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Proximality and Pure Point Spectrum
for Tiling Dynamical Systems

Marcy Barge & Johannes Kellendonk

1. Introduction

In order to understand the combinatorial properties of a single tiling T of Eu-
clidean space Rn, one may consider the collection �T , called the hull of T, of all
tilings of Rn that are locally indistinguishable from T. A tiling T ′ is in the hull of
T if every finite collection of tiles in T ′ is exactly a translate of a finite collection
of tiles of T. There is a natural topology on the hull, and an action of Rn on the
hull by translation, such that the properties of the resulting topological dynamical
system reflect combinatorial properties of the original tiling. A beautiful example
of this correspondence between combinatorics and dynamics arises in diffraction
theory. The diffraction spectrum of a point set in Rn (think of the points as atoms
in a material and the diffraction spectrum as a picture of X-ray scattering) depends
on the spatial recurrence properties of finite patterns of points in the point set. The
point set determines a tiling of Rn by Veronoi cells and, provided the patches of
the tiling are distributed in a sufficiently regular manner, the point set has a pure
point diffraction spectrum (i.e., the material is a perfect quasicrystal) if and only
if the Rn-action on the hull of the tiling has a pure discrete dynamical spectrum
[Dw; LMSo]. This claim means that, by definition, the Hilbert space L2(�T ,µ)
is generated by the eigenfunctions of the action. Recall that eigenfunctions are
(classes of ) functions f : �T → C satisfying f(T ′ − v) = exp(2πıβ(v))f(T ′)
for all v ∈ Rn, almost all T ′ ∈ �T , and some linear functional β : Rn → R (the
eigenvalue). Here µ is an invariant ergodic measure on �T that is related to the
diffraction via the construction of the autocorrelation measure. (We will consider
strictly ergodic tiling dynamical systems, in which case this measure is unique.)

The study of continuous eigenfunctions is related to the study of equicontinuous
factors of the dynamical system (�T , Rn). All continuous eigenfunctions together
determine what is called the maximal equicontinuous factor πmax : (�T , Rn) →
(Xmax, Rn). One of the most common routes to determine whether the Rn-action
on the hull of the tiling has a pure discrete dynamical spectrum is therefore to
examine whether πmax is almost everywhere one-to-one.

The equivalence relation whose equivalence classes are the fibers of πmax is
called the equicontinuous structure relation, which resembles the proximal rela-
tion. The latter is not necessarily an equivalence relation, but a modification of it
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gives rise to a relation—known as regional proximality—that for minimal sys-
tems coincides with the equicontinuous structure relation. Our principal aim in
this work is to use these notions of proximality to say something about the equi-
continuous structure relation and, in particular, to shed light on the question just
posed of whether (or not) the dynamical spectrum of a tiling system is a pure point.

The concept of proximality applies to rather general topological dynamical sys-
tems (X,G) and requires only that X be a compact uniform space and carry a
continuous group G action α. Because the hull of a tiling is metrizable, we can
work with a metric d; this approach involves an irrelevant choice of metric but is
a little less abstract. We therefore consider a compact metric space (X, d) with
a minimal continuous G-action. We require that G be a locally compact abelian
group and, for some results, also that G be compactly generated.

Two points x, y ∈X are proximal if inf t∈G d(αt(x),αt(y)) = 0. A point x ∈X

is distal if it is not proximal to any other point. We say that x ∈Xmax is fiber dis-
tal if π−1

max(x) consists only of distal points. Let πmax : (X,G) → (Xmax,G) be
the maximal equicontinuous factor. We say that (X,G) has finite minimal rank if
its minimal rank

mr := inf{#π−1
max(x) : x ∈Xmax}

is finite. We will establish the following result.

Theorem (Theorem 2.15 in the main text). Let (X,G) have finite minimal rank,
suppose that the maximal equicontinuous factor is connected, and suppose that G
is compactly generated. Then the proximal relation P coincides with the equicon-
tinuous structure relation if and only if P ⊂ X × X is closed (in the product
topology).

Theorem (Lemmas 2.12 and 2.14 in the main text). Let (X,G) have finite min-
imal rank, and suppose that its maximal equicontinuous factor is connected and
admits at least one fiber distal point. Then the proximal relation P is closed if and
only if the minimal rank is 1.

Now let η be the (normalized) Haar measure on Xmax. We say that (X,G) is almost
everywhere fiber distal if the set of fiber distal points has full measure in Xmax.

Theorem (Theorem 2.25 in the main text). Let (X,G) have finite minimal rank,
have connected maximal equicontinuous factor, and be almost everywhere fiber
distal. Let µ be an ergodic G-invariant Borel probability measure on X. Then
L2(X,µ) is generated by continuous eigenfunctions if and only if the proximal re-
lation is closed.

In particular, if all eigenfunctions are continuous then—under the hypothesis that
(X,G) has finite minimal rank and the fiber distal points have full measure—the
topological closedness of P is a neccessary and sufficient criterion for pure dis-
crete spectrum. Thus it is of interest to investigate which type of tiling (or Delone
set) systems satisfy the hypotheses. We shall identify those systems: regular model
sets and Meyer substitution tilings.
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The hull of a tiling has a laminated structure that comes from the group action.
Unlike more general dynamical systems, this lamination admits canonical trans-
versals. The extra transverse structure allows for the definition of a stronger notion
of proximality. Namely, we call two tilings strongly proximal if, for each r, there
is a ball of radius r on which they agree exactly. It is central to our analysis that the
two notions of proximality coincide for the most important class of Meyer sets. A
similar result applies to the regional proximal relation, of which there is a strong
version that coincides with the usual one for Meyer sets. This fact, and the re-
sults of Section 5.3, are key to the efficient method for determining a pure discrete
dynamical spectrum for Pisot family substitution tilings developed in [BaSW].

A large part of this paper is devoted to the study of two classes of Meyer sys-
tems, those defined by model sets and those defined by Meyer substitutions. Our
findings can be summarized as follows.

• Model sets always have minimal rank 1 and so proximality is always closed.
The set of fiber distal points has full measure if and only if the model set is
regular.

• Meyer substitution tilings always have finite minimal rank, and the set of fiber
distal points always has full measure.

The case of model sets seems a lot simpler; however, except for nice windows,
we cannot control the maximal rank, sup{#π−1

max(x) : x ∈Xmax}. Even so, we find
that Meyer substitution tilings always have finite maximal rank (and hence finite
minimal rank). This fact is extremely advantageous in other contexts as well. It
is exploited in [BaO] to describe the branch locus in two-dimensional self-similar
Pisot substitution tiling spaces and in [Ba] to characterize minimal directions in
self-similar Pisot substitution tiling spaces of any dimension.

Finally, we consider syndetic proximality [C]. Two points x, y are syndetically
proximal if, given any subset A ⊂ G that contains a translate of each compact
subset, we have inf t∈A d(αt(x),αt(y)) = 0. This is an equivalence relation, but it
is not always closed. We will show that, for Meyer substitutions, syndetic proxi-
mality is indeed a closed equivalence relation. All three notions—syndetic prox-
imality, proximality, and regional proximality—are the same for tilings of finite
minimal rank if proximality is closed. Thus for Meyer substitutions we obtain
(Corollary 6.7 in the main text) equivalence between the following statements:

(i) proximality is a closed relation;
(ii) proximality agrees with syndetic proximality;

(iii) the dynamical spectrum is purely discrete.

2. Maximal Equicontinuous Factors and Proximality

2.1. General Notions and Results

In this section we recall some aspects of the theory of topological dynamical sys-
tems relating to equicontinuity, proximality, and regional proximality. Most of
this material can be found in Auslander’s book [Au].
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We consider a dynamical system (X,G), whereX is a compact metrizable space
and G is a locally compact abelian group acting continuously by α on X. We de-
note the action by αt(x) = t · x or, in the context of tilings, by αv(T ) = T − v.

Definition 2.1 (equicontinuity). A point x ∈ X is equicontinuous if the fam-
ily of homeomorphisms {αt }t∈G is equicontinuous at x. The dynamical system
(X,G) is equicontinuous if all its points are equicontinuous.

Although the standard definition of equicontinuity uses a metric, it does not de-
pend on the particular choice of metric as long as the metric is compatible with the
topology. In fact, Auslander introduces this notion using the (unique) uniformity
defined by the topology. Minimal equicontinuous systems have a simple structure:
they are translations on compact abelian groups. This means that X has the struc-
ture of an abelian group and that the action is given by αt(x) = x + ı(t), where
ı : G → X is a group homomorphism.

Theorem 2.2 (Ellis). A minimal system (X,G) is equicontinuous if and only if
it is conjugate to a minimal translation on a compact abelian group.

If (X,G) is equicontinuous then the group structure on X arises as follows. Given
any point x0 ∈X, the operation t1 · x0 + t2 · x0 := (t1+ t2) · x0 extends to an addi-
tion in X so that X becomes a group with x0 as neutral element. Conversely, any
translation on a compact abelian group is clearly equicontinuous.

We are interested in dynamical systems defined by aperiodic tilings of finite
local complexity (FLC). Such systems are never equicontinuous [BaO], and it
will prove fruitful to study the relation between these systems and their maximal
equicontinuous factors.

Definition 2.3 (maximal equicontinuous factor). An equicontinuous factor of
(X,G) is maximal if any other equicontinuous factor of (X,G) factors through it.
It is thus unique up to conjugacy and therefore referred to as the maximal equicon-
tinuous factor. We denote it by (Xmax,G) and the factor map by πmax : X → Xmax.

The maximal continuous factor always exists but may be trivial (i.e., a single
point). The equivalence relation defined by πmax—that is, x ∼ y if πmax(x) =
πmax(y)—is called the equicontinuous structure relation.

The concept of proximality is central to the investigation of the equicontinuous
structure relation.

Definition 2.4 (proximality). Consider a compatible metric d on (X,G). Two
points x, y ∈X are proximal if

inf
t∈G d(t · x, t · y) = 0.

We denote by P ⊂ X ×X the proximal relation and write x ∼p y if (x, y)∈P.
The proximal relation does not depend on the metric but only on the topology (it
can also be formulated using the uniformity structure on X). It is easy to see that
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the proximal relation is trivial for equicontinuous systems, but the converse is not
true. Systems for which the proximal relation is trivial are called distal.

Note that P = ⋂
ε Pε, where

Pε = {(x, y)∈X ×X : inf t∈G d(t · x, t · y) < ε}.
The proximal relation is not always closed. In other words, P need not be a closed
subset of X×X and is not, in general, a transitive relation. However, we have the
following statement.

