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Brauer Groups of Singular del Pezzo Surfaces

Martin Bright

1. Introduction

The Brauer group of a variety X, which in this paper we take to mean the coho-
mology group Br X = H2(X, Gm), was extensively studied by Grothendieck [8].
Brauer groups of singular varieties are not particularly well behaved: in particu-
lar, the Brauer group of a singular variety need not inject into the Brauer group of
its function field. The purely local question, of understanding the Brauer group
of the local ring of a singularity, has been well studied: see, for example, [6]. An
interesting feature of the results discussed in this paper is that the calculation is a
global one and often leads to elements of the Brauer group that are locally trivial
in the Zariski topology. One individual example of such an element was given
by Ojanguren [13], whose algebra is of order 3 and defined on a singular cubic
surface with three A2 singularities; it will be shown in what follows that this is
the only type of singular cubic surface admitting a 3-torsion Brauer element. A
more general framework for studying such examples, described by Grothendieck
in [8], was developed by De Meyer and Ford [5] to give examples of toric surfaces
admitting nontrivial, locally trivial Azumaya algebras.

In this paper we take a slightly different approach that, for varieties with ra-
tional singularities, shows how the calculation of the Brauer group can be made
very explicit by using the intersection pairing. We then apply this to arguably
the simplest interesting class of singular projective surfaces, namely the singular
del Pezzo surfaces. These are easy to approach for two reasons: they have ratio-
nal singularities; and they come with a natural desingularization that is a rational
surface. In Proposition 1 we show how to combine the Leray spectral sequence
for the desingularization with Lipman’s detailed description of the local Picard
groups above the singular points [9]. In particular, it follows that the Brauer group
may be easily computed using the intersection form on the desingularization. For
singular del Pezzo surfaces this is well understood, and in Section 3 we apply
Proposition 1 to compute the Brauer groups of all singular del Pezzo surfaces over
an algebraically closed field; the Brauer group depends only on the singularity
type of the surface. The arguments, and hence the results, are valid in arbitrary
characteristic.
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The principal motivation for this article is in applying the Brauer group to study
rational points of del Pezzo surfaces, as first suggested by Manin [11]. For arith-
metic questions, it is often more useful to work with a desingularization of the
original variety, and so the Brauer group of the singular variety is not of obvious
interest. However, there are some situations where one cannot avoid looking at the
Brauer group of a singular variety; the situation we have in mind is that of a model
of a del Pezzo surface over a local ring, where the Brauer group of the (possibly
singular) special fibre must be taken into account.

2. The Brauer Group of a Surface with
Rational Singularities

In this section we study the Brauer group of a surface Y having only isolated
rational singularities over an algebraically closed base field. Following Lipman,
by a desingularization X → Y we mean a proper birational morphism from a reg-
ular scheme X. If Y is a normal surface with finitely many rational singularities,
then there is a unique minimal desingularization X → Y that may be constructed
as a sequence of blow-ups at singular points.

We write Br(X/Y ) to mean ker(Br Y → Br X). If Y is integral with function
field K, then there is a sequence of maps Br Y → Br X → Br K. Since X is reg-
ular, Br X injects into Br K; it follows that Br(K/Y ) ∼= Br(X/Y ).

Whenever A is an Abelian group, A∗ denotes the group Hom(A, Z).

Proposition 1. Let Y be a normal surface over an algebraically closed field k;
suppose that Y has finitely many rational singularities, and let f : X → Y be the
minimal desingularization. Let E denote the subgroup of Pic X generated by the
classes of the exceptional curves of the resolution, and let θ : Pic X → E∗ be the
homomorphism induced by the intersection pairing on Pic X. Then there is an ex-
act sequence

0 → Pic Y
f ∗−→ Pic X

θ−→ E∗ −→ Br Y
f ∗−→ Br X.

