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Proper Holomorphic Mappings on Flag Domains
of SU(p, q) Type on Projective Spaces

Sui-Chung Ng

1. Introduction

The objects of study in this paper are the domains in P
n defined by

D
�
n =

{
[z0, . . . , zn] ∈ P

n :
�∑
j=0

|zj |2 >
n∑

j=�+1

|zj |2
}

and the proper holomorphic mappings among them. They are examples of the
so-called flag domains in P

n when the latter is regarded as a flag variety. More
explicitly, they are open orbits of the real forms SU(�+ 1, n− �) of the complex
simple Lie group SL(n+1, C)when both of which act on P

n as biholomorphisms.
The domain D

0
n is just the complex unit n-ball embedded in P

n, and there has
been an extensive literature in the study of their proper holomorphic mappings
in the last couple of decades. For a survey, see [Fo]. In general, when the codi-
mension is high, the set of proper holomorphic mappings between complex unit
balls is large and difficult to determine. On the other hand, in [BH] and [BEH]
the domains D

�
n with � ≥ 1 and the associated holomorphic mappings are stud-

ied by methods in Cauchy–Riemann geometry. It appears that there is in general
much more rigidity when � ≥ 1. Indeed, there is one essential difference between
the complex unit n-ball and the domains D

�
n with � ≥ 1, for the latter contain lin-

ear subspaces of P
n. Motivated by this, the author of this paper studied in [N] the

domains D
�
n, � ≥ 1, and their generalizations in Grassmannians by exploiting the

structure of the moduli spaces of compact complex analytic subvarieties. Rigidity
results analogous to those of [BH] are obtained in a more geometric way.

We will follow the terminology in [BH; BEH] and call � the signature of the
domain D

�
n. As far as rigidity of holomorphic mappings among those domains is

concerned, the determining factor should be the difference in signatures rather than
the codimension. This is illustrated in [BH], for instance, where it is shown that if
the domain and target are of the same signature then any local proper holomorphic
map is the restriction of a linear embedding between the ambient projective spaces.
On the other hand, Baouendi, Ebenfelt, and Huang [BEH] studied the situations
with a small signature difference. Together with other results, they proved that
there is partial rigidity for local proper holomorphic mappings h : U ⊂ D

�
n → D

�′
m
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when 1 ≤ � < n/2, 1 ≤ �′ < m/2, and �′ ≤ 2� − 1. Furthermore, simple exam-
ples can be constructed explicitly to demonstrate that their partial rigidity is best
possible and that, in particular, we cannot have full rigidity for local proper holo-
morphic mappings—in other words, there exist local proper holomorphic maps
that are not the restrictions of linear embeddings between projective spaces.

The main purpose of the current paper is to prove the following theorem re-
garding the rigidity for global proper holomorphic mappings among D

�
n when the

difference in signatures is small.

Main Theorem. Let 1 ≤ � < n/2, let 1 ≤ �′ < m/2, and let f : D
�
n → D

�′
m be

a proper holomorphic map. If �′ ≤ 2�−1, then f extends to a linear embedding
of P

n into P
m.

Remarks. (1) In [BEH] it has been proved, under the same assumptions, that the
image of f is contained in a projective linear subspace of dimension n+ (�′ − �).
Our proof is independent of this result.

(2) In the theorem, for � = 1 (which also forces �′ = 1) the above result was
obtained in [BH] and a more geometric proof was given in [N].

(3) Without further assumptions, the condition �′ ≤ 2�−1 is necessary to guar-
antee linearity. This is illustrated by the nonlinear mapping from P

3 to P
5 de-

fined by
[z0, z1, z2, z3] �→ [

z2
0,

√
2z0 z1, z2

1, z2
2,

√
2z2z3, z2

3

]
.

It is easy to see that this map restricts to a proper holomorphic map from D
1
3 to D

2
5 .

This example is taken from [BH].

We now discuss the scheme of proof for the Main Theorem. Our proof relies on
the following linearity criterion of Feder [F].

