijkl are the components of the curvature tensor of Mn.
The Ricci curvature and the normalized scalar curvature of Mn are given, re-

spectively, by

Rij = (n − 1)cδij + nHhij −
∑

k

hikhkj (2.8)

and

R = 1

n(n − 1)

∑
i

Rii . (2.9)

From (2.8) and (2.9) we obtain

|B|2 = n2H 2 − n(n − 1)(R − c), (2.10)

where |B|2 = ∑
i,j h2

ij is the square of the length of the second fundamental form
B of Mn.

Set �ij = hij − Hδij . We will also consider the following symmetric tensor:

� =
∑
i,j

�ijωiωj .

Let |�|2 = ∑
i,j�

2
ij be the square of the length of �. It is easy to check that � is

traceless, and from (2.10) we get

|�|2 = |B|2 − nH 2 = n(n − 1)H 2 − n(n − 1)(R − c). (2.11)

The components hijk of the covariant derivative ∇B satisfy∑
k

hijkωk = dhij +
∑

k

hikωkj +
∑

k

hjkωki . (2.12)

The Codazzi equation and the Ricci identity are, respectively, given by

hijk = hikj (2.13)

and
hijkl − hijlk =

∑
m

hmjRmikl +
∑
m

himRmjkl, (2.14)

where hijk and hijkl denote the first and second covariant derivatives of hij .
The Laplacian �hij of hij is defined by �hij = ∑

k hijkk . From equations
(2.13) and (2.14) we obtain that

�hij =
∑

k

hkkij +
∑
k,l

hklRlijk +
∑
k,l

hliRlkjk. (2.15)
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Since �|B|2 = 2(
∑

i,j hij�hij + ∑
i,j,k h2

ijk), from (2.15) we get

1

2
�|B|2 = |∇B|2 +

∑
i,i,k

hij hkkij +
∑

i,j,k,l

hij hlkRlijk

+
∑

i,j,k,l

hij hilRlkjk. (2.16)

Consequently, taking a (local) orthonormal frame {e1, . . . , en} on Mn such that
hij = λiδij , from equation (2.16) we obtain the following Simons-type formula:

1

2
�|B|2 = |∇B|2 +

∑
i

λi(nH),ii + 1

2

∑
i,j

Rijij (λi − λj )
2. (2.17)

Now, let φ = ∑
i,j φijωiωj be the symmetric tensor on Mn defined by

φij = nHδij − hij .

Following Cheng and Yau [8], we introduce the operator � associated to φ and
acting on any smooth function f by

�f =
∑
i,j

φij fij =
∑
i,j

(nHδij − hij )fij . (2.18)

Now, setting f = nH in (2.18) and taking a local frame field {e1, . . . , en} on
Mn such that hij = λiδij , from equation (2.10) we obtain:

�(nH) = nH�(nH) −
∑

i

λi(nH),ii

= 1

2
�(nH)2 −

∑
i

(nH)2
,i −

∑
i

λi(nH),ii

= n(n − 1)

2
�R + 1

2
�|B|2 − n2|∇H |2 −

∑
i

λi(nH),ii .

Consequently, taking into account equation (2.17), we get

�(nH) = n(n − 1)

2
�R + |∇B|2 − n2|∇H |2 + 1

2

∑
i,j

Rijij (λi − λj )
2. (2.19)

Remark 2.1. Concerning the previous computation of �(nH), we also would
like to suggest the readers to see Corollary 3.3 (case r = 1) in [5].

To close this section, we will quote three auxiliary lemmas. The first one is a
classic algebraic result of Okumura [15], completed with the equality case proved
by Alencar and do Carmo [1].

Lemma 2.2. Let μ1, . . . ,μn be real numbers such that
∑

iμi = 0 and
∑

iμ
2
i = β2

with β ≥ 0. Then,

− (n − 2)√
n(n − 1)

β3 ≤
∑

i

μ3
i ≤ (n − 2)√

n(n − 1)
β3, (2.20)
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and the equality holds if and only if at least n − 1 of the numbers μi are equal.

The second one is the well-known generalized maximum principle of Omori [16].