Theorem 2.5 [Au]. If the proximal relation is closed then it is an equivalence
relation.

Definition 2.6 (regional proximality). The regional proximal relation is Q :=⋂
ε Pε. That is, two points x, y ∈ X are regionally proximal if for all ε there

exist x ′ ∈ X, y ′ ∈ X, and t ∈ G such that d(x, x ′) < ε, d(y, y ′) < ε, and
d(t · x ′, t · y ′) < ε.

Theorem 2.7 [EGo]. The equicontinuous structure relation is the smallest closed
equivalence relation containing the regional proximal relation.

The regional proximal relation is, in general, neither closed nor transitive. How-
ever, if the acting group is abelian then we have the following result.

Theorem 2.8 [V]. For minimal systems, the regional proximal relation is a
closed equivalence relation and hence coincides with the equicontinuous struc-
ture relation.

Even for minimal systems, the regional proximal relation is not necessarily the
smallest closed equivalence relation containing the proximal relation. Indeed,
P may be trivial while Q is not (there are minimal distal systems that are not
equicontinuous).

The following definition is a generalization of a notion introduced by [BaKw]
in the context of Pisot substitution tilings. For δ > 0 and x ∈Xmax, let cr(x, δ) be
the maximal cardinality l of a collection {x1, . . . , xl} ⊂ π−1

max(x) with the property
that inf t∈G d(t · xi, t · xj ) ≥ δ provided i �= j.

Definition 2.9 (coincidence rank). The coincidence rank of a minimal system
(X,G) is the number

cr = lim
δ→0+

cr(x, δ).

Lemma 2.10. The limit in Definition 2.9 does not depend on the choice of x.
Moreover, if cr is finite for some x then there exists a δ0 > 0 such that, for all y,

cr = cr(y, δ0).

Proof. Clearly, cr(x, δ) is a decreasing integer-valued function of δ and
cr(x, δ)= 1 if δ is larger than the diameter of X. Furthermore, cr(x, δ) =
cr(t · x, δ) for all t ∈ G. This implies that either limδ→0+ cr(x, δ) = +∞ or
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limδ→0+ cr(x, δ) = cr(x0, δ0) for some δ0 > 0 and all points x of the orbit of a
point x0 ∈Xmax. We need to show that the result is the same for points y ∈Xmax

in other orbits.
Let l ∈N and let {x1, . . . , xl} ⊂ π−1

max(x0) with the property that

inf
t∈G d(t · xi, t · xj ) ≥ δ

provided i �= j. Let x ′
1 ∈ π−1

max(y). By transitivity, there exists a sequence (tn)n
such that limn tn · x1 → x ′

1. Taking subsequences, we may suppose that all other
limits limn tn · xi exist; let x ′

i denote these limits. Since πmax is continuous and
equivariant with respect to the action, it follows that x ′

i ∈ π−1
max(y) for all i =

1, . . . , l. Then

d(t ′ · x ′
1, t ′ · x ′

2) ≥ d(t ′ · (tn · x1), t
′ · (tn · x2))− d(t ′ · x ′

1, t ′ · (tn · x1))

− d(t ′ · (tn · x2), t
′ · x2).

Keeping t ′ fixed we find, for all ε > 0, an n such that d(t ′ · x ′
1, t ′ · (tn · x1)) < ε

and d(t ′ · (tn · x2), t ′ · x ′
2) < ε. Hence d(t ′ · x ′

1, t ′ · x ′
2) ≥ δ − 2ε and, since ε was

arbitrary, we see that cr(y, δ) ≥ cr(x, δ). By a symmetric argument, cr(x, δ) ≥
cr(y, δ).

Definition 2.11 (minimal rank). The minimal rank of (X,G) is

mr := inf{#π−1
max(x) : x ∈Xmax}.

Any weakly mixing tiling system—for example, the R-action on a substitution
tiling space with non-Pisot inflation constant—has trivial maximal equicontinu-
ous factor and hence infinite minimal rank.

Lemma 2.12. The coincidence rank cr = 1 if and only if P = Q. Furthermore,
cr ≤ mr.

Proof. Suppose that P = Q. Then, for all x1, x2 ∈π−1
max(x), we have

inf
t∈G d(t · x1, t · x2) = 0

and hence cr(x, δ) = 1.
Now suppose that cr = 1. Since cr(x, δ) is a decreasing function of δ, it

follows that cr(x, δ) = 1 for all x and δ > 0. In particular, two elements
x1, x2 ∈ π−1

max(x) cannot satisfy the following statement: there exists a δ > 0
such that inf t∈G d(t · x1, t · x2) ≥ δ. Hence (x1, x2) /∈ P c

δ for all δ > 0; that is,
(x1, x2)∈⋂

δ Pδ.

The inequality is clear from the independence of limδ→0+ cr(x, δ) of x.

Definition 2.13 (distal, fiber distal). A point x ∈ X is distal if, for all y ∈
X−{x}, inf t∈G d(t ·x, t ·y) > 0—in other words, if x is not proximal to any other
point. A point x ∈Xmax is fiber distal if all points of the fiber π−1

max(x) are distal.
We denote by Xdistal

max ⊂ Xmax the set of fiber distal points. The system (X,G) is
called fiber distal if its maximal equicontinuous factor admits a fiber distal point.
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Note that, since P is contained in the equicontinuous structure relation, a point x is
distal if and only if it is not proximal to any other point in the fiber π−1

max(πmax(x)).

Lemma 2.14. Let (X,G) be a minimal system with finite minimal rank. Then
cr = #π−1

max(x) whenever x is fiber distal. In particular,

Xdistal
max = {x ∈Xmax : #π−1

max(x) = cr}
and cr = mr whenever Xmax contains a fiber distal point.

Proof. Let x ∈ Xmax be a fiber distal point, and let {x1, . . . , xk} ⊂ π−1
max(x) for

k ≥ mr. Then none of the points xi is proximal to any other xj . By definition, this
means that cr(πmax(x), δ0) ≥ k for 0 < δ0 < infi �=j∈{1,...,k} inf t∈G d(t · xi, t · xj ).
Hence cr ≥ k ≥ mr. We have already seen that mr ≥ cr. This shows also that
cr = #π−1

max(x) if x is fiber distal.
Now suppose that cr = mr. Then there exists a ξ ∈ Xmax such that π−1

max(ξ) =
{x1, . . . , xmr}. Since cr = cr(ξ, δ0) for some δ0, we must have

inf
t∈G d(t · xi, t · xj ) ≥ δ0

for all i �= j. Thus all xi are distal.
Finally, if cr = #π−1

max(x) then π−1
max(x) cannot contain proximal points and so

x must be fiber distal.

Let P̃ the smallest closed equivalence relation containing the proximal relation on
a minimal compact metrizable dynamical system (X,G). We define Xp to be the
quotient space Xp := X/P̃ and denote its classes by [x]p. Because P̃ is closed,
Xp is metrizable and the canonical projection is a closed continuous map [Ku].
Since the proximal relation is G-invariant, the action of G descends and so we
have a factor system (Xp,G). Furthermore, πmax factors through the canonical
projection just described; hence we get another factor map

π : Xp → Xmax, π([x]p) = πmax(x),

which is again closed.

Theorem 2.15. Let (X,G) be a minimal system with finite minimal rank and
connected maximal equicontinuous factor, and suppose that G is compactly gen-
erated. Then P = Q if and only if P is closed.

The proof of this theorem is based on the following two lemmas. We know al-
ready that P = Q is equivalent to cr = 1. We must therefore show that P closed
implies cr = 1—assuming, of course, that cr is finite!

Lemma 2.16. Suppose that cr is finite. If P is closed, then π is a cr-to-1 map
that is a local homeomorphism. In other words, any point in Xp admits a neigh-
borhood on which π restricts to a homeomorphism onto its image.

Proof. Note that if P is closed then, by Theorem 2.5, P = P̃. We first show
that π is cr-to-1. For x ∈ Xmax, clearly #π−1(x) ≥ cr because there exist ele-
ments x1, . . . , xcr ∈ π−1

max(x) that belong to different P-classes. Suppose now that
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x1, . . . , xl ∈π−1
max(x) with xi �∼p xj for all xi �= xj . Then there exists a δ > 0 such

that, for all xi �= xj , (xi, xj ) /∈Pδ. By definition, l ≤ cr(x, δ) ≤ cr.
Clearly, π is continuous and surjective. If π were not locally injective, then we

could construct two sequences (ξn)n and (ηn)n in X/P such that

(i) ξn �= ηn for all n,
(ii) π(ξn) = π(ηn) for all n, and

(iii) limn ξn = limn ηn = [x]p for some x ∈X.

Suppose there exist such sequences ξn = [xn]p and ηn = [x ′
n]p. Without loss

of generality, we may then suppose that limn xn = x and lim x ′
n = x ′ for some

x ′ ∼p x. It follows that inf t∈G d(t ·x, t ·x ′) = 0. For all ε > 0 there exists an Nε,t

such that, for all n ≥ Nε,t , we have d(t · xn, t · x) < ε and d(t · x ′
n, t · x ′) < ε. So

if t is such that d(t · x, t · x ′) < ε and n ≥ Nε,t , then d(t · xn, t · x ′
n) < 3ε. Now if

3ε < δ0 (from Lemma 2.10) then xn ∼p x ′
n for all n ≥ Nε,t . This contradicts (i).

We have thus shown that π is a locally injective continuous surjection. Further-
more, π is a closed map and so the restriction of π to an open neighborhood (on
which π is injective) yields a closed continuous invertible map onto the image of
that neighborhood under π. The restriction is therefore a homeomorphism.

The following lemma is Theorem 2 of [SaSe].

Lemma 2.17 [SaSe]. Let (Y,G) be a compact metrizable dynamical system, and
let π : (Y,G) → (X,G) be a finite-to-one factor map that is a local homeomor-
phism. We suppose that X is connected and that G is a compactly generated
abelian group; in other words, suppose there is a compact neighborhood K of the
identity 0 in G such that G = ⋃

n∈N nK for nK := K + · · · + K. If (X,G) is
equicontinuous, then (Y,G) is also equicontinuous.

Proof of Theorem 2.15. Combining Lemmas 2.16 and 2.17, we find that (Xp,G)

is equicontinuous and hence must already coincide with (Xmax,G). Therefore, π
is a conjugacy and cr = 1.