Feder’s Theorem. Let h : P
� → P

�′ be a holomorphic immersion. If �′ ≤
2�− 1, then h is linear.

In order to apply Feder’s theorem, we have to show two things: (i) there exists
some �-dimensional projective linear subspace L ⊂ D

�
n on which the restriction

of f is an immersion; (ii) the image f(L) is contained in some �′-dimensional
projective linear subspace in P

m.

We prove (i) by first showing that f extends to a rational map from P
n to P

m;
this is achieved by standard Hartogs’extension techniques in several complex vari-
ables. From that we can furthermore deduce the finiteness of f on D

�
n. We then

establish our key Proposition 3.4, which, roughly speaking, allows us to extract
from a finite holomorphic mapping some holomorphic immersions of linear sub-
spaces of sufficiently high dimension. The statement is obtained essentially by
analyzing the kernel of the differential of f.

For (ii) we basically follow the same approach as in [N]. We first prove that
�-dimensional projective linear subspaces in the boundary ∂D�n are mapped to �′-
dimensional projective linear subspaces in the target space due to the properness
of f. Then, by analyzing the moduli space of these projective linear subspaces,
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we prove that the boundary behavior can be carried over to the interior and hence
(ii) follows.

Once we establish (i) and (ii), Feder’s theorem says that the restriction of f on
some �-dimensional projective linear subspace is linear; then it is not difficult to
deduce that deg(f ) = 1.

Remark. It has been pointed out to me by Professor Xiaojun Huang and the
referee that the main theorem can also be obtained with the help of the results
in [BEH].

Acknowledgments. The essential part of this research was done when the au-
thor was a postdoctoral fellow at the University of Hong Kong. He would like
to thank Professor Ngaiming Mok for much invaluable advice and especially for
pointing out the possible relevance of Feder’s theorem to the problem. The author
would also like to thank Professor Xiaojun Huang for many fruitful discussions
and for his detailed explanation of his work in [BH] and [BEH]. Finally, he would
also like to thank the referee for comments and suggestions for improving the
paper’s readability.

2. Linear Subspaces of DDD�
n and Foliations

The structure of the set of projective linear subspaces contained in D
�
n is studied

in [N], and it is crucial also to this paper. In order to make the paper more self-
contained, we will briefly recall some relevant facts in this section.

For a point [z] = [z0, . . . , zn] ∈ P
n, we split its homogeneous coordinates as

[z] = [z ′, z ′′ ]�, where z ′ = (z0, . . . , z�) and z ′′ = (z�+1, . . . , zn). We denote the
closure of D

�
n in P

n by D̄
�
n. We first recall the definition of a type-I irreducible

bounded symmetric domain and its compact dual, the complex Grassmannian.

Definition 2.1. LetM(p, q; C) be the set of p×q complex matrices. We iden-
tify M(p, q; C) as C

pq. The type-I irreducible bounded symmetric domain �p,q
is the domain in C

pq defined by�p,q = {A∈M(p, q; C) : I −AAH > 0}, where
AH denotes the Hermitian transpose of A. As a Hermitian symmetric space, the
compact dual of �p,q is the complex Grassmannian of p-dimensional linear sub-
spaces of C

p+q and we denote it by Gp,q .

Proposition 2.2. D
�
n (resp. D̄

�
n) contains a family of �-dimensional projective

linear subspaces. They are maximal compact complex analytic subvarieties in
D
�
n (resp. D̄

�
n). Moreover, the set of all such linear subspaces is parameterized

by ��+1,n−� (resp. �̄�+1,n−�). Furthermore, if � < n/2, then the boundary ∂D�n
also contains a family of �-dimensional projective linear subspaces and the Shilov
boundary of ��+1,n−� parameterizes precisely those contained in the boundary.

Proof. The complete proof is given in [N, Prop. 2.2, Prop. 2.3, Lemma 2.4].
Here we just give the explicit parameterization of the linear subspaces. Let A ∈
M(�+ 1, n− �; C). Consider the �-dimensional linear subspace
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{[z ′, z ′′ ]� ∈ P
n : z ′′ = z ′A} ∼= P

� ⊂ P
n.