Lemma 2.3. Let Mn be an n-dimensional complete Riemannian manifold whose
sectional curvature is bounded from below, and f : Mn → R be a smooth func-
tion that is bounded from above on Mn. Then, there exists a sequence of points
{pk}k≥1 in Mn satisfying the following properties:

lim
k→∞f (pk) = supf, lim

k→∞|∇f (pk)| = 0, and lim sup
k→∞

(�f (pk)) ≤ 0.

Yau [22] established the following version of Stokes’ theorem on an n-dimen-
sional, complete noncompact Riemannian manifold Mn: if ω ∈ 
n−1(M) is an
(n − 1)-differential form on Mn, then there exists a sequence Bi of domains on
Mn such that Bi ⊂ Bi+1, Mn = ⋃

i≥1 Bi , and

lim
i→+∞

∫
Bi

dω = 0.

Suppose that Mn is oriented by the volume element dM . If ω = ιX dM is
the contraction of dM in the direction of a smooth vector field X on Mn, then
Caminha [6] obtained a suitable consequence of Yau’s result, stated in Lemma 2.4.
We denote by L1(M) and divM X the space of Lebesgue-integrable functions and
the divergence of a smooth vector field X on Mn, respectively.

Lemma 2.4 (Proposition 2.1 of [6]). Let X be a smooth vector field on the n-
dimensional complete oriented Riemannian manifold Mn such that divM X does
not change sign on Mn. If |X| ∈ L1(M), then divM X = 0.

Remark 2.5. As was observed by the referee, Lemma 2.4 is also a consequence
of the theorem of Karp [10].

3. Some Auxiliary Results

Along this section, we will establish some auxiliary results, which we will use to
prove Theorems 1.1 and 1.2. In the first one, we will reason as in the proof of
Lemma 2.1 of [14].

Proposition 3.1. Let Mn be a linear Weingarten hypersurface in a Riemannian
space form Qn+1

c such that R = aH + b for some a, b ∈ R. Suppose that

(n − 1)a2 + 4n(b − c) ≥ 0. (3.1)

Then

|∇B|2 ≥ n2|∇H |2. (3.2)

Moreover, if inequality (3.1) is strict and the equality holds in (3.2) on Mn, then
H is constant on Mn.
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Proof. Since we are supposing that R = aH + b, from equation (2.10) we get

2
∑
i,j

hij hijk = (2n2H − n(n − 1)a)H,k.

Thus,

4
∑

k

(∑
i,j

hij hijk

)2

= (2n2H − n(n − 1)a)2|∇H |2.

Consequently, using Cauchy–Schwarz inequality, we obtain that

4|B|2|∇B|2 = 4

(∑
i,j

h2
ij

)(∑
i,j,k

h2
ijk

)

≥ 4
∑

k

(∑
i,j

hij hijk

)2

= (2n2H − n(n − 1)a)2|∇H |2. (3.3)

On the other hand, since R = aH + b, from equation (2.10) we easily see that

(2n2H − n(n − 1)a)2 = n2(n − 1)((n − 1)a2 + 4n(b − c)) + 4n2|B|2.
Consequently, from (3.3) we have

|B|2|∇B|2 ≥ n2|B|2|∇H |2.
Therefore, we obtain that either |B| = 0 and |∇B|2 = n2|∇H |2 or |∇B|2 ≥
n2|∇H |2. Moreover, if (n − 1)a2 + 4n(b − c) > 0, from the previous identity
we get that (2n2H − n(n − 1)a)2 > 4n2|B|2. Now, let us assume in addition that
the equality holds in (3.2) on Mn. In this case, we wish to show that H is constant
on Mn. Suppose, by contradiction, that this does not occur. Consequently, there
exists a point p ∈ Mn such that |∇H(p)| > 0. So, one deduces from (3.3) that
4|B(p)|2|∇B(p)|2 > 4n2|B(p)|2|∇H(p)|2, and since |∇B(p)|2 = n2 ×
|∇H(p)|2 > 0, we arrive at a contradiction. Hence, in this case, we conclude
that H must be constant on Mn. �

In what follows, we will consider the Cheng–Yau modified operator

L = � − n − 1

2
a�. (3.4)

In our next result, we extend the generalized maximum principle of Omori to
the Cheng–Yau modified operator.