The preceding results will be sufficient for our analysis of tiling systems. For com-
pleteness, we add a corollary about distal systems and strengthen the last theorem.
Recall that a dynamical system is called distal if all its points are distal.

Corollary 2.18. For compact metrizable minimal distal systems with connected
maximal equicontinuous factor, either cr = 1or cr = +∞. The first equality holds
if and only if the system is equicontinuous.

For compact Hausdorff Y, the space YY of functions from Y to Y is a monoid under
composition that is again compact in the product topology. If G acts on Y, then
(a) each t ∈ G defines a homeomorphism from Y to Y and (b) the Ellis monoid
E(Y ) of the action (also called the enveloping semigroup) is the closure in the
product topology of the set of all these homeomorphisms. The system (Y,G) is
distal if and only if E(Y ) is a group, and E(Y ) is a group if and only if it does not
have any proper minimal (left) ideals (see e.g. [Au, Chap. 5, Thm. 6]).
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Proposition 2.19. Let (X,G) be a compact Hausdorff dynamical system. Then
(Xp,G) is distal.

Proof. We must prove that the Ellis monoid E(Xp) is a group. The canon-
ical projection π : X → Xp induces a continuous semigroup homomorphism
π∗ : E(X) → E(Xp) determined by the equation

π∗(p)(y) = π(p(x)),

where x is any preimage of y. Suppose that E(Xp) is not a group and therefore
admits a proper minimal ideal I. Then I is closed and π−1∗ (I ) is a proper closed
ideal of E(X) (closed by continuity). Auslander [Au] shows that any closed ideal
of the Ellis semigroup of a dynamical system contains an idempotent u. Any idem-
potent u ∈ E(X) satisfies u(x) ∼p x for all x ∈ X. Hence π(u(x)) = π(x) and
so π∗(u)(π(x)) = π(u(x)) = π(x) for all x ∈ X. Thus π∗(u) = id and id ∈ I,
contradicting the properness of I.

Corollary 2.20. Consider a minimal system (X,G) of finite minimal rank and
with connected maximal equicontinuous factor. Then the equicontinuous struc-
ture relation is the smallest closed equivalence relation containing the proximal
relation.

Proof. Since the minimal rank of (X,G) is finite and since (Xp,G) is a factor sit-
ting above the equicontinuous factor, it follows that the minimal rank of (Xp,G)

must also be finite. By Proposition 2.19 and Corollary 2.18, this implies that
(Xp,G) is equicontinuous and hence coincides with the maximal equicontinuous
factor.

2.2. The Maximal Equicontinuous Factor
and the Dynamical Spectrum

So far we have seen that the maximal equicontinuous factor arises from dividing
out the regional proximal relation (or, in the nonminimal case, by the closed equiv-
alence relation generated by it). The maximal equicontinuous factor can also be
described in another way, which is related to the topological dynamical spectrum
of the system.

A continuous eigenfunction of a dynamical system (X,G) is a nonzero function
f ∈C(X) for which there exists a (continuous) character χ ∈ Ĝ such that

f(t · x) = χ(t)f(x). (1)

This character χ is called the eigenvalue of f , and the set of all eigenvalues E
forms a subgroup of the Pontryagin dual Ĝ of G. We say that the eigenfunction is
normalized if its modulus is equal to 1.

Note that, by universality of the maximal equicontinuous factor, all continuous
eigenfunctions on (X,G) factor through πmax. Indeed, any normalized continu-
ous eigenfunction f : X → T1 gives rise to an equicontinuous factor of the form
(T1,G) that consequently sits below the maximal equicontinuous factor; thus,
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f = f ′ � πmax for some f ′ ∈ C(Xmax). In particular, πmax(x) = πmax(y) im-
plies that all continuous eigenvalues take the same value on x as on y. Given that
the maximal equicontinuous factor is a minimal translation on a compact abelian
group, its eigenvalues are X̂max and the continuous eigenfunctions separate the
points of Xmax. Now if πmax(x) �= πmax(y) then there exists a continuous eigen-
function f̃ for (Xmax,G) such that f̃ (πmax(x)) �= f̃ (πmax(y)). Hence π∗

max(f̃ )

is a continuous eigenfunction taking different values on x and y. Combining the
two arguments shows that πmax(x) = πmax(y) if and only if, for all continuous
eigenfunctions f , one has f(x) = f(y).

Let F be the norm closed subalgebra of C(X) generated by the continuous
eigenfunctions. We will argue that the maximal equicontinuous factor Xmax can
be identified with the spectrum F̂ of F. (This spectrum is the space of nonzero
∗-algebra morphisms ϕ : F → C equipped with the subspace topology of the
weak-∗ topology of the dual space F ∗.) The action of G on C(X) via pull-back
preserves the space of continuous eigenfunctions and so, by duality, gives rise to
an action on F̂; for an eigenfunction f with eigenvalue χ this action is

(t · ϕ)(f ) := χ(t)ϕ(f ).

Therefore, the dual of the inclusion ı : F → C(X) yields a factor map ı̂ : Ĉ(X) ∼=
X → F̂. If we take into account the homeomorphism x �→ evx between X and the
spectrum Ĉ(X) of C(X) (where the latter is given by the set of evaluation maps
{evx : x ∈X}, evx(f ) := f(x)), then the map ı̂(x) is simply the restriction of evx
to the space of continuous eigenfunctions. By the previous remarks, πmax(x) =
πmax(y) if and only if ı̂(x) = ı̂(y), from which it follows that πmax and ı̂ have the
same fibers. Hence the factor ı̂ : X → F̂ is isomorphic to the maximal equicon-
tinuous factor.

Finally, observe that F̂ can be identified with the Pontryagin dual Ê of E . Indeed,
choose a point x0 ∈X and normalize all continuous eigenfunctions to f(x0) = 1.
Then there is a bijection between normalized continuous eigenfunctions and eigen-
values (we assume minimality here, for otherwise one must choose several points).
In particular, χ ↔ fχ because fχ(t · x0) := χ(t) extends by continuity to the
unique normalized continuous eigenfunction to eigenvalue χ. Note that this bi-
jection is also an abelian group isomorphism. So if we equip E with the discrete
topology, then the continuous eigenfunctions form the group algebra CE and hence
F̂ = Ê (a compact abelian group) given that we have equipped E with the discrete
topology. In sum, we have demonstrated the following result.

Theorem 2.21. Let (X,G) be a minimal dynamical system with abelian G,
and let E ⊂ Ĝ be the subgroup of (continuous) eigenvalues. Then the maxi-
mal equicontinuous factor is conjugate to X → Ê and given by x �→ jx , where
jx : E → T1 is defined by jx(χ) = fχ(x) and where the G-action on ϕ ∈ Ê is
given by (t · ϕ)(χ) = χ(t)ϕ(χ).

Lemma 2.22. Let H be a subgroup of Ĝ. Consider the G-action (t · ϕ)(χ) =
χ(t)ϕ(χ) for ϕ ∈ Ĥ and χ ∈H. This action is locally free if and only if Ĝ/H̄ is
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compact for H̄, the closure of H in Ĝ. In particular, the action is free if and only
if H is dense in Ĝ.

Proof. It should be clear that t ∈G acts freely if and only if t · ϕ �= ϕ for all ϕ ∈
Ĥ, which is the case whenever χ(t) �= 1 for at least one χ ∈H. By continuity, the
latter condition can be rephrased as “whenever χ(t) �= 1 for at least one χ ∈ H̄ ”.
Consider the exact sequence of abelian groups

0 → ̂̂
G/H̄ → G

q−→ ˆ̄H → 0,

which is the dual to the exact sequence 0 → H̄ → Ĝ → Ĝ/H̄ → 0.

Suppose that Ĝ/H̄ is compact. This is the case whenever ̂̂
G/H̄ is discrete.

Hence there exists 0∈U ⊂ G, an open neighborhood of the neutral element, such

that U ∩ ̂̂
G/H̄ = {0}. It follows that q(U) ∼= U. Since for any 0 �= t ∈ ˆ̄H there

exists a χ ∈ H such that χ(t) �= 1, we see that U acts freely on Ĥ. Now if H is
dense then q is an isomorphism and we can take U = G. The converse, which we
will not use, is left as an exercise for the reader.

We now consider the case where an additional homeomorphism 0 : X → X is
compatible with the G-action in the sense that

0(t · x) = 1(t) ·0(x)

for some group isomorphism 1 : G → G. We assume also that 0 fixes the point
x0 ∈X. This situation will be relevant later when we consider substitution tilings.
If f is an eigenfunction with eigenvalue χ ∈ Ĝ, then

f(0(t · x)) = χ(1(t))f(0(x));
this equality shows that 0∗f is an eigenfunction with eigenvalue 1̂χ. In particular:
(a) 0∗ preserves F and hence induces an action 0max, on the maximal equicontin-
uous factor Xmax = Ê , that is equivariant with respect to the G-action; and (b) E is
invariant under the dual isomorphism 1̂ : Ĝ → Ĝ. We now ask: When is 0max

ergodic with respect to the Haar measure η? This occurs precisely when the linear
operator U0 defined on L2(Xmax, η) by U0ψ := ψ � 0max has, up to normal-
ization, only one eigenfunction with eigenvalue 1—that is, when ψ = ψ � 0max

implies that ψ is constant.
First note that if f is a continuous eigenfunction with eigenvalue χ, then cχ :=

f(0(x))/f(x) does not depend on x and so the above equation reads

0∗fχ = c1̂χf1̂χ ;
here fχ is a normalized eigenfunction (i.e., fχ(x0) = 1). Next observe that
normalized eigenfunctions form an orthogonal base in L2(Xmax, η) and that
U0fχ = 0∗fχ . We can therefore solve the eigenvalue equation U0ψ = ψ in
the preceding basis and so obtain, for ψ = ∑

χ∈E aχfχ ,

a1̂−1χ = cχaχ ∀χ ∈ E .
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Since
∑

χ∈E |aχ |2 must be finite and since |cχ | = 1, it follows that a solution other
than ψ = 1 can exist only if 1̂ admits a nontrivial periodic orbit in E . In particular
we have our next lemma.

Lemma 2.23. If G = Rn and if 1 does not have any eigenvalues with root of
unity, then 0max is ergodic with respect to η.

Proof. Upon identifying R̂n with Rn∗, we see that 1̂ becomes the transpose and
therefore does not admit a nontrivial periodic orbit in Ĝ or hence in E .