Then as z ′z ′H > z ′AAH z ′H for all z ′ if and only if I −AAH > 0, we see that this
linear subspace is contained in D

�
n if and only if A ∈ ��+1,n−�. The parameteri-

zation extends to the respective closures in the natural way. Note that when � <
n/2, the Shilov boundary of ��+1,n−� is just the set of all matrices A such that
AAH = I. For such an A, the above linear subspace will then be contained com-
pletely in ∂D�n.

In what follows, by the “�-Grassmann bundle of a manifoldM ”, denoted G�TM,
we mean the bundle of Grassmannians of the �-planes in each tangent space onM.
We denote the Grassmannian of �-planes in the tangent space at p ∈M byG�TpM.

Proposition 2.3. Let π : G�TD
�
n → D

�
n be the �-Grassmann bundle of D

�
n.

There is an open set V �n ⊂ G�TD
�
n, π(V

�
n ) = D

�
n, such that V �n is a trivial holo-

morphic P
�-bundle over ��+1,n−�.

Proof. Fix a point p ∈ D
�
n. Since P

� is compact and D
�
n is open, we deduce that

there is an open set Up ⊂ G�TpD
�
n consisting of precisely all the tangent �-planes

that are tangent to some �-dimensional projective linear subspace contained in D
�
n.

Since the tangent plane at a point uniquely determines the linear subspace, by
Proposition 2.2 the statements in Proposition 2.3 are immediate.

The P
�-foliation of V �n is just the universal family of �-dimensional projective lin-

ear subspaces in D
�
n, and we denote it by � : V �n → ��+1,n−�. Furthermore, it is

simply the restriction of the standard universal family of �-dimensional projective
linear subspaces in P

n, which we denote by � : G�T P
n → G�+1,n−�.

Lemma 2.4. If � < n/2, then any germ of a complex submanifold in ∂D�n must
lie in an �-dimensional projective linear subspace contained in ∂D�n.

Proof. By [W], the �-dimensional projective linear subspaces contained in ∂D�n are
the holomorphic arc components or boundary components of ∂D�n, whose defin-
ing properties imply the statement of the lemma. For a more elementary proof,
see [N, Lemma 2.4].

3. Rationality, Finiteness, and Immersiveness

We will first prove that every proper holomorphic map f : D
�
n → D

�′
m , � ≥ 1, ex-

tends to a finite rational map. We begin with an elementary lemma in algebraic
geometry.

Lemma 3.1. Let h : P
n → P

m be a rational map. If S ⊂ P
n is a compact com-

plex analytic subvariety in the domain of h and if h is constant on S, then S is a
finite set of points.
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Proof. By composing hwith a linear transformation, we may assume that h(S) =
[1, 0, . . . , 0]. Let h = [h0, . . . ,hm], where all hj are polynomials of the same de-
gree. By assumption, for 1 ≤ j ≤ m we have hj |S ≡ 0. If S is of positive di-
mension, then the zero set of h0 must intersect S and hence S intersects the set of
indeterminacy of h, which violates our initial assumption. Thus, S is finite set of
points.

Proposition 3.2. The proper holomorphic map f extends to a rational map from
P
n to P

m. Furthermore, f is a finite map.

Proof. For each j ∈ {0, . . . , n}, letUj ⊂ P
n be the open set defined by zj �= 0. Note

that the complement P
n \D

�
n is the domain defined by

∑�
j=0|zj |2 ≤ ∑n

j=�+1|zj |2.
In particular, we have P

n \ D
�
n ⊂ ⋃n

j=�+1Uj .

Hence, it suffices to establish the meromorphic extension of the component
functions of f (as meromorphic functions) on Uj for each j ∈ {�+1, . . . , n}. Now
fix j ∈ {� + 1, . . . , n}; then, in terms of the standard inhomogeneous coordinates
(w1, . . . ,wn) on Uj , the domain D

�
n ∩ Uj is defined by the inequality

�+1∑
k=1

|wk|2 >
n∑

k=�+2

|wk|2 + 1.

