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On the Lang–Trotter and Sato–Tate Conjectures
on Average for Polynomial Families

of Elliptic Curves

Igor E. Shparlinski

1. Introduction

1.1. Background. For a primep, we denote by Fp the finite field withp elements.
Given an elliptic curve E over Q and a prime p we use E(Fp) to denote the set

of the Fp-rational points of the reduction of E modulo p, provided that p does not
divide the discriminant �(E) of E , together with a point at infinity. This set forms
an abelian group under an appropriate composition rule and satisfies the Hasse
bound :

|#E(Fp) − p − 1| ≤ 2
√
p; (1)

see [35] for background on elliptic curves.
Accordingly, we denote by �LT(E , t; x) the number of primes 3 < p ≤ x (with

p � �(E)) for which #E(Fp) = p + 1 − t. The Lang–Trotter conjecture asserts
that if E does not have complex multiplication then the asymptotic formula

�LT(E , t; x) ∼ c(E , t)

√
x

log x
, x → ∞, (2)

holds for some explicitly given constant c(E , t) ≥ 0 depending only on E and t.

Furthermore, the usual interpretation of the value c(E , t) = 0 is �LT(E , t; x) =
O(1).

Since the Lang–Trotter conjecture (2) remains widely open (see [13; 14; 15;
26; 28; 29; 30; 32; 37]), it is natural to obtain its analogues “on average” over
various interesting families of curves. As one example, for integers a and b such
that 4a3 + 27b2 �= 0, we denote by Ea,b the elliptic curve defined by the affine
Weierstraß equation,

Ea,b : Y 2 = X3 + aX + b,

and put
�LT

a,b(t; x) = �LT(Ea,b, t; x).
Fouvry and Murty [17] initiated the study of �LT

a,b(t; x) and similar quantities
on average, and they showed that the asymptotic formula
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1

4AB

∑
|a|≤A

∑
|b|≤B

�LT
a,b(t; x) ∼ C(t)

√
x

log x
, x → ∞, (3)

holds for t = 0 (with C(0) = π/3) in the range

AB ≥ x3/2+ε and min{A,B} ≥ x1/2+ε (4)

for arbitrary fixed ε > 0 (for 4a3 + 27b2 = 0 we define �LT
a,b(t; x) = 0). David

and Pappalardi [11] proved that (3) holds for any fixed t, with some explicit con-
stant C(t) > 0 depending only on t, but in a smaller range than (4). This range has
been expanded to the original level described in (4) by Baier [2]. Finally, Baier [3]
obtained (3) in an even wider range:

AB ≥ x3/2+ε and min{A,B} ≥ xε

(in this range, the term with ab = 0 must be eliminated from the summation in (3)
because its contribution may exceed the main term).

In addition, for an elliptic curve E over Q and a prime p > 3 we recall (1) and
define the angle ψ(E;p)∈ [0,π] via the identity

+1 − #E(Fp) = 2
√
p cosψ(E;p). (5)

(We may also define ψ(E;p) arbitrarily—say, as ψ(E;p) = 0 if p divides
4a3 + 27b2.) For 0 ≤ α < β ≤ π, we denote by �ST(E ,α,β; x) the number
of primes p ≤ x (where p does not divide 4a3 + 27b2) for which α ≤ ψ(E;p) ≤
β. In this case, the Sato–Tate conjecture asserts that if E does not have complex
multiplication then the asymptotic formula

�ST(E ,α,β; x) ∼ µST(α,β)
x

log x
, x → ∞, (6)

holds, where

µST(α,β) = 2

π

∫ β

α

sin2 γ dγ (7)

is the Sato–Tate density; see [8; 22; 27].
The method of Fouvry and Murty [17] is based on bounds of exponential sums;

it is quite universal and has been applied to a number of related questions (see
[1; 4; 5; 7; 11; 12; 20; 21; 33; 34]). In particular, by using this method it is easy to
show that

1

4AB

∑
|a|≤A

∑
|b|≤B

�ST
a,b(t; x) ∼ µST(α,β)

x

log x
, x → ∞, (8)

in the same range (4); as before, we define

�ST
a,b(t; x) = �ST(Ea,b, t; x).

Although Taylor [36] gave a complete proof of (6) (except for the curves E with
integral j -invariant), this does not imply any results on average owing to the lack
of uniformity with respect to the coefficients a and b in the Weierstraß equation.