We now consider conditions for the pure point dynamical spectrum. Let µ be a
G-invariant Borel probability measure on X. An L2-eigenfunction is an element
f ∈L2(X,µ) satisfying the eigenvalue equation (1).

Definition 2.24. The measure dynamical system (X,G,µ) has a pure point
dynamical spectrum if the L2-eigenfunctions span L2(X,µ).

Since (X,G) is minimal, the maximal equicontinuous factor (Xmax,G) is also min-
imal; in other words, Xmax is a group containing G/stab(X) as a dense subgroup
(where stab(X) is the stabilizer of X). Hence a G-invariant Borel probability
measure on Xmax is also Xmax-invariant. (Given that Xmax is metrizable, the G-
invariant Borel probability measures are regular and hence coincide via the Riesz
representation theorem with G-invariant normed linear functionals on C(X); by
continuity of these functionals, G-invariance extends to Xmax-invariance.) Thus
the only G-invariant Borel probability measure on Xmax is the Haar measure η.

Theorem 2.25. Let (X,G,µ) be a minimal dynamical system with ergodic Borel
probability measure µ. Assume that (X,G,µ) has finite minimal rank, that the
maximal equicontinuous factor is connected, and that Xdistal

max has full Haar mea-
sure. Then the following statements are equivalent.

(i) The continuous eigenfunctions generate L2(X,µ).
(ii) The minimal rank is 1.

(iii) Proximality is a closed relation.

Proof. Equivalence of assertions (ii) and (iii) has already been shown. The push-
forward of the measure µ under πmax is a G-invariant Borel probability measure
and hence equals η.

Suppose that mr = 1. By Lemma 2.14, cr = 1. Thus the hypothesis that
Xdistal

max has full measure implies that πmax is a measure isomorphism and that
π∗

max(L
2(Xmax, η)) = L2(X,µ). Since the linear span of the continuous eigen-

functions is dense in L2(Xmax, η) and since πmax is continuous, the linear span of
the continuous eigenfunctions is dense in L2(X,µ) as well.

Now let mr = cr be greater than 1 (but finite). We will see that πmax : X →
Xmax has the nature of a cr-to-1 “measurable covering projection”; this permits
the construction of an L2 function that, on a set of positive measure, distinguishes
between πmax-preimages of points. As pull-backs by πmax, eigenfunctions cannot
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make such distinctions and so the constructed function cannot be approximated
by a linear combination of them.

Let X ′ := π−1
max(X

distal
max ) and let π ′ be the restriction of πmax to X ′. Then

(a) π ′ : X ′ → Xdistal
max is a closed map (πmax is closed) that is exactly cr-to-1 every-

where and (b) for each x ∈Xdistal
max we haveπ−1

max(x) = {x1, . . . , xcr}with d(xi, xj ) ≥
δ0 for i �= j and δ0 > 0 as in Lemma 2.10. It follows that π ′ must be injective on
δ0/2 balls and soπ ′ : X ′ → Xdistal

max must be a cr-to-1 local homeomorphism. In par-
ticular, we can find an open set U ′ ⊂ Xdistal

max such that π ′−1(U ′) ⊂ ⋃cr
i=1Bδ0/2(xi).

Since U ′ is open it naturally follows that there exists an open set U ⊂ Xmax such
that U ′ = U ∩ Xdistal

max . Let Ui := Bδ0/2(xi) ∩ π−1
max(U). Because Xdistal

max has full
measure, X ′ also has full measure and so πmax|Ui

: Ui → U is a function that is
almost everywhere bijective and bi-measurable.

For eachU,Ui as just described, let ηi
U be the push-forward of η|U by (πmax|Ui

)−1.

That is, ηi
U (A) := η(πmax(A)) for Borel A ⊂ Ui. Then µ|Ui

� ηi
U . Let

JUi
: Ui → R be the Radon–Nikodym derivative of µ|Ui

with respect to ηi
U . By the

uniqueness of that derivative, the JUi
paste together to yield a Borel-measurable

function J : X → R. Then, by the G-invariance of µ and η, the function J is also
G-invariant. The ergodicity of µ implies that J must be µ-a.e. constant, and this
constant equals 1/cr.

Next we let h := 1U1 − 1U2 be the difference of indicator functions for some
U,U1,U2 as before and suppose that f : X → C is a continuous eigenfunction.
Then there is an f ′ : Xmax → C such that f |Ui

= f ′ � πmax|Ui
for i = 1, 2. The

scalar product of f and h is

〈f ,h〉 =
∫
U1

f dµ−
∫
U2

f dµ =
∫
U

f ′ 1

cr
dη −

∫
U

f ′ 1

cr
dη = 0.

In other words, h is orthogonal to all continuous eigenfunctions. Since µ(U1) =
1
crη(U) and since η(U) > 0 (given that U is open), h is not the zero function;
thus we see that the linear span of the continuous eigenfunctions is not dense
in L2(X,µ).

Corollary 2.26. Consider a minimal dynamical system with ergodic G-invari-
ant Borel probability measure (X,G,µ), of finite minimal rank, all of whose
dynamical eigenfunctions are continuous. Assume that Xdistal

max has full Haar mea-
sure and that the maximal equicontinuous factor is connected. Then the dynamical
spectrum of (X,G,µ) is pure point if and only if the proximality relation is closed.

3. Proximality for Tilings and Delone Sets

3.1. Preliminaries

By a tile τ in Rn we mean a compact subset of Rn that is the closure of its inte-
rior. It is sometimes useful to label tiles with marks. In that case one should rather
speak of a tile as an ordered pair τ = (spt(τ ),m); here spt(τ ), the support of τ,
is compact and the closure of its interior, and m is a mark taken from some fi-
nite set of marks. The interior of a tile is then simply the interior of its support:
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�
τ := int(spt(τ )). Two tiles τ = (spt(τ ),m) and σ are translationally equivalent
if there is a v ∈Rn with τ + v := ((spt(τ )+ v,m) = σ.

A patch is a collection of tiles with pairwise disjoint interiors. The support of
a patch P, spt(P ), is the union of the supports of its constituent tiles; the diame-
ter of P, diam(P ), is the diameter of its support; and a tiling of Rn is a patch with
support Rn. We denote the translation action on patches (and tilings) also by P �→
P − v, v ∈Rn.

A collection � of tilings of Rn has translationally finite local complexity if, for
each R, there exist only finitely many translational equivalence classes of patches
P ⊂ T ∈� with diam(P ) ≤ R. It is useful to consider a metric topology on sets
of tilings, which is expressed with the help of R-patches. Given a tiling T and
R ≥ 0, the patch BR[T ] := {τ ∈ T : B̄R(0)∩ spt(τ ) �= ∅} is called the R-patch of
T at 0. If � is a collection of tilings of Rn with FLC, then the following metric d

can be used:

d(T, T ′) := inf

{
ε

ε + 1
: ∃‖v‖, ‖v ′‖ ≤ ε

2
s.t. B1/ε[T −v] = B1/ε[T

′−v ′ ]
}
. (2)

In other words, in this metric two tilings are close if a small translate of one agrees
with the other in a large neighborhood of the origin. Removing the possibility of
translation by a small vector yields another metric,

d0(T, T ′) := inf

{
ε

ε + 1
: B1/ε[T ] = B1/ε[T

′ ]
}

, (3)

which does not induce the same topology but is also useful.
We will call a collection � of tilings of Rn an n-dimensional tiling space if

� has FLC, is closed under translation (i.e., T ∈ � and v ∈ Rn together imply
T − v ∈�), and is compact in the metric d. (All tiling spaces in this paper are as-
sumed to have finite local complexity, but we will occasionally include the FLC
hypothesis for emphasis.) For example, if T is an FLC tiling of Rn, then

�T =
{T ′ : T ′ is a tiling of Rn and every patch of T ′ is a translate of a patch of T }

is an n-dimensional tiling space known as the hull of T [AP]. All tiling spaces
we speak of are hulls; hence they and their maximal equicontinuous factors are
connected.

A n-dimensional tiling space � is repetitive if, for each patch P with compact
support that occurs in some tiling in �, there exists an R such that, for all T ∈�,
a translate of P occurs as a subpatch in BR[T ]. If � is repetitive, then the action
of Rn on � by translation is minimal.

For a tiling T, let p : T → Rn satisfy the following conditions: p(τ) ∈ spt(τ );
if τ ∈ T and τ + v ∈ T, then p(τ + v) = p(τ)+ v. Such an assignment p will be
called a puncture map. If the tiling has FLC then the set of its punctures p(T ) =
{p(τ) : τ ∈ T } is a Delone set—in other words, a subset of Rn that is uniformly
discrete and relatively dense. (“Uniformly discrete” means there is an r > 0 such
that #Br(x)∩L ≤ 1 for all x ∈Rn; and “relatively dense” means there is an R such



Proximality and Pure Point Spectrum for Tiling Dynamical Systems 807

that BR(v)∩L �= ∅ for each x ∈Rn.) Note that if p and p ′ are two choices of punc-
ture maps for an FLC tiling, then there is a finite set F such that p(T )− p(T ) ⊂
p ′(T )− p ′(T )+ F.

A puncture map on a tiling T extends naturally (by translation) to all tilings in
the hull �T and thus defines a transversal in the hull—namely, the set of T ′ ∈�T

such that 0 ∈ p(T ′). When the metrics d and d0 defined previously are restricted
to this transversal, they become equivalent.

The definitions we have given for tilings all have analogues for Delone sets, and
whether we deal with tilings or Delone sets is mainly a matter of convenience.
One could, for instance, represent a tiling T by the Delone set of its punctures.
(Strictly speaking, for that one might need to consider the marked Delone set, or
Delone multiset, {(p(τ),m) : τ ∈ T and m = m(τ), the mark of τ }. Everything
we do hereafter with Delone sets could likewise be done with marked Delone sets;
we trust the reader can make the necessary adjustments.) But there are other pos-
sibilities. If the tiling is both polyhedral and FLC, then one could represent it
also by the Delone set of its vertices. In the other direction, when dealing with
Delone sets we can carry over the notions defined for tilings if we consider the
Dirichlet tiling associated with the Delone set (the tiling defined by the dual of the
Voronoi complex), which is a polyhedral tiling that has the points of the Delone
set as vertices. With this in mind, we may define the R-patches of a Delone set
as the R-patches of its associated Dirichlet tiling and thereby obtain a metric on
collections of Delone sets as well. Alternatively, one could use the more standard
definition of the R-patch at x of the Delone set L as the set {y ∈L : ‖x− y‖ ≤ R}
to obtain a metric. The two metrics are different but define the same topology; all
our results are independent of the choice of metric.