If we decompose Uj ∼= C
n = C

�+1 × C
n−�−1 then, for every relatively compact

open set V � C
n−�−1 containing the origin, the component functions of f extend

meromorphically over C
�+1 ×V ⊂ C

n by Hartogs’ extension [S] since �+1 ≥ 2.
In other words, f extends to a meromorphic map from Uj to P

m.We have thereby
established the meromorphic extension of f on each Uj , j ∈ {� + 1, . . . , n}, so f
extends to a meromorphic and hence rational map from P

n to P
m.

Now, since f : D
�
n → D

�′
m is proper and holomorphic, for every p ∈ D

�′
m it fol-

lows that the preimage f −1(p) ⊂ D
�
n is a compact complex analytic subvariety

in P
n and hence is a finite set (by Lemma 3.1). Thus, f is a finite map.

In the remainder of this section we will prove the paper’s key proposition. It is by
virtue of this proposition that we can extract, from f , holomorphic immersions of
projective spaces of sufficiently high dimension. We need the following dimen-
sion formula in its proof.

Lemma 3.3. Let V be an n-dimensional complex vector space, and letGV (�) be
the Grassmannian of �-dimensional vector subspaces of V. Fix a k-dimensional
vector subspaceW ⊂ V and denote by W ⊂ GV (�) the irreducible analytic sub-
variety consisting of elements having nontrivial intersection withW. Then

dim(W ) =
{
(k − 1)+ (�− 1)(n− �) if k ≤ n− �,
�(n− �) if k > n− �.

Proof. If k > n− � then the lemma is trivial, since in this case W = GV (�) and
dim(GV (�)) = �(n− �).
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So suppose k ≤ n− �; in this case, W is simply the closure of a Schubert cell
in GV (�) and one can follow the procedures in [GHa, Chap. 1, Sec. 5] to calcu-
late its dimension. For the convenience of the reader, we provide an elementary
proof here.

We may simply take V = C
n. Let E� = {(z1, . . . , zn) ∈ C

n : z�+1 = z�+2 =
· · · = zn = 0}. Let π : C

n → E� be the canonical projection and put U =
{Q ∈GCn(�) : π(Q) = E�}. Then U is a standard Euclidean coordinate chart in
GCn(�) and U ∼= C

�(n−�). Note that every Q∈U can be represented by an �× n
matrix of the form 



1 0 · · · 0 z1,1 · · · z1,(n−�)
0 1 · · · 0 z2,1 · · · z2,(n−�)

. . .
...

0 0 · · · 1 z�,1 · · · z�,(n−�)


,

in which the rows constitute a basis of Q. The zj,k are precisely the standard
Euclidean coordinates on U.

Adding a basis ofW as rows to the preceding matrix yields a (k+�)×nmatrix.
Now it is easy to see that the condition dim(Q ∩W) ≥ 1 is given by the vanish-
ing of n− (k + �)+ 1 minors of size (k + �)× (k + �). Equivalently, W ∩ U is
defined by n− (k + �)+ 1 independent algebraic equations and so

dim(W ) = dim(GCn(�))− [n− (k + �)+ 1]

= �(n− �)− [n− (k + �)+ 1]

= (k − 1)+ (�− 1)(n− �).
Proposition 3.4. Let g : P

n → P
m be a finite rational map. Then, for � <

n/2, the restriction of g on a general �-dimensional projective linear subspace is
a holomorphic immersion.