A different approach was also suggested in [6], one based on bounds of mul-
tiplicative character sums (see [5; 34] for further applications of this approach).
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We remark that the original purpose of [6] was to improve some results on the
Sato–Tate conjecture for the curves Ea,b on average and also to obtain (8) for a
wider range than (4)—namely, under the conditions

AB ≥ x1+ε and min{A,B} ≥ xε. (9)

See [3; 4] for some other approaches.

1.2. Results. Here we show that the ideas of [6] can also be used for extending
(3) and (8) to more general families of curves.

Let us fix two polynomials f(T ), g(T ) ∈ Z[T ] that are not powers of another
polynomial over Q. Here we consider the family of curves Ef(a),g(b) and obtain
analogues of the asymptotic formulas (3) and (8) for these curves—that is, we ob-
tain asymptotic formulas for the average values

1

4AB

∑
|a|≤A

∑
|b|≤B

�LT
f(a),g(b)(t; x),

1

4AB

∑
|a|≤A

∑
|b|≤B

�ST
f(a),g(b)(α,β; x).

As is usual with questions of this kind, our main concern is to minimize the extent
of averaging and thereby obtain these asymptotic formulas in ranges comparable
to those given by (4) and (9). (Note that the approach of Fouvry and Murty [17]
does not seem to work for the families of curves Ef(a),g(b).)

We also study a 1-parametric family of curves Ef(a),g(a) with two polynomials f
and g over Fp (satisfying some natural condition). We use a result of Michel [24]
to show that, for a fixed ε > 0 and a sufficiently large prime p, the correspond-
ing angles ψ(Ef(a),g(a),p) are distributed with the Sato–Tate density when a runs
through consecutive integers of an interval of length at least p3/4+ε.

Finally, we recall that upper bounds for�LT
f(ρ),g(ρ)(t; x), on average when ρ runs

through the set of Farey fractions of order Q, are given in [9; 10].

1.3. Notation. Throughout the paper, any constants implied by our use of the
symbols O and � may occasionally depend (in obvious instances) on the poly-
nomials f and g and on the real parameters ε, but otherwise such constants are
absolute. We recall that the expressions U � V and U = O(V ) are both equiva-
lent to stating that the inequality |U | ≤ cV holds with some constant c > 0.

The letters p and q always denote prime numbers, while m and n always denote
integers. As usual, we use π(x) to denote the number of primes p ≤ x.

2. Character Sums and Distribution of Power Residues

2.1. Character Sums

For a prime p, we denote by Xp the set of multiplicative characters of Fp, by χ0 the
principal character of Fp, and by X ∗

p = Xp\{χ0} the set of nonprincipal characters;
we refer the reader to [19, Chap. 3] for the necessary background on multiplica-
tive characters. We recall the following orthogonality relations. For any integer
f | p − 1 and v ∈ Fp,
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1

f

∑
χ∈Xp

χf =χ0

χ(v) =
{

1 if v = wf for some w ∈ F∗
p ,

0 otherwise.
(10)

Also, we have

1

p − 1

∑
u∈F∗

p

χ1(u)χ̄2(u) =
{

1 if χ1 = χ2,

0 otherwise
(11)

for all χ1,χ2 ∈ Xp (here, χ̄2 is the character obtained from χ2 by complex
conjugation).

The following result is a special case of the Weil bound (see [19, eq. (12.23)]).

Lemma 1. For any prime p and polynomial h(T ) ∈ Z[T ] that is not a power of
another polynomial in the algebraic closure of Fp, uniformly over all integers m
and nontrivial multiplicative characters χ modulo p we have

p∑
u=1

χ(h(u)) exp

(
2πi

mu

p

)
� p1/2.

Combining Lemma 1 with the standard reduction between complete and incom-
plete sums (see [19, Sec. 12.2]), we obtain the following result.

Lemma 2. For any prime p and polynomial h(T ) ∈ Z[T ] that is not a power
of another polynomial in the algebraic closure of Fp, uniformly over all positive
integers L,M and nontrivial multiplicative characters χ modulo p we have

L+M∑
n=L+1

χ(h(n)) �
(
M

p
+ 1

)
p1/2 logp.

2.2. Distribution of Powers

Adapting the idea of Fouvry and Murty [17], we study the distribution of the pairs

{(ru4, su6) : u∈ Fp}, r, s ∈ F∗
p , (12)

among the residues modulo p of the polynomial values (f(a), g(b)) with |a| ≤ A

and |b| ≤ B. However, we forgo the exponential sums used in [17]; instead, we
follow the approach of [6] and study the distribution of the pairs (12) using multi-
plicative character sums.