Proof. Since f is proper and birational, we have f∗Gm = Gm. It follows that, for
any flat morphism of schemes Y ′ → Y, if fY ′ : X ×Y Y ′ → Y ′ denotes the base
change of f then the following sequence is exact (see [1, Sec. 8.1, Prop. 4]):

0 −→ Pic Y ′ f ∗
Y ′−→ Pic(X ×Y Y ′) −→ PicX/Y (Y ′) −→ Br Y ′ f ∗

Y ′−→ Br(X ×Y Y ′). (1)

Taking Y ′ = Y in (1) gives the exact sequence

0 −→ Pic Y
f ∗−→ Pic X −→ PicX/Y (Y ) −→ Br Y

f ∗−→ Br X. (2)

So it will be enough to exhibit an isomorphism α : PicX/Y (Y ) → E∗ such that
composing α with the natural homomorphism Pic X → PicX/Y (Y ) gives the
homomorphism θ described in the statement of the theorem. From now on, we
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work with PicX/Y as a sheaf only on the small étale site of Y in order to be able to
talk about its stalks.

Step 1: Localization. Because the sheaf PicX/Y on Yét is supported on the sin-
gular points, the natural map

PicX/Y (Y ) −→
∏

P singular

(PicX/Y )P , (3)

from the global sections of PicX/Y to the direct product of its stalks at the singular
points, is an isomorphism.

At each singular point P, let ỸP denote Spec O sh
Y,P , the spectrum of the Henseliza-

tion of the local ring at P, and set X̃P = X ×Y ỸP . The stalk of PicX/Y at the geo-
metric point P is naturally isomorphic to PicX/Y (ỸP), which is simply Pic X̃P ;
this can be seen by taking Y ′ = ỸP in (1) and using the facts that Pic ỸP and Br ỸP

are trivial (for the latter, see [12, IV, Cor. 1.7]). Combining this with the isomor-
phism (3), we see that the natural map

PicX/Y (Y ) −→
∏

P

Pic X̃P

is an isomorphism.

Step 2: Lipman’s description of Pic X̃P . For each singular point P of Y, denote
by EP the subgroup of Pic X generated by the exceptional curves lying over P. Let
YP denote the spectrum of the Zariski local ring of Y at P, and let XP = X ×Y YP .

We will use θP to denote the homomorphism Pic XP → E∗
P induced by the inter-

section pairing on X. (Lipman’s definition of the map θP is slightly more general
and involves dividing by the least degree of an invertible sheaf on each exceptional
curve; because we are working over an algebraically closed field, all of our excep-
tional curves have a k-point and hence an invertible sheaf of degree 1.) Lipman [9,
Part IV] studied the kernel and cokernel of θP in detail, defining an exact sequence

0 −→ Pic0 XP −→ Pic XP

θP−→ E∗
P −→ G(YP) −→ 0

attached to the resolution XP → YP , and showed that Pic0 XP = 0 when YP has
a rational singularity and that G(YP) = 0 when YP is Henselian. We thus obtain
isomorphisms Pic X̃P

∼= E∗
P such that the composite homomorphism Pic X →∏

P Pic X̃P → ∏
P E∗

P is θP .

Step 3: Globalization. Finally, note that two exceptional curves lying above
distinct singularities of Y are disjoint, so in particular they have intersection num-
ber 0. Therefore the subgroups EP ⊆ Pic X are mutually orthogonal, and so E ∼=⊕

P EP and E∗ ∼= ∏
P E∗

P .

It is now easily verified that replacing PicX/Y (Y ) in (2) with E∗ does indeed lead
to the desired exact sequence.

Corollary 2. If P is a singular point of Y, then Br(XP/YP) is isomorphic to
the cokernel of θP : Pic X → E∗

P , which is equal to Lipman’s group G(YP).
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Proof. Applying the proposition to YP shows that Br(XP/YP) is isomorphic to
coker(Pic XP → E∗

P), which by definition is equal to G(YP). Since X is smooth,
the restriction map Pic X → Pic XP is surjective, and the statement follows.

Corollary 3. If Y has only one singularity P, then Br(X/Y ) ∼= Br(XP/YP).

Proof. In this case E = EP , so the statement follows immediately from Corol-
lary 2.

3. Singular del Pezzo Surfaces

In this section we apply Proposition 1 to compute the Brauer groups of singular
del Pezzo surfaces. We refer to [2] and [4] for background details on singular
del Pezzo surfaces.

Let X be a generalized del Pezzo surface over an algebraically closed field k

and f : X → Y the morphism contracting the (−2)-curves (and nothing else), so
that Y is the corresponding singular del Pezzo surface. The Picard group of X fits
into a short exact sequence

0 −→ Q −→ Pic X
(·,KX)−−−→ Z −→ 0,

where Q is the subgroup orthogonal to the canonical class KX under the intersec-
tion pairing. The exceptional curves of f are all contained in Q. Let E denote the
subgroup of Q generated by all the exceptional curves of X → Y (equivalently,
all the (−2)-curves on X).