Proof. Let X ⊂ P
n be the indeterminacy of g and let U := P

n \ X. We still de-
note the restriction of g on U as g; thus g : U → P

m is a finite holomorphic map.
Let dg : TU → T P

m be the differential of g. Since g is finite—in particular, not
totally degenerate—dg naturally induces a meromorphic map [dg] from G�TU
(the �-Grassmann bundle of U) to G�T P

m. Let Z ⊂ G�TU be the set of indeter-
minacy of [dg].We are going to show that the complex analytic subvariety Z is of
dimension less than (�+ 1)(n− �). Assume this dimension estimate for the mo-
ment. Now let � : G�T P

n → G�+1,n−� be the universal family of �-dimensional
projective linear subspaces in P

n (see Proposition 2.3 and the paragraph there-
after). Note that � is proper and hence �(Z) ⊂ G�+1,n−� is a locally closed
complex analytic subvariety. But dim(G�+1,n−�) = (�+ 1)(n− �) and so, by our
dimension estimate,�(Z) is not dense inG�+1,n−�. Thus, for a general point q ∈
G�+1,n−�, the differential [dg] is well defined on�−1(q) ∼= P

�. This is equivalent
to saying that the restriction of g on the �-dimensional projective linear subspace
corresponding to �−1(q) is an immersion, and the proof is complete.

We now prove the dimension estimate. For k ∈ {1, . . . , n}, let Ik ⊂ U be the set
of points for which the kernel of dg (as a linear map at each individual point) is
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of dimension at least k. Since g is finite, Ik ⊂ U is a complex analytic subvari-
ety of dimension at most n− k and In ⊂ · · · ⊂ I1 = π(Z), where π : G�TU →
U is the canonical projection. Now for every p ∈ U, the fibre of Z over p (i.e.,
Z ∩G�TpU) is the set of �-planes in TpU having a nontrivial intersection with the
kernel of dg at p. By Lemma 3.3,

dim(Z ∩G�TpU)
=

{
(k − 1)+ (�− 1)(n− �) if p ∈ Ik \ Ik+1, k ∈ {1, . . . , n− �},
�(n− �) if p ∈ In−�+1.

(∗)

Let Zk = π−1(Ik) ⊂ Z, where 1 ≤ k ≤ n. It is clear that each Zk is also a com-
plex analytic subvariety of G�TU and that Zn ⊂ Zn−1 ⊂ · · · ⊂ Z1 = Z. We start
from Zn. Considering the projection π, we deduce that

dim(Zn) ≤ dim(fibre)+ dim(base) = dim(Z ∩G�TpU)+ dim(In),

where p ∈ In is arbitrary. Consequently, we have

dim(Zn) ≤ �(n− �)+ 0 < (�+ 1)(n− �)
by (∗). Next, Zn−1 \ Zn is a locally closed complex analytic subvariety and its
dimension, by similar reasoning, is at most equal to

�(n− �)+ 1< �(n− �)+ (n− �) = (�+ 1)(n− �)
because � < n/2. Hence

dim(Zn−1) < (�+ 1)(n− �).
With � < n/2, for every k ∈ {1, . . . , �− 1} we analogously have

�(n− �)+ k < �(n− �)+ (n− �) = (�+ 1)(n− �).
Thus we can repeat the previous argument to conclude that

dim(Zn) ≤ dim(Zn−1) ≤ · · · ≤ dim(Zn−�+1) < (�+ 1)(n− �).
Observe that Zn−� \ Zn−�+1 is a locally closed complex analytic subvariety

and so

dim(Zn−� \ Zn−�+1) ≤ dim(Z ∩G�TpU)+ dim(In−�) (p ∈ In−�)
≤ [(n− �− 1)+ (�− 1)(n− �)] + �
= (n− 1)+ (�− 1)(n− �)
< (�+ 1)(n− �),

where the term in brackets follows from (∗) and where the last inequality is again
due to our assumption that � < n/2. Consequently,

dim(Zn−�) < (�+ 1)(n− �).
By repeating the argument, we get for every k ∈ {1, . . . , n − �} that dim(Zk) <
(�+ 1)(n− �); thus we have established dim(Z) < (�+ 1)(n− �).
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It is for the sake of notational simplicity that we work with global mappings in
Proposition 3.4. Indeed, we can simply restrict the whole argument on open sub-
sets and obtain the following local version.

Proposition 3.5. Let D ⊂ P
n be an open set, M a complex manifold, and

g : D → M a finite holomorphic map. Let � < n/2 and let L ⊂ P
n be an arbi-

trary �-dimensional projective linear subspace intersectingD. Then, for a general
choice of L, the restriction of g on L ∩D is a holomorphic immersion.