Proposition 3.2. Let Mn be a complete linear Weingarten hypersurface im-
mersed in a Riemannian space form Qn+1

c such that R = aH + b with a ≤ 0 and
(n − 1)a2 + 4n(b − c) ≥ 0. If H is bounded on Mn, then there exists a sequence
of points {pk}k≥1 in Mn satisfying the following properties:

lim
k→∞nH(pk) = n supH, lim

k→∞|∇nH(pk)| = 0, and

lim sup
k→∞

(L(nH)(pk)) ≤ 0.
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Proof. Let us choose a local orthonormal frame {e1, . . . , en} on Mn such that
hij = λiδij . From (3.4) we have that

L(nH) =
∑

i

(
nH − n − 1

2
a − λi

)
(nH)ii . (3.5)

On the other hand, we observe that if H vanishes identically on Mn, then the
proposition is obvious. So, let us suppose that H is not identically zero. By chang-
ing the orientation of Mn if necessary, we may assume that supH > 0. Thus, for
all i = 1, . . . , n, from (2.10) by a straightforward computation we get

(λi)
2 ≤ |B|2

= n2H 2 − n(n − 1)(aH + b − c)

=
(

nH − n − 1

2
a

)2

− n − 1

4
((n − 1)a2 + 4n(b − c))

≤
(

nH − n − 1

2
a

)2

,

where we have used our assumption that (n − 1)a2 + 4n(b − c) ≥ 0 to obtain the
last inequality. Consequently, for all i = 1, . . . , n, we have

|λi | ≤
∣∣∣∣nH − n − 1

2
a

∣∣∣∣. (3.6)

Thus, from (2.7) and (3.6) we obtain

Rijij = c + λiλj ≥ c −
(

nH − n − 1

2
a

)2

. (3.7)

Hence, since we are supposing that H is bounded on Mn, it follows from (3.7)
that the sectional curvatures of Mn are bounded from below. Therefore, we may
apply Lemma 2.3 to the function nH , obtaining a sequence of points {pk}k≥1 in
Mn such that

lim
k→∞nH(pk) = n supH, lim

k→∞|∇nH(pk)| = 0,
(3.8)

lim sup
k→∞

((nH)ii(pk)) ≤ 0.

However, since H is bounded, taking subsequences if necessary, we can arrive
at a sequence {pk}k≥1 in Mn that satisfies (3.8) and such that H(pk) ≥ 0. Thus,
taking into account that a ≤ 0, from (3.6) we get

0 ≤ nH(pk) − n − 1

2
a − |λi(pk)| ≤ nH(pk) − n − 1

2
a − λi(pk)

≤ nH(pk) − n − 1

2
a + |λi(pk)| ≤ 2nH(pk) − (n − 1)a. (3.9)

Consequently, using once more that H is bounded on Mn, from (3.9) we infer that
nH(pk) − n−1

2 a − λi(pk) is nonnegative and bounded on Mn. Therefore, from
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(3.5), (3.8), and (3.9) we obtain that

lim sup
k→∞

(L(nH)(pk)) ≤
∑

i

lim sup
k→∞

[(
nH − n − 1

2
a − λi

)
(pk)(nH)ii(pk)

]

≤ 0. �

In the last result of this section, we establish a sufficient criteria of ellipticity for
the Cheng–Yau modified operator.

Proposition 3.3. Let Mn be a linear Weingarten hypersurface immersed in a
Riemannian space form Qn+1

c such that R = aH +b with b > c. Then L is elliptic.

Proof. Since R = aH + b with b > c, from equation (2.10) we easily see that H

cannot vanish on Mn, and, by choosing the appropriate Gauss mapping, we may
assume that H > 0 on Mn.