Proposition 4. Br Y is isomorphic to (Q/E)tors.

Proof. First, Br X is trivial because X is a rational surface. Hence, by Proposi-
tion 1, Br Y is isomorphic to the cokernel of the map θ : Pic X → E∗. Now θ

factors as Pic X → Q∗ → E∗, giving an exact sequence

coker(Pic X −→ Q∗) −→ Br Y −→ coker(Q∗ −→ E∗) −→ 0.

It follows from the description of Q in [4, II.4] that Pic X
θ−→ Q∗ is surjective.

Indeed, one easily checks that the basis of Q given by the simple roots αi de-
scribed there can be extended (for example, by adjoining one exceptional class
E1) to a basis of Pic X. So we are left with an isomorphism between Br Y and
coker(Q∗ → E∗). To compute the latter group, we take the short exact sequence

0 −→ E −→ Q −→ (Q/E) −→ 0

and apply Hom(·, Z) to obtain the longer exact sequence

0 −→ (Q/E)∗ −→ Q∗ −→ E∗ −→ Ext1(Q/E , Z) −→ Ext1(Q, Z).

Since Q is a free Abelian group, it follows that Ext1(Q, Z) = 0 and so Br Y

is isomorphic to Ext1(Q/E , Z), which by a standard calculation is isomorphic
to (Q/E)tors.
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We note the following interesting corollary.

Corollary 5. Let Y be a singular del Pezzo surface over an algebraically closed
field, and denote by Y ns the nonsingular locus of Y. Then there is an isomorphism
of abstract groups Br Y ∼= Pic(Y ns)tors.

Proof. Since Y ns is isomorphic to the complement of the exceptional curves in X,
we have Pic Y ns ∼= (Pic X)/E and so Pic(Y ns)tors

∼= (Q/E)tors.

It remains to enumerate the possible singularity types of del Pezzo surfaces and
to compute Q/E in each case. The algorithm for listing the possible configura-
tions of (−2)-curves is well known, as is the list of possible configurations, so we
only summarize the algorithm very briefly. The free Abelian group Q, together
with the negative definite intersection pairing, is isomorphic to the root lattice of
a particular root system depending only on the degree of the surface. Within this
root lattice, the exceptional divisors of the desingularization X → Y form a set of
simple roots in some subroot system and, indeed, form a �-system in the sense
of Dynkin [7, Sec. 5]. To list the �-systems contained in Q, we use the following
two theorems from [7].

• Theorem 5.2: Every �-system is contained in a �-system that is of maximal
rank—in other words, that spans Q as a vector space.

• Theorem 5.3: The �-systems of maximal rank may be all be obtained from some
set of simple roots in Q by iterating the following procedure, called an elemen-
tary transformation. Starting with a set of simple roots, choose one connected
component of the associated Dynkin diagram; adjoin the most negative root of
that component and discard one of the original simple roots of that component.

So, starting from any choice of simple roots in Q, we can obtain all �-systems
up to the action of the Weyl group. Not quite all of these can actually be achieved
as configurations of (−2)-curves; see [14], though it is not immediately clear that
the methods there also apply in positive characteristic.

Let us remark that, given a root system R, the primes dividing #(ZR/ZR ′)tors

for R ′ a closed subsystem of R are called bad primes (see e.g. [10, Apx. B]). A
corollary of Proposition 4 is that the primes that can divide the order of the Brauer
group of a singular del Pezzo surface of degree d are the bad primes of the asso-
ciated root system. It turns out that the bad primes are simply those occurring as
coefficients when a maximal root is expressed in terms of simple roots, so they
are easily listed. There are no bad primes for An; 2 is the only bad prime for Dn

(n ≥ 4); 2 and 3 are the bad primes for E6 and E7; and E8 has bad primes 2, 3,
and 5.