3.2. Strong Proximality of Tilings and the Meyer Property

We consider dynamical systems (�, Rn), where � is an n-dimensional tiling space
and Rn acts by translation. When we speak of the proximal or the regional proxi-
mal relation for tilings of �, we mean proximality or regional proximality for the
metric d that defines the compact topology of �. The following two definitions
and subsequent results are mostly formulated for tilings but have obvious counter-
parts for Delone sets.

Definition 3.1 (strong proximality). Two tilings T1, T2 ∈� are strongly proxi-
mal if, for all r, there exists a v ∈ Rn such that Br [T1 − v] = Br [T2 − v]. Strong
proximality is thus proximality for the metric d0.

Definition 3.2 (strong regional proximality). Two tilings T1, T2 ∈ � are
strongly regionally proximal if, for all r, there exist S1, S2 ∈ �T and v ∈ Rn

such that

Br [T1] = Br [S1], Br [T2 ] = Br [S2 ], Br [S1 − v] = Br [S2 − v].

Strong regional proximality is thus regional proximality for the metric d0.
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An important question is: For what classes of tilings does proximality (resp., re-
gional proximality) imply strong proximality (resp., strong regional proximality)?
If the relations are the same then proximality (regional proximality) becomes a
purely combinatorial property.

Recall that a Meyer set is a Delone set L such that L−L is uniformly discrete.
In particular, a Meyer set is always FLC. We will say that a tiling T is a Meyer
tiling, or “has the Meyer property”, if it has FLC and if the image L = p(T ) of
a puncture map is a Meyer set. Although the set L depends on the puncture map,
the property of its being Meyer does not. If L is Meyer then so is L − L, per the
following result.

Proposition 3.3 (Meyer). For a Meyer set L, all finite combinations L ± L ±
· · · ± L (with any choice of signs) are also Meyer.

A proof, along with various different characterizations of Meyer sets, can be found
in [M].

It is clear that if L′ is any element in the hull �L of a Delone set L then L′−L′ ⊂
L − L. Hence if L is Meyer then so is any such L′. Furthermore, if L1, L2 ∈�L
and v ∈L1∩L2, then L1−L2 = (L1−v)− (L2 −v) ⊂ (L−L)− (L−L); so if
L is Meyer then

⋃
L1,L2∈�L :L1∩L2 �=∅ L1 −L2 is contained in a uniformly discrete

set and thus cannot contain an accumulation point. For any L1, L2 ∈�L, we may
pick w such that L1 ∩ (L2 − w) �= ∅. Then L1 − L2 = L1 − (L2 − w) − w ⊂
(L − L) − (L − L) − w. We see in this way that, if L is Meyer, then so is
L1 ± L2 ± · · · ± Lk (for any choice of signs) for all L1, . . . , Lk ∈�L.

Theorem 3.4. Let � be the hull of a repetitive Meyer tiling. Then the proximal
relation (resp., regional proximal relation) on � coincides with the strong proxi-
mal relation (resp., strong regional proximal relation).

Proof. We give the proof for the regional proximality relation; the proof for strong
proximality is similar and a bit simpler. Let (T, T ′) ∈ Q. Since the orbit of T is
dense, we may take x ′, y ′ in the definition of regional proximality to be of the form
x ′ = T − t and y ′ = T − t ′. Hence for all ε > 0 there exist t, t ′, v ∈Rn such that
d(T, T −t) < ε, d(T ′, T −t ′) < ε, and d(T −t−v, T −t ′−v) < ε. Moreover, we
may adjust the t and the t ′by a small amount (bounded by ε/2) so that d(T, T−t) <

ε implies B1/ε[T ] = B1/ε[T − t] and also d(T − t − v, T − t ′ − v) < ε implies
B1/ε[T − t − v] = B1/ε[T − t ′ − v]. Thus for all r > 0 there exist t, t ′, v, z∈Rn,
with |z| ≤ 1/r, such that

(i) Br [T ] = Br [T − t],
(ii) Br [T ′ − z] = Br [T − t ′ ], and

(iii) Br [T − t − v] = Br [T − t ′ − v].

Our aim is to show that we can take z = 0. Let L = p(T ) and L′ = p(T ′), where
p is a puncture map such that 0 ∈ L. The equality (i) implies that t ∈ L, and the
equality (iii) implies that (t ′ + v)− (t + v)∈L− L. Therefore, t ′ ∈L− L+ L.

From (ii) it follows that (L′−z)∩(L−t ′) �= ∅. Hence (L′−z)∩(L−L+L−L) �=
∅ and so z is in the uniformly discrete set L′ − L + L − L + L. Since |z| ≤ 1/r,
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there exists an r0 such that z = 0 if r ≥ r0. Thus T and T ′ are strong regionally
proximal.

Corollary 3.5. Consider the regional proximal relation Q on the hull of a repet-
itive Meyer tiling, and let s > 0. Up to translation, there are only finitely many
pairs of patches of the form (Bs[T ],Bs[T ′ ]) with (T, T ′)∈Q.

Proof. We denote by [(P,P ′)] the translational congruence class of a pair of
patches (P,P ′). Let (T, T ′)∈Q and s > 0. By FLC there is a finite list {P1, . . . ,Pk}
of s-patches such that any s-patch is a translate of some Pi. Hence the set of trans-
lational congruence classes [(Bs[S ],Bs[S ′ ])] with (T, T ′) ∈ Q is of the form
{[(Pi,Pj − ti,j )] : (i, j, ti,j ) ∈ I } for some subset I of {1, . . . , k}2 × Bs ′(0) and
some finite s ′. We need to show that I is finite so assume the contrary. Let (i, j, t)
be an accumulation point of I, and let vi,j ∈p(Pi)− p(Pj ) for p a puncture map.
Then t + vi,j is an accumulation point of

⋃
(i,j,ti,j )∈I p(Pi)− (p(Pj )− ti,j ).

By Theorem 3.4 there exist v ∈ Rn and S, S ′ ∈ � such that Bs[T ] = Bs[S ],
Bs[T ′ ] = Bs[S ′ ], and Bs[S − v] = Bs[S ′ − v]. It follows that the set
{[(Bs[T ],Bs[T ′ ])] : (T, T ′) ∈ Q} is contained in the set {[(Bs[S ],Bs[S ′ ])] :
p(S) ∩ p(S ′) �= ∅}. The latter set thus contains {[(Pi,Pj − ti,j )] : (i, j, ti,j ) ∈ I }
and so t+vi,j must be an accumulation point of

⋃
S,S ′∈�:p(S)∩p(S ′ )�=∅ p(S)−p(S ′).

However, by the discussion preceding Theorem 3.4, that set does not contain any
accumulation points.

If S = {Ti}i is a set of tilings or Delone sets then we denote by BR[S ] the corre-
sponding collection of R-patches, BR[S ] := {BR[Ti]}i .
Corollary 3.6. Consider the dynamical system of a repetitive Meyer tiling with
finite coincidence rank. There is an R0 such that, for all y ∈Xmax and R ≥ R0,

sup{l : #BR[π−1
max(y)− v] ≥ l for all v ∈Rn} = cr.

Proof. By Lemma 2.10 there is δ0 > 0, and by Corollary 3.5 a corresponding R0,
so that for all y:

cr = sup{l : ∃T1, . . . , Tl ∈π−1
max(y) s.t. ∀i �= j and ∀v, d(Ti − v, Tj − v) ≥ δ0}

= sup{l : ∃T1, . . . , Tl ∈π−1
max(y) s.t. ∀i �= j and ∀v,

BR0 [Ti − v] �= BR0 [Tj − v]}.
By Lemma 2.10, the first equation holds if we replace δ0 with any δ, 0 < δ ≤ δ0;
hence the second equation holds if we replace R0 with any R ≥ R0.

Let R > 0, and let

nR(x) := #BR[π−1
max(x)] = #{BR[T ] : T ∈π−1

max(x)}.
For later use we establish the following result.

Lemma 3.7. For Meyer tilings with finite maximal rank, nR is upper semi-
continuous; that is, {x : nR(x) ≥ k} is closed for all k. In particular, if R is
sufficiently large (depending on the δ0 of Lemma 2.10 ) and m∈N, then DR(m) :=
{x ∈Xmax : nR(x) ≤ m} is open.
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Proof. Recall that, for T ∈�, BR[T ] is defined to be the collection of tiles in T

that meet the closed (rather than open) ball of radius R at 0. Hence it follows that,
for all R, there exists an R ′ > R such that BR ′ [T ] = BR[T ].

The fibers of π satisfy the following property: if (xn)n is a sequence in Xmax

tending to x, then all accumulation points of sequences (Tn)n, Tn ∈ π−1
max(xn), are

contained in π−1
max(x). Because π−1

max is finite, it is also uniformly discrete; there-
fore, if n is large enough then we can define a map fn : π−1

max(xn) → π−1
max(x) by

saying that fn(T ) is the element of π−1
max(x) that is closest to T.

Now let BR[fn(T )] = BR[fn(T
′)]. By the first remark there exists an R ′ > R

such thatBR ′ [fn(T )] = BR ′ [fn(T
′)]. We may assume that n is large enough so that

d(fn(T ), T ) is small enough to guarantee that BR ′ [T − v] = BR ′ [fn(T )] for some
|v| ≤ R ′−R. Likewise, we may assume that n is large enough that BR ′ [T ′−v ′ ] =
BR ′ [fn(T

′)] for some |v ′| ≤ R ′ −R. We may suppose that R ′ −R is small, so the
equality BR ′ [fn(T )] = BR ′ [fn(T

′)] and the Meyer property together imply that
v = v ′ and hence BR ′ [T −v] = BR ′ [T ′−v]. The latter implies BR[T ] = BR[T ′ ].
This shows that nR(x) ≥ nR(xn) and thus establishes the upper semicontinuity
of nR.

4. Proximality in Model Sets

Model sets (a.k.a. “cut and project” patterns) are characterized by how they are
constructed. We outline the construction here and refer the reader to [BLeM;
FHK; M] for a thorough description.