Let us consider the case that a = 0. Since R = b > c, choosing a (local) or-
thonormal frame {e1, . . . , en} on Mn such that hij = λiδij , from equation (2.10)
we have that

∑
i<j λiλj > 0. Consequently,

n2H 2 =
∑

i

λ2
i + 2

∑
i<j

λiλj > λ2
i

for every i = 1, . . . , n, and hence we have that nH −λi > 0 for every i. Therefore,
in this case, we conclude that L is elliptic.

Now, suppose that a �= 0. From equation (2.10) we get that

a = − 1

n(n − 1)H
(|B|2 − n2H 2 + n(n − 1)(b − c)).

Consequently, for every i = 1, . . . , n, by a straightforward algebraic computation
we verify that

nH − λi − n − 1

2
a = nH − λi + 1

2nH
(|B|2 − n2H 2 + n(n − 1)(b − c))

= 1

2nH

(∑
j �=i

λ2
j +

(∑
j �=i

λj

)2

+ n(n − 1)(b − c)

)
.

Therefore, since b > c, we also conclude in this case that L is elliptic. �

4. Proofs of Theorems 1.1 and 1.2

Now, we are in position to prove Theorem 1.1.

Proof. Let us choose a (local) orthonormal frame {e1, . . . , en} on Mn such that
hij = λiδij . Since R = aH + b, from (2.19) and (3.4) we have that

L(nH) = |∇B|2 − n2|∇H |2 + 1

2

∑
i,j

Rijij (λi − λj )
2. (4.1)
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Thus, since from (2.7) we have that Rijij = λiλj + c, from (4.1) we get

L(nH) = |∇B|2 − n2|∇H |2 + nc(|B|2 − nH 2) − |B|4 + nH
∑

i

λ3
i . (4.2)

Moreover, we have �ij = μiδij , and by a straightforward computation we ver-
ify that∑

i

μi = 0,
∑

i

μ2
i = |�|2 and

∑
i

μ3
i =

∑
i

λ3
i − 3H |�|2 − nH 3. (4.3)

Thus, using Gauss equation (2.7) jointly with (4.3) into (4.2), we get

L(nH) = |∇B|2 − n2|∇H |2 + nH
∑

i

μ3
i

+ |�|2(−|�|2 + nH 2 + nc). (4.4)

By applying Lemma 2.2 and Proposition 3.1, from (4.4) we have

L(nH) ≥ |�|2
(

−|�|2 − n(n − 2)√
n(n − 1)

H |�| + nH 2 + nc

)
. (4.5)

Furthermore, from (2.11) we obtain

H 2 = 1

n(n − 1)
|�|2 + (R − c). (4.6)

Thus, from (4.5) and (4.6) we get

L(nH) ≥ 1

n − 1
|�|2QR(|�|), (4.7)

where QR(x) is the function introduced by Alías, García-Martínez, and Rigoli [3]
and given by

QR(x) = −(n − 2)x2 − (n − 2)x
√

x2 + n(n − 1)(R − c) + n(n − 1)R.

Since we are supposing that R > 0, we have that QR(0) = n(n − 1)R > 0 and
the function QR(x) is strictly decreasing for x ≥ 0, with QR(x∗) = 0 at

x∗ = R

√
n(n − 1)

(n − 2)(nR − (n − 2)c)
> 0.

Consequently, from our restriction on the norm of � we obtain that

L(nH) ≥ 1

n − 1
|�|2QR(|�|) ≥ 0. (4.8)

On the other hand, since H is supposed to be bounded on Mn, by Proposi-
tion 3.2 it is possible to obtain a sequence of points {pk}k≥1 in Mn such that

lim
k→∞H(pk) = supH > 0 and lim sup

k→∞
(L(nH)(pk)) ≤ 0. (4.9)

Thus, since from (4.6) we have that

|�|2 = n(n − 1)(H 2 − aH − b + c), (4.10)
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our assumption that a ≤ 0, jointly with (4.9), gives

lim
k→∞|�(pk)| = sup |�|. (4.11)