Theorem 6. Let Y be a singular del Pezzo surface of degree d over an alge-
braically closed field. If d ≥ 5, then Br Y = 0. If 1 ≤ d ≤ 4, then the Brauer
group of Y is determined by its singularity type. The singularity types giving rise
to nontrivial Brauer groups are listed in Tables 1–4. Each class in Br Y is repre-
sented by an Azumaya algebra. Except for the singularity types A7 in degree 2 and
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Table 1 Brauer Groups of Singular del Pezzo Surfaces of Degree 4

Singularity type Brauer group Singularity type Brauer group

2A1 + A3 Z/2Z 4A1 Z/2Z

Table 2 Brauer Groups of Singular del Pezzo Surfaces of Degree 3

Singularity type Brauer group Singularity type Brauer group

A1 + A5 Z/2Z 2A1 + A3 Z/2Z

4A1 Z/2Z 3A2 Z/3Z

Table 3 Brauer Groups of Singular del Pezzo Surfaces of Degree 2

Singularity type Brauer group Singularity type Brauer group

A1 + 2A3 Z/4Z 5A1 Z/2Z

A1 + A5 Z/2Z 6A1 (Z/2Z)2

A1 + D6 Z/2Z 7A1† (Z/2Z)3

2A1 + A3 Z/2Z A2 + A5 Z/3Z

2A1 + D4 Z/2Z 3A2 Z/3Z

3A1 + A3 Z/2Z 2A3 Z/2Z

3A1 + D4 (Z/2Z)2 A7 Z/2Z

4A1* Z/2Z

* There are (up to the action of the Weyl group) two different ways of embedding
4A1 into E7, so there are two different singularity types of a degree-2 del Pezzo
surface with root system 4A1. One of these has Brauer group Z/2Z; the other has
trivial Brauer group.

† This subroot system does not arise from a del Pezzo surface [14].

for A7, A8, and D8 in degree 1, the corresponding Azumaya algebras are locally
trivial in the Zariski topology.

Proof. For d ≥ 5, the relevant root system is of type An; hence there are no bad
primes and the Brauer group is trivial. For 1 ≤ d ≤ 4, the results of applying the
algorithm described previously are listed in the tables. Since Br Y is torsion, it fol-
lows from a result proved by Gabber and independently by de Jong (see [3]) that
every class is represented by an Azumaya algebra. It remains to prove the state-
ment about Zariski-local triviality. If P is a singular point of a singular del Pezzo
surface Y then Corollary 2 shows that, in the notation used there, Br(XP/YP) ∼=
coker(Pic X → E∗

P); we need to show that Br(XP/YP) = 0. Replacing Y by a
del Pezzo surface of the same degree, but with only one singularity of the same type
as P, changes neither Pic X, E∗

P , nor the map between them, so we may assume
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Table 4 Brauer Groups of Singular del Pezzo Surfaces of Degree 1

Singularity type Brauer group Singularity type Brauer group

A1 + A2 + A5 Z/6Z 4A1 + A3 (Z/2Z)2

A1 + 3A2 Z/3Z 4A1 + D4 † (Z/2Z)3

A1 + 2A3 Z/4Z 5A1 Z/2Z

A1 + A5 * Z/2Z 6A1 (Z/2Z)2

A1 + A7 Z/4Z 7A1 † (Z/2Z)3

A1 + D6 Z/2Z 8A1 † (Z/2Z)4

A1 + E7 Z/2Z A2 + A5 Z/3Z

2A1 + A2 + A3 Z/2Z A2 + E6 Z/3Z

2A1 + A3 * Z/2Z 3A2 Z/3Z

2A1 + 2A3 Z/2Z × Z/4Z 4A2 (Z/3Z)2

2A1 + A5 Z/2Z A3 + D4 Z/2Z

2A1 + D4 Z/2Z A3 + D5 Z/4Z

2A1 + D5 Z/2Z 2A3 * Z/2Z

2A1 + D6 (Z/2Z)2 2A4 Z/5Z

3A1 + A3 Z/2Z A7 * Z/2Z

3A1 + D4 (Z/2Z)2 A8 Z/3Z

4A1 * Z/2Z 2D4 (Z/2Z)2

4A1 + A2 Z/2Z D8 Z/2Z

* Each of these five root systems may be embedded into E8 in two distinct ways.
In all five cases, one way results in a trivial Brauer group; the other results in
the Brauer group shown in the table.

† These subroot systems do not arise from del Pezzo surfaces [14].

that P is the only singularity of Y. Then Br(XP/YP) = Br(X/Y ) = Br Y by Corol-
lary 3. But the tables show that Br Y = 0, except in the cases just listed.
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