The defining data of a model set consist of a lattice (co-compact subgroup) B ⊂
Rn × H in the product of Rn with a locally compact abelian group H such that
Rn is in irrational position w.r.t. B together with a window K (or acceptance do-
main, or atomic surface) that is a compact subset of H. We denote the boundary of
K by ∂K and the quotient group Rn ×H/B by T. The latter is a compact abelian
group that is often referred to as the LI-torus. Note that Rn acts on T by rotation:
v · ((w,h)+B) = (w+ v,h)+B; hence (T, Rn) is an equicontinuous dynamical
system.

Let π‖ : Rn × H → Rn be the projection onto the first factor and let π⊥:
Rn × H → H be the projection onto the second factor. We make the following
standard assumptions.

• The restrictions of π‖ and π⊥ to B are one-to-one.
• The restrictions of π‖ and π⊥ to B have dense image.
• The window K is the closure of its interior.
• The stabilizer of K in H is trivial; that is, h+K = K implies h = 0.

The data (Rn,H,B,K) determine a whole family of point patterns in Rn. Indeed,
for x ∈Rn ×H we let

Mx := {π‖(γ + x)∈Rn : γ ∈B, π⊥(γ + x)∈K}
so that Mx × {e} = Rn × {e} ∩ (B + x − {0} ×K), where e ∈H the neutral ele-
ment. It is well known that Mx is a Delone set under these assumptions. A Delone



Proximality and Pure Point Spectrum for Tiling Dynamical Systems 811

set arising in this way is called a model set. Furthermore, Mx = My if and only if
x − y ∈B. We define the set S of singular points by

S := {x ∈Rn ×H : π⊥(x)∈ ∂K + π⊥(B)} = Rn × {e} + B + {0} × ∂K

and denote its complement by Sc. Then Mx is repetitive if x ∈ Sc.

Proposition 4.1. The complement of S is a dense Gδ set. In particular, it is
nonempty.

Proof. By our assumptions, ∂K (and hence Rn × {e} + {0} × ∂K) has empty
interior; therefore, the interior of S is also empty. This claim results from a sim-
ple application of the Baire category theorem; see [Sc] or [FHK] for the case
H = Rk.

Suppose (for the sake of simplicity) that 0 /∈ S, and consider the hull �M of M =
M0. It is well known that Mx and My are locally indistiguishable provided x, y ∈
Sc. Furthermore Mx = My if and only if x−y ∈B. Thus �M is the completion of
the set Sc/B with respect to the metric δ(x + B, y + B) = d(Mx ,My). The met-
ric δ does not extend continuously in the (quotient of the product) topology of T,
but the converse is the basis of one of the main structural theorems for model sets.

Theorem 4.2. The map {My ∈ �M : y ∈ Sc} $Mx �→ x + B ∈ T extends to a
continuous surjection

µ : �M → T.

This surjection is equivariant with respect to the Rn-action and is one-to-one pre-
cisely on Sc/B; in other words, it is precisely the nonsingular points that have a
unique preimage.

Proof. For H a real vector space, a proof can be found in [FHK]. For the case of
more general groups H, see [BLeM].

Corollary 4.3. Repetitive model sets have minimal rank 1. In particular,
(T, Rn) is the maximal equicontinuous factor, µ = πmax, and two elements are
proximal if and only if they are mapped to the same point by µ.

Proof. The set of fiber distal points includes Sc/B, which is nonempty. Hence cr =
mr = 1. By Lemma 2.14, the proximality relation coincides with the equicontinu-
ous structure relation.

A model set is called regular if ∂K has measure 0 (w.r.t. the Haar measure on H ).

Theorem 4.4. For a repetitive regular model set, the set of fiber distal points
Xdistal

max has full Haar measure. Moreover, if the model set is not regular then Xdistal
max

has Haar measure 0.

Proof. Since the proximality relation coincides with the equicontinuous structure
relation, it follows that the set of distal points coincides with the nonsingular points
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and that Xdistal
max = Sc/B. Clearly, ∂K has strictly positive measure if and only if the

complement of Xdistal
max = Sc/B has strictly positive Haar measure. By ergodicity

of the Haar measure, S/B must have full Haar measure if its measure is strictly
positive.

5. Proximality for Meyer Substitution Tilings

5.1. Basic Notions

Suppose that A = {ρ1, . . . , ρk} is a set of translationally inequivalent tiles (called
prototiles) in Rn. Let 1 be an expanding linear isomorphism of Rn; that is, let
all eigenvalues of 1 have modulus strictly greater than 1. A substitution on A
with expansion 1 is a function 0 : A → {P : P is a patch in Rn} with the
properties that, for each i ∈ {1, . . . , k}, every tile in 0(ρi) is a translate of an ele-
ment of A and spt(0(ρi)) = 1(spt(ρi)). Such a substitution naturally extends to
patches whose elements are translates of prototiles by 0({ρi(j) + vj : j ∈ J }) :=⋃

j∈J(0(ρi(j)) + 1vj ). A patch P is allowed for 0 if there is an m ≥ 1, an i ∈
{1, . . . , k}, and a v ∈Rn such that P ⊂ 0m(ρi)− v. The substitution tiling space
associated with 0 is the collection �0 := {T : T is a tiling of Rn and every fi-
nite patch in T is allowed for 0}. Clearly, translation preserves allowed patches,
so Rn acts on �0 by translation.

The substitution 0 is primitive if, for each pair {ρi, ρj} of prototiles, there is a
k ∈ N such that a translate of ρi occurs in 0k(ρj ). If 0 is primitive then �0 is
repetitive.

If the translation action on � is free (i.e., if T − v = T implies v = 0), then �

is said to be nonperiodic. If 0 is primitive and if �0 is both FLC and nonperiodic,
then �0 is compact in the metric just described, 0 : �0 → �0 is a homeomor-
phism, and the translation action on �0 is minimal and uniquely ergodic [AP;
So1; So2]. In particular, �0 = �T for any T ∈ �0. It will be with respect to
the unique ergodic measure µ on �0 when we speak about the dynamical spec-
trum and L2-eigenfunctions. Note that 0 preserves regional proximality, so there
is an induced homeomorphism 0max on the maximal equicontinuous factor Xmax

of �0. We will assume that 0 fixes some tiling (otherwise, replace 0 by an ap-
propriate power), which means that we can identify 0max with the action of 0 on
the Pontryagin dual Ê of the group of eigenvalues (see Section 2.2).

All substitutions will be assumed to be primitive, aperiodic, and FLC.

Theorem 5.1 [So3]. All L2-eigenfunctions of a substitution tiling space can be
chosen to be continuous.

We call a substitution a Meyer substitution if every tiling T ∈�0 has the Meyer
property (i.e., if the set of punctures p(T ) is a Meyer set). This does not depend
on the choice of punctures and therefore holds true also if punctures are control
points in the sense of [LSo2]. We shall next consider primitive aperiodic Meyer
substitutions. In this context, �0 is minimal and the Meyer property is satisfied
for all T ∈�0 if it is satisfied for a single one.
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Definition 5.2 (Meyer substitution tiling). A Meyer substitution tiling is a tiling
in the hull of a primitive aperiodic Meyer substitution.

5.2. Finite Rank and Fiber Distality of Meyer Substitutions

Recall that the maximal rank of a tiling is

sup{#π−1
max(x) : x ∈Xmax},

which (of course) bounds the minimal rank.
For example, the so-called table substitution (see [BGGr]) is a Meyer substitu-

tion whose tiling system has minimal rank 4 and maximal rank 24.

Theorem 5.3. A Meyer substitution tiling system has finite maximal rank.

Proof. By Corollary 3.5 there is N such that #{B1[T ′ ] : πmax(T
′) = πmax(T )} ≤

N for all T ∈�. Suppose that T1, . . . , Tm are distinct tilings in � with πmax(Ti) =
πmax(Tj ) for all i and j. Let R be large enough that BR[Ti] �= BR[Tj ] for all
i �= j, and let k be large enough that 1k(B1(0)) ⊃ BR(0). Then B1[0−k(Ti)] �=
B1[0−k(Tj )] for i �= j. Thus m ≤ N and πmax is at most N -to-one.

Our next theorem extends the one-dimensional result of [BaKw].

Theorem 5.4. For a Meyer substitution tiling system, Xdistal
max has full Haar

measure.

Proof. Since 1 is expanding, there is a k ≥ 1 such that BR(0) ⊂ 1k(BR(0)).
Replacing 0 by 0k, we may suppose that k = 1—that is, BR(0) ⊂ 1(BR(0))—
and hence BR[0(T )] = BR[0(BR[T ])] for all T ∈ �. It follows from this
and the equality 0max � πmax = πmax � 0 that nR(0max(x)) ≤ nR(x). Hence
DR(m) := {x ∈Xmax : nR(x) ≤ m} is invariant under 0max for every m ∈ N. By
Lemma 3.7, DR(m) is open. By the ergodicity of 0max with respect to the Haar
measure (Lemma 2.23), DR(m) has full measure if it is nonempty. Since Xdistal

max =⋂
R≥R0

DR(cr), we are done once we show that DR(cr) �= ∅.
Consider a fiber with minimal rank; that is, choose x ∈Xmax such thatπ−1

max(x) =
{T1, . . . , Tmr}. Suppose that for all r > 0 there exists a w ∈ Rn such that, for all
t ∈Br(w), we have nR(x − t) ≥ mr; that is, all BR[Ti − t] (1 ≤ i ≤ mr) are dis-
tinct. Then we can find two sequences (rk)k → ∞ and (wk)k ∈Rn such that: the
(Ti −wk)k converge in �, let’s say to Si; (x −wk)k converges in Xmax, say to y;
and, for all t ∈Brk (0), all the BR[Ti − wk − t] (1 ≤ i ≤ mr) are distinct. Taking
k → ∞, we conclude that all BR[Si − t] with 1 ≤ i ≤ mr and t ∈Rn are distinct.
In particular, the Si belong to the fiber of y and are pairwise nonproximal; hence
cr ≥ mr. This shows that cr = mr and so DR(cr) is not empty.

It remains to demonstrate that our assumption is satisfied. So let us suppose the
contrary—namely, that there exists an r > 0 such that, for all w ∈ Rn, there is a
t ∈ Br(w) with nR(x − t) ≤ mr − 1. It follows that the lower density of points
t ∈ Rn with nR(x − t) ≤ mr − 1 is strictly positive. Since for all t we have that
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nR(x − t) ≤ mr (recall that x lies in a fiber of rank mr), the ergodic theorem im-
plies that

∫
Xmax

nR(x) dη(x) < mr. Hence DR(mr − 1) cannot have measure 0.
Therefore, it must have measure 1. But then

⋂
R≥R0

DR(mr − 1) has measure 1
and so there must be a fiber of rank at most mr−1, which contradicts the minimal-
ity of mr. In other words, the assumption of the preceding paragraph is correct;
hence DR(cr) is nonempty and so Xdistal

max has full measure.