We also note that, since the polynomials f(T ), g(T ) ∈ Z[T ] are not powers of
another polynomial over Q, for any sufficiently large prime p they are not powers
of a polynomial in the algebraic closure of Fp. Thus Lemma 2 applies to character
sums with f(T ) and g(T ).

We begin by investigating the distribution of the second component su6 of the
pairs (12). Accordingly, we define

Zs(B;p) = {(u, b)∈ F∗
p × [−B,B] : su6 ≡ g(b) (modp), |b| ≤ B}.
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Although we are usually interested in only the first component u, here we define
Zs(B;p) as a set of pairs (u, b). In essence this means that each u is taken with
the mulitplicity of the residue class su6 among the elements of [−B,B].

We have the following bound on the cardinality of Zs(B;p).
Lemma 3. For any prime p, integer B ≥ 1, and s ∈ F∗

p , we have

#Zs(B;p) = 2B + O

((
B

p
+ 1

)
p1/2+o(1)

)

as p → ∞.

Proof. Define
dp = gcd(p − 1, 6).

By the orthogonality relation (10), for all n∈ Z we have

#{u∈ F∗
p : u6 ≡ n (modp)} =

∑
χ∈Xp

χdp =χ0

χ(n).

If s̄ is an integer such that ss̄ ≡ 1 (modp), then

#Zs(B;p) =
∑

|b|≤B

∑
χ∈Xp

χdp =χ0

χ(s̄g(b)) = 2B + O(1) +
∑
χ∈X ∗

p

χdp =χ0

χ̄(s)
∑

|b|≤B

χ(g(b)).

An application of Lemma 2 now concludes the proof.

Next we account for the distribution of the first component ru4 of the pairs (12).
For any integers A,B ≥ 1 and r, s ∈ Fp, define the set of triples

Zr,s(A,B;p) = {(u, a, b) : ru4 ≡ f(a) (modp),

(u, b)∈ Zs(B;p), |a| ≤ A}.
Lemma 4. For any prime p, integers A,B ≥ 1, and s ∈ F∗

p , we have

∑
r∈F∗

p

∣∣∣∣#Zr,s(A,B;p) − 2AZs(B;p)
p − 1

∣∣∣∣
2

≤
(
A

p
+ 1

)2(
B

p
+ 1

)
Bp1+o(1)

as p → ∞.

Proof. From (10) it follows that

#Zr,s(A,B;p)
=

∑
(u,b)∈Zs (B;p)

∑
|a|≤A

1

p − 1

∑
χ∈Xp

χ(ru4)χ(f(a))

= 2A#Zs(B;p)
p − 1

+ 1

p − 1

∑
χ∈X ∗

p

χ(r)
∑

(u,b)∈Zs (B;p)
χ(u4)

∑
|a|≤A

χ̄(f(a)).

Therefore,
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#Zr,s(A,B;p) − 2A#Zs(B;p)
p − 1

� 1

p − 1

∣∣∣∣
∑
χ∈X ∗

p

χ(r)
∑

(u,b)∈Zs (B;p)
χ(u4)

∑
|a|≤A

χ̄(f(a))

∣∣∣∣.
Hence ∑

r∈F∗
p

∣∣∣∣#Zr,s(A,B;p) − 4AB

p − 1

∣∣∣∣
2

� W, (13)

where

W = 1

(p − 1)2

∑
r∈F∗

p

∣∣∣∣
∑
χ∈X ∗

p

χ(r)
∑

(u,b)∈Zs (B;p)
χ(u4)

∑
|a|≤A

χ̄(f(a))

∣∣∣∣
2

.

Squaring out and changing the order of summation now yields

W = 1

(p − 1)2

∑
χ1,χ2∈X ∗

p

∑
(u1,b1),(u2,b2 )∈Zs (B;p)

χ1(u
4
1 )χ̄2(u

4
2)

∑
|a1|,|a2|≤A

χ̄1(f(a1))χ2(f(a2))
∑
r∈Fp

χ1(r)χ̄2(r).

From the orthogonality relation (11) we deduce that

W = 1

p − 1

∑
χ∈X ∗

p

∣∣∣∣
∑

(u,b)∈Zs (B;p)
χ(u4)

∣∣∣∣
2∣∣∣∣

∑
|a|≤A

χ(f(a))

∣∣∣∣
2

;

by Lemma 2, it follows that

W ≤
(
A

p
+ 1

)2

po(1)
∑
χ∈X ∗

p

∣∣∣∣
∑

(u,b)∈Zs (B;p)
χ(u4)

∣∣∣∣
2

. (14)

Next we extend the summation in (14) to include the trivial character χ = χ0.