Consequently, from (4.8) and (4.11) we have that

0 ≥ lim sup
k→∞

(L(nH)(pk)) ≥ 1

n − 1
sup |�|2QinfR(sup |�|) ≥ 0,

and, hence, we conclude that sup |�|2QinfR(sup |�|) = 0. Therefore, we have
that either |�| ≡ 0 and Mn is totally umbilical or sup |�| = x∗. Moreover, if
|�|(p) = sup |�| at some point p ∈ Mn and since we are assuming that a ≤ 0,
equation (4.10) implies that H attains its maximum on Mn. Thus, since Propo-
sition 3.3 guarantees that L is elliptic when b > c, from inequality (4.8) we can
apply Hopf’s strong maximum principle to conclude that H is constant on Mn.
Consequently, |�| = sup |�| on Mn, and, since the equality holds in (2.20) of
Lemma 2.2, we conclude that Mn must be an isoparametric hypersurface with
two distinct principal curvatures one of which is simple. Hence, by the classical
results on isoparametric hypersurfaces of real space forms [7; 11; 18], and since
we are supposing that R > 0, we conclude that either |�| = 0 and Mn is totally
umbilical or |�|2 = n(n − 1)R2/((n − 2)(nR − (n − 2)c)) and Mn is isometric
to a

(a) Clifford torus S1(
√

1 − r2) × Sn−1(r) with 0 < r < 1 if c = 1,
(b) circular cylinder R× Sn−1(r) with r > 0 if c = 0,
(c) hyperbolic cylinder H1(−√

1 + r2) × Sn−1(r) with r > 0 if c = −1.

When c = 1, for a given radius 0 < r < 1, it is a standard fact that the prod-
uct embedding S1(

√
1 − r2)×Sn−1(r) ↪→ Sn+1 has constant principal curvatures

given by

k1 = r√
1 − r2

, k2 = · · · = kn = −
√

1 − r2

r
.

Thus, in this case,

H = nr2 − (n − 1)

nr
√

1 − r2
and |�|2 = n − 1

nr2(1 − r2)
.

When c = 0, for a given radius r > 0, R × Sn−1(r) ↪→ Rn+1 has constant
principal curvatures given by

k1 = 0, k2 = · · · = kn = 1

r
.

In this case,

H = n − 1

nr
and |�|2 = n − 1

nr2
.

Finally, when c = −1, for a given radius r > 0, H1(−√
1 + r2) × Sn−1(r) ↪→

Hn+1 has constant principal curvatures given by

k1 = r√
1 + r2

, k2 = · · · = kn =
√

1 + r2

r
.
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Thus, in this case,

H = nr2 + (n − 1)

nr
√

1 + r2
and |�|2 = n − 1

nr2(1 + r2)
.

Therefore, in order to finish our proof, from equation (2.11) by algebraic com-
putations we verify that in all these previously described situations we must have
r = √

(n − 2)/(nR). �

We close our paper by presenting the proof of Theorem 1.2.

Proof. First, we observe that from (2.18) and (3.4) it is not difficult to verify that

L(nH) = divM(P (∇H)), (4.12)

where

P =
(

n2H + n(n − 1)

2
a

)
I − nB, (4.13)

and I denotes the identity in the algebra of smooth vector fields on Mn.
Moreover, since H is supposed to be bounded on Mn, from equation (2.10) we

have that B is also bounded on Mn. Consequently, from (4.13) we see that there
exists a positive constant C such that |P | ≤ C. Thus, since we are also assuming
that |∇H | ∈ L1(M), we obtain that

|P(∇H)| ≤ |P ||∇H | ≤ C|∇H | ∈ L1(M). (4.14)

Thus, because of (4.8), (4.12), and (4.14), we can apply Lemma 2.4 to obtain that
L(nH) = 0 on Mn. Consequently, taking into account that all the inequalities
obtained are, in fact, equalities, from equation (4.1) we have that

|∇B|2 = n2|∇H |2.
Hence, since we are assuming that (n−1)a2 +4n(b+1) > 0, by applying Propo-
sition 3.1 we get that H is constant on Mn. Therefore, since the equality holds
in (2.20) of Lemma 2.2, we conclude that Mn is either totally umbilical or an
isoparametric hypersurface with two distinct principal curvatures one of which
is simple. At this point, the proof follows the same steps of the proof of Theo-
rem 1.1. �
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