Corollary 5.5. The tiling flow on a Meyer substitution tiling space has pure
discrete spectrum if and only if the proximal relation is closed.

5.3. Pisot Family Substitutions

Geometry places rather strong conditions on the collection, spec(1), of eigen-
values of the expansion matrix 1 of a substitution. To begin with, all elements of
spec(1) must have absolute value greater than 1 simply because 1 is an expan-
sion. To say more, it is convenient to introduce the notion of a family. Let p be
a monic and irreducible integer polynomial, and let c > 0 be a real number. A
collection of complex numbers of the form

Fp,c := {λ∈C : p(λ) = 0, |λ| ≥ c}
is called a family. That is, a nonempty family is a collection of all the algebraic
conjugates of some algebraic integer λ whose absolute values are no less than λ.

In general, the elements of spec(1) must be algebraic integers [Ke1; LSo1], and
if 1 is diagonalizable over C then spec(1) must be a union of families [KeSo].
In the special case that 1 = λI, the substitution is called self-similar and the
tiling space has a nontrivial equicontinuous factor (equivalently, the Rn-action has
eigenvalues) if and only if λ is a Pisot number: an algebraic integer, greater than 1,
all of whose algebraic conjugates have absolute value less than 1. We shall refer to
a family Fp,c as a Pisot family if c = 1 and no element of Fp,c has absolute value 1.

Recall that eigenvalues for a group action are continuous characters. When the
group is Rn, any such character takes the form χ(x) = e2πi〈x,β〉 for some β ∈Rn.

In this context, it is customary (as in the following theorem) to call β, rather than
χ, an eigenvalue of the action.

Theorem 5.6 [LSo2]. Consider a primitive FLC substitution with diagonaliz-
able expansion matrix 1, and suppose that spec(1) consists of algebraic conju-
gates with the same multiplicity. Then the following statements are equivalent :

(i) the substitution is Meyer ;
(ii) spec(1) is a Pisot family;

(iii) the eigenvalues are relatively dense in Rn;
(iv) the maximal equicontinuous factor is nontrivial.

To capture all these desirable qualities, we say that a substitution is a Pisot family
substitution if it is primitive, aperiodic, and FLC and if its linear expansion is diag-
onalizable over C and has a Pisot family spectrum with all elements of the same
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multiplicity. The degree of such a substitution is the algebraic degree of the ele-
ments of the Pisot family, and its multiplicity is the common multiplicity of those
elements as eigenvalues of the expansion.

Theorem 5.6 shows that, under the stated assumptions, either the maximal equi-
continuous factor is a single point or the set of eigenvalues contains a subgroup that
is relatively dense in R̂n. We will improve this result by determining completely
the form of the group of eigenvalues and the maximal equicontinuous factor for
Pisot family substitutions. The key result is an extension of Corollary 3.5.

Theorem 5.7. Let � be the continuous hull of an aperiodic primitive FLC sub-
stitution 0 with expansion matrix 1. Let g : � → X be a factor of the tiling flow
such that the Rn-action on X is locally free and

(i) g(T ) = g(T ′) implies g(0(T )) = g(0(T ′)).
Let p be a puncture map. Then the set

O := {x : ∃T, T ′ with g(T ) = g(T ′), τ ∈ T, τ ′ ∈ T ′, and
�
τ ∩ �

τ ′ �= ∅
s.t. p(τ)− p(τ ′) = x}

is finite.

Proof. Suppose O is infinite. Then, for all n, there exist sequences (Tn)n, (T ′
n )n ∈

� with τ ∈ Tn, τ ′
n ∈ T ′

n , g(Tn) = g(T ′
n ), and �

τ ∩ �
τ ′
n �= ∅ and with p(τ ′

m) �= p(τ ′
n)

for m �= n. The conclusion of the theorem is independent of the choice of punc-
ture, so we may assume that the puncture of any tile is in the interior of the support
of the tile. Translating, we may also assume 0 = p(τ), and passing to a subse-
quence allows us to assume that

(ii) Tn → T and T ′
n → T ′ for some T and T ′,

(iii) p(τ ′
n) → p(τ ′) for τ ′ ∈ T ′, and

(iv) 0n(T ) → T̄ and 0n(T ′) → T̄ ′ for some T̄ and T̄ ′.
For xn := p(τ ′

n)−p(τ ′), there is a function m : N → N with m(n) → ∞ as well
as an x �= 0 (but close enough to 0 that it acts freely) such that

(v) 1m(n)(xn) → x.

Note that, since 0∈ �
τ and τ ∈ Tn,

(vi) 0m(n)(Tn) → T̄ ;
likewise, since (at least for large n) T ′

n − xn and T ′ have exactly the same tiles at
the origin, it follows that

(vii) 0m(n)(T ′
n − xn) → T̄ ′.

By the continuity of g, g(Tn) = g(T ′
n ) implies g(T ) = g(T ′) and hence (i) and (iv)

together imply g(T̄ ) = g(T̄ ′). Also, g(Tn) = g(T ′
n ) implies g(0m(n)(Tn)) =

g(0m(n)(T ′
n )), so

lim g(0m(n)(T ′
n − xn))

(vii)= g(T̄ ′) = g(T̄ )
(vi)= lim g(0m(n)(Tn)) = lim g(0m(n)(T ′

n )).
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Since lim g(0m(n)(T ′
n − xn)) = lim g(0m(n)(T ′

n ))− x by (v), we obtain a contra-
diction to the freeness of the action of x on X.

Remark. Putnam proves in [P] that if g is any u-resolving factor map between
Smale spaces (i.e., if g is injective on unstable sets), then g is finite-to-one. Theo-
rem 5.7 is a corollary to that result under the assumption that g is a semiconjugacy
with a suitably hyperbolic action on X—as will be the case for applications of
Theorem 5.7 in this paper.

The following statement is the required extension of Corollary 3.5.

Corollary 5.8. Given the hypotheses of Theorem 5.7, up to translation there
are only finitely many pairs of patches of the form (B0[T ],B0[T ′ ]) with g(T ) =
g(T ′).

Corollary 5.9. Suppose that the hypotheses of Theorem 5.7 hold and that
g(T ) = g(T ′) implies g(0−1(T )) = g(0−1(T ′)); then g is boundedly finite-
to-one.

Proof. The proof of this result is the same as that for Theorem 5.3.

We now identify R̂n with the dual vector space Rn∗ such that b∗ ∈Rn∗ corresponds
to the character t �→ e2πıb∗(t). Then each endomorphism 1 on Rn has a dual endo-
morphism, which we denote 1∗; with respect to an orthonormal basis, 1∗ is the
transpose of 1.

Theorem 5.10. Consider a Pisot family substitution of degree d and multiplic-
ity J and with linear expansion 1. There exists a lattice B of rank dJ that is
relatively dense in Rn∗ and such that the group of eigenvalues of the Rn-action is
exactly

E = lim−→(B,1∗).

Proof. It was established in [LSo2] that, for a Pisot family substitution, there exist
J vectors b∗1 , . . . , b∗J ∈Rn∗ such that {1∗mb∗i : 1 ≤ i ≤ J, 0 ≤ m ≤ d −1} is a col-
lection of eigenvalues that is linearly independent over Q and spans Rn∗. (Linear
independence over Q is not stated explicitly in [LSo2], but it can be easily derived
from what is written there.) Let B ′ be the group generated by these eigenvalues; it
is a lattice of rank dJ. Since E is invariant under 1∗, it contains the group H gen-
erated by {1∗mb∗i : 1 ≤ i ≤ J, m∈Z} = lim−→(B ′,1∗). The strategy is to show that
i : H ↪→ E is a finite index inclusion of H in E , which is equivalent to the map
î : Ê → Ĥ being finite-to-one. This can be seen as follows.

Let g : X → Ĥ for g = î � πmax. This is a factor map because g is surjective
and Rn-equivariant, where the Rn-action on j ∈ Ĥ is given by (t · j)(1∗mb∗i ) =
e2πı1∗mb∗

i
(t)j(1∗mb∗i ). Since H is relatively dense in Ĝ, Lemma 2.22 implies that

this action is locally free. Furthermore, 1∗m � i = i � 1∗m and so 1∗m � g =
g �0m. Hence g satisfies the assumptions of Corollary 5.9. It follows that ı̂ must
be finite-to-one and that H is a finite index subgroup of E .
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Now it follows that there are finitely many vectors w1, . . . ,wk such that∑
i wi +H = E . So for some N, Nwi ∈H for all i (otherwise the index would be

infinite). By definition of the direct limit, this means that Nwi ∈1∗−mB ′ for some
m and hence also that wi ∈ 1

N
1∗−mB ′. Let B be the group generated by 1∗−mB ′

and the wi. Then we have the inclusions B ′ ⊂ B ⊂ 1
N
B ′, all of finite index. Hence

B has the same rank as B ′. Note also that B is invariant under 1∗, since both E and
H are invariant. Thus we have B ⊂ E and E ⊂ lim−→(B,1∗). The invariance of E
under 1∗ now implies that the last inclusion is an equality.

Corollary 5.11. The maximal equicontinuous factor is an inverse limit of
dJ -tori,

Ê = lim←−(T dJ, 1̂∗),

where T dJ = B̂. Its Rn-action is free, and 0max is ergodic with respect to Haar
measure.

Proof. Only the last point requires comment. By definition, a linear expansion
has no eigenvalues on the unit circle, so the result follows from Lemma 2.23.

Recall that 0 is assumed to have a fixed point, so 0max = 1̂∗. (Here 1̂∗ is the dual
map to 1∗, which should not be confused with 1∗∗ = 1 because dualization is
w.r.t. the group B and not w.r.t. R̂n.) In fact, by the Pisot family condition, 1̂∗ can
be written as diag(A, . . . ,A) (with J copies) in some basis for some integer ma-
trix A whose characteristic polynomial is the minimal monic polynomial having
the eigenvalues of 1 as roots. Note that if detA = ±1 then E = B and Ê = T dJ.

5.4. Further Results

The following lemma is a generalization of a result from [BaKw] that is based on
the definition of the coincidence rank.