4. Proof of the Main Theorem

Throughout this section we let f : D
�
n → D

�′
m be a proper holomorphic map, � ≥ 1.

Proposition 4.1. If � < n/2 and �′ < m/2, then for each �-dimensional pro-
jective linear subspaceL ⊂ D

�
n (as described in Proposition 2.2) we have f(L) ⊂

L′, where L′ is some �′-dimensional linear subspace in the target P
m.

Proof. By Proposition 3.2, f extends as a rational map and hence the induced
meromorphic map [df ] : G�TD

�
n → G�T P

m extends to an open neighborhood
of G�TD

�
n and, in particular, to an open neighborhood of the universal family

� : V �n → ��+1,n−� (see the paragraph after Proposition 2.3). More precisely, we
mean that [df ] extends to an open neighborhood W ⊃ V̄ �n and �(W ) = U is
some open neighborhood of �̄�+1,n−�.

Now we consider the composition f ( := π � [df ], where π : G�T P
m → P

m

is the canonical projection. Take a general point b in the Shilov boundary of
��+1,n−� such that [df ] and hence f ( is defined on the �-dimensional projective
linear subspace over the point b (i.e., �−1(b)). By Lemma 2.4 and the proper-
ness of f , we have f ((�−1(b)) ⊂ ∂D�m and hence f ((�−1(b)) ⊂ L′

b for some
�′-dimensional projective linear subspace L′

b ⊂ P
m. In other words, on the holo-

morphic P
�-bundle � : W → U ⊃ �̄�+1,n−�, the map f ( maps the general fibres

over the Shilov boundary of ��+1,n−� to �′-dimensional projective linear sub-
spaces in P

m. Note that this is an analytic condition—in other words, it can be
expressed in terms of the vanishing of a set of holomorphic functions in local coor-
dinates (e.g., some degeneracy conditions on a set of vertical derivatives on the
base). Now we have a set of holomorphic functions that vanish on the intersection
of an open set and the Shilov boundary of ��+1,n−� and therefore must vanish on
the entire open set. (For a proof of this, see [N, Lemma 2.9].) Hence, we con-
clude that this degeneracy property holds also for the general fibres in the interior;
that is, f ( maps general fibres to �′-dimensional projective linear subspaces in P

m.

This precisely means that f maps general and hence all �-dimensional projective
linear subspaces into �′-dimensional projective linear subspaces.

We are now ready to prove the Main Theorem.

Proof of the Main Theorem. By Proposition 3.2 together with Proposition 3.4,
there exists an �-dimensional projective linear subspace L0 ⊂ D

�
n on which the



Proper Maps on Flag Domains on Projective Spaces 777

restriction of f is a holomorphic immersion. However, by Proposition 4.1, f(L0)

is contained in some �′-dimensional projective linear subspace in P
m. Since �′ ≤

2� − 1, we have by Feder’s theorem that the restriction of f on L0 is linear. We
are going to show that this implies that f itself is linear.

By Proposition 3.2, there exists ad ∈N
+ such that we can writef = [p0, . . . ,pm],

where the pj are relatively prime homogeneous polynomials of degree d in the
homogeneous coordinates z0, . . . , zn of P

n. By composing with an automorphism
of P

n, we may assume that L0 = {[z0, . . . , z�, 0, . . . , 0] ∈ P
n : [z0, . . . , z�] ∈ P

�}.
We can write the restriction as f |L0 = [p̃0, . . . , p̃m], where each p̃j is obtained by
setting z�+1 = · · · = zm = 0 in pj . Thus, p̃j is either zero or a degree-d homoge-
neous polynomial in z0, . . . , z�. The polynomials p̃j are not all zero and are also
relatively prime, for otherwise the indeterminacy of f would intersectL0 and thus
contradict our assumption that f is holomorphic on D

�
n (in particular, on L0). But

we also know that f |L0 is linear, so we must have d = 1. Hence, f is linear.
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