Lemma 5.12. Consider a Meyer substitution tiling system, x ∈Xmax and T, T ′ ∈
π−1

max(x). If T and T ′ are not proximal, then they do not have a single tile in com-
mon: T ∩ T ′ = ∅.
Proof. Recall that δ0 is such that cr = cr(x, δ0). Therefore, if T, T ′ ∈π−1

max(x) and
if T and T ′ are not proximal, then infv d(T − v, T ′ − v) ≥ δ0 and δ0 does not de-
pend on T, T ′. By Theorem 5.6 and Corollary 3.5, we can reformulate this claim
as follows:

sup
v

{R : BR[T − v] = BR[T ′ − v])} ≤ R0 < +∞,

where R0 does not depend on T, T ′. Since the substitution 0 preserves fibers of
πmax and respects the proximality relation, we also have supv{R : BR[0(T )−v] =
BR[0(T ′)−v])} ≤ R0. ButBR[T−v] = BR[T ′−v] implies thatBλR[0(T )−v] =
BλR[0(T ′)− v] for some λ > 1. This is possible only if R0 = 0.



818 Marcy Barge & Johannes Kellendonk

The coincidence rank thus counts the maximal number of tilings in a fiber of πmax

that are pairwise noncoincident in the following sense: they do not share a single
tile.

6. Syndetic Proximality

6.1. General Results

In [C], Clay discusses proximality and regional proximality as well as the no-
tion of syndetic proximality. We investigate this relation more closely for Meyer
substitution tilings. Fairly general dynamical systems (X,G) are allowed in [C];
however, since we are interested in tilings of the Euclidean space, we restrict the
discussion to G = Rn acting continuously on a compact metrizable space X.

For ε > 0 and x, y ∈X, let Bε(x, y) = {t ∈Rn : d(t ·x, t ·y) ≤ ε}. Recall that a
relatively dense subset B ⊂ G of a topological group G is called syndetic if there
exists a compact subset K ⊂ G such that K + B = G. For G = Rn, the notions
of “syndetic” and “relatively dense” coincide.

Definition 6.1 [C]. Two points x, y ∈ X are syndetically proximal, written
x ∼syp y, if Bε(x, y) is syndetic for all ε > 0.

Note that a subset B is syndetic if and only if its complement does not contain a
translate of every compact subset of Rn. So if we denote by A the collection of
all sets A ⊂ Rn that contain a translate of every compact subset of Rn, then we
can rephrase syndetic proximally as follows: x, y ∈X are proximal in A, written
x ∼A,p y, if inf t∈A d(t · x, t · y) = 0.

Lemma 6.2. x ∼syp y if and only if x ∼A,p y for all A∈A.

Proof. If Bε(x, y) is not syndetic then Bε(x, y)c ∈A. Hence for A = Bε(x, y)c we
cannot have x ∼A,p y. If Bε(x, y) is syndetic then Bε(x, y)c /∈ A , in which case
there exists a compact K such that Bε(x, y)c does not contain any of its translates.
Hence no A∈A is contained in Bε(x, y)c. But then all A ∩ Bε(x, y) �= ∅. Since ε

is arbitrary in that argument, the statement of the lemma follows.

The following useful facts (and much more) are proved in [C].

Theorem 6.3. (i) Syndetic proximality is an equivalence relation [C, Thm. 1].
(ii) If proximality is closed, then it agrees with syndetic proximality [C, Thm.

3(3)].
(iii) Let x ∼syp y, and let x̄ = lim tn · x and ȳ = lim tn · y for some sequence

(tn)n ⊂ G. Then x̄ ∼syp ȳ [C, Lemma 4].

6.2. Syndetic Proximality for Meyer Substitutions

In this section, 0 will denote a substitution whose tiling space � has the Meyer
property. We show that syndetic proximality is a closed relation on�. The groupG

is Rn, and again we denote the action by T − v instead of by v · T.
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We say that a pair of patches (P,P ′) occurs in the pair of tilings (T, T ′) if there
is a v ∈Rn such that P − v ⊂ T and P ′ − v ⊂ T ′. Let R be the relation on � de-
fined as follows: (S, S ′)∈R if and only if, for each v ∈Rn and each r > 0, there
exist T, T ′ ∈� with T ∼syp T ′ such that (Br [S−v],Br [S ′−v]) occurs in (T, T ′).

Lemma 6.4. The relation R is closed, and R ⊂ Q.

Proof. We show first that R is closed. Suppose (Sn)n and (S ′
n)n are two converg-

ing sequences—toward S and S ′, respectively—such that (Sn, S ′
n)∈R. Let v and r

be given. Then there is an N such that, for all n ≥ N, there exist εn, ε ′n such that

Br [S − v − εn] = Br [Sn − v], Br [S
′ − v − ε ′n] = Br [S

′
n − v].

Furthermore, we may assume that the εn and ε ′n form sequences tending to 0.
Since (Sn, S ′

n) ⊂ R , there exist T, T ′ such that (Br [S − v− εn],Br [S ′ − v− ε ′n])
occurs in (T − εn, T ′ − ε ′n) and T − εn ∼syp T ′ − ε ′n. By the Meyer property
(Corollary 3.5) we must have εn = ε ′n for large enough n; therefore, T ∼syp T ′.
Moreover, (Br [S − v],Br [S ′ − v]) occurs in (T, T ′) and so (S, S ′)∈R.

Let (S, S ′)∈R. For each k ∈N there are Tk ∼syp T ′
k such that (Bk[S ],Bk[S ′ ])

occurs in (Tk , T ′
k ). ThenTk → S andT ′

k → S ′. SinceTk ∼syp T ′
k implies (Tk , T ′

k )∈
Q and since Q is closed, it follows that (S, S ′)∈Q.

Lemma 6.5. Suppose that (T, T ′)∈Q and that the pair of finite patches (P,P ′)
occurs in (T, T ′). Then there exist l ∈ Z and L ∈ N such that (P,P ′) occurs in
(0−(kL+l )(T ),0−(kL+l )(T ′)) for all k ∈N.

Proof. Let r > 0 be large enough that P ⊂ Br [T ] and P ′ ⊂ Br [T ′ ]. Since 0−1

preserves regional proximality, we have (0−k(T ),0−k(T ′))∈Q for all k. Hence
we may conclude from Corollary 3.5 that there are ki → ∞ such that

(Q,Q′) := (Br [0
−ki(T )],Br [0

−ki(T ′)])

does not depend on i. Let i be large enough that

Br [T ] ⊂ 0ki(Br [0
−ki(T )]), Br [T

′ ] ⊂ 0ki(Br [0
−ki(T ′)]),

and let j > i be large enough that

Br [0
−ki(T )] ⊂ 0kj−ki(Br [0

−kj(T )]), Br [0
−ki(T ′)] ⊂ 0kj−ki(Br [0

−kj(T ′)]).

Let L := kj − ki. Then there is an l ′ ∈ {0, . . . ,L− 1} such that ks ≡ l ′ modulo L

for infinitely many s. So (Q,Q′) occurs in (0−(kL+l ′ )(T ),0−(kL+l ′ )(T ′)) for all
k ∈ N and (P,P ′) occurs in (0−(kL+l )(T ),0−(kL+l )(T ′)) for all k ∈ N, where
l := l ′ − ki.

Proposition 6.6. Syndetic proximality is closed for Meyer substitution tiling
spaces.

Proof. We will prove that R is the same as the syndetic proximality relation.
That T ∼syp T ′ implies (T, T ′) ∈ R is immediate, so suppose (S, S ′) ∈ R. By
Lemma 6.4, (S, S ′) ∈Q and hence there is an increasing sequence of positive in-
tegers ki → ∞ such that
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(P,P ′) := (B1[0−ki(S)],B1[0−ki(S ′)])

does not depend on i. By recognizability (i.e., since 0 is invertible), there is an
r > 0 such that if

(Br [T ],Br [T
′ ]) = (Br [S ],Br [S

′ ])
then

(B1[0−k1(T )],B1[0−k1(T ′)]) = (B1[0−k1(S)],B1[0−k1(S ′)]).

Since (S, S ′) ∈R , there are T ∼syp T ′ with (Br [T ],Br [T ′ ]) = (Br [S ],Br [S ′ ]).
We apply Lemma 6.5 to (0−k1(T ),0−k1(T ′)) and so obtain l ∈Z and L∈N such
that (P,P ′) occurs in

(0−(kL+l )(0−k1(T )),0−(kL+l )(0−k1(T ′)))

for all k ∈ N. Let l ′ ∈ {0, . . . ,L − 1} be such that ki ≡ l ′ modL for infinitely
many i, say kij = mjL+ l ′ with mj ∈N and mj → ∞. Let T̄ := 0l+k1−l ′(T ) and
T̄ ′ := 0l+k1−l ′(T ′). Then T̄ ∼syp T̄ ′ and (P,P ′) occurs in (0−kij (T̄ ),0−kij (T̄ ′))
for all j. Suppose B1[0−kij (S)] − vj ∈ 0−kij (T̄ ) and B1[0−kij (S ′)] − vj ∈
0−kij (T̄ ′), and let rj → ∞ be such that 0kij (B1[0−kij (S)]) ⊃ Brj [S ] and
0kij (B1[0−kij (S)]) ⊃ Brj [S ]. Then T̄ + λkij vj and T̄ ′ + λkij vj agree with S and
S ′ (respectively) on Brj (0), so T̄ + λkij vj → S and T̄ ′ + λkij vj → S ′ as j → ∞.

It then follows from Lemma 3 that S ∼syp S ′.

Corollary 6.7. For Meyer substitution tiling spaces, proximality is closed if
and only if it coincides with syndetic proximality.

This result can be compared to [MoOp,Thm. 5.3], which states that—for constant-
length substitutions with overall coincidence—the proximal relation coincides
with the syndetically proximal relation. More precisely, the substitutions in ques-
tion are symbolic substitutions and the proximal and syndetic proximal relation
considered are for the Z-action on the substitution sequence space. But given that
the substitution has constant length, we can suspend the letters to intervals of equal
length and then label them according to the letter type. Then the suspension flow
corresponds to the translation action on the tiling space of a Meyer substitution
tiling in the sense discussed in this paper. If we also require that the substitu-
tion be primitive, then overall coincidence implies pure point dynamical spectrum
(for both the Z-action on the substitution sequence space and the R-action on the
substitution tiling space � [De]) and thus, as we saw in Section 5.2, it implies
closedness of the proximality relation. Hence [MoOp, Thm. 5.3] corresponds to
a special case of one direction of Corollary 6.7.
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