Then, by the orthogonality relation (10), we have

∑
χ∈X ∗

p

∣∣∣∣
∑

(u,b)∈Zs (B;p)
χ(u4)

∣∣∣∣
2

≤
∑
χ∈Xp

∣∣∣∣
∑

(u,b)∈Zs (B;p)
χ(u4)

∣∣∣∣
2

= (p − 1)T ; (15)

here T is the number of solutions to the congruence

u4
1 ≡ u4

2 (modp), (u1, b1), (u2, b2)∈ Zs(B;p).
Clearly, T does not exceed

u12
1 ≡ u12

2 (modp), (u1, b1), (u2, b2)∈ Zs(B;p). (16)

Since su6
j ≡ g(bj ) (modp) for some bj with |bj | ≤ B (j = 1, 2), it follows that

each solution to (16) results in a congruence

g(b1)
2 ≡ g(b2)

2 (modp), |b1|, |b2| ≤ B.
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Hence T � B(B/p + 1), because each bj corresponds to at most six values of uj .
Recalling (14) and (15) now concludes the proof.

3. Elliptic Curves

3.1. Isomorphic Elliptic Curves

It is well known that if a, b, r, s ∈ Fp then Ea,b(Fp) ∼= Er,s(Fp); that is, the curves
Ea,b and Er,s are isomorphic over Fp if and only if

a = ru4 and b = su6 (17)

for some u ∈ F∗
p . In particular, each curve Ea,b with a, b ∈ F∗

p is isomorphic
to (p − 1)/2 elliptic curves Er,s , and there are 2p + O(1) distinct isomorphism
classes of elliptic curves over Fp; see [23].

Thus we see that a link between the distribution of elliptic curves of various
types and the sets Zr,s(A,B;p) is given by Lemma 5.

For an arbitrary set S ⊆ Fp × Fp, denote by Mp(S,A,B) the number of curves
Ef(a),g(b) such that the reduction modulo p of the pair (f(a), g(b)) belongs to S
for a ∈ [−A,A] and b ∈ [−B,B].

Lemma 5. Suppose f(T ), g(T ) ∈ Z[T ] are not powers of another polynomial
over Q. Assume that for a prime p > 3 we are given a set S ⊆ F∗

p × F∗
p such that,

whenever (r, s)∈ S and Ea,b(Fp) ∼= Er,s(Fp), it follows that (a, b)∈ S. Then the
bound

Mp(S,A,B) = 1

p − 1

∑
(r,s)∈S

#Zr,s(A,B;p) + O

(
AB

p
+ A + B

)

holds for any integers A,B ≥ 1.

Proof. We estimate the contribution from the curves with

f(a)g(b)(4f(a)3 + 27g(b)2) ≡ 0 (modp)

trivially as

O

((
A

p
+ 1

)
B + A

(
B

p
+ 1

))
= O

(
AB

p
+ A + B

)
.

We also note that if a ≡ ru4 (modp) and b ≡ su6 (modp), then each group
Ef(a),g(b)(Fp) with |a| ≤ A and |b| ≤ B is counted precisely p − 1 times in the
sum on the right-hand side.

3.2. Statistics of Elliptic Curves

Let Rp(t) be the set of pairs (r, s)∈ F∗
p × F∗

p such that

#Er,s(Fp) = p + 1 − t.

We recall the following well-known estimate (see e.g. [23, Prop. 1.9]).
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Lemma 6. For any fixed t,

Rp(t) � p3/2+o(1).

We define

li1/2(x) =
∫ x

2

dz

2z1/2 log z
= (1 + o(1))

x1/2

log x
.

By a result of David and Pappalardi [11, eqs. (24), (29)] (see also [2, eq. (2.1),
Lemma 3]), we have the following statement.

Lemma 7. For any fixed integer t there exists a constant C(t) > 0 such that, for
any fixed C > 0,

∑
p≤x

1

p2
#Rp(t) = C(t) li1/2(x) + O(x1/2(log x)−C).

Let Tp(α,β) be the set of pairs (r, s) ∈ F∗
p × F∗

p such that the inequalities α ≤
ψr,s(p) ≤ β hold, where the angles

ψr,s(p) = ψ(Er,s;p)
are given by (5). It is natural to expect that

#Tp(α,β) ∼ µST(α,β)p2

as p → ∞, where µST(α,β) is given by (7); this is known as the Sato–Tate con-
jecture in the vertical aspect. It has been established by Birch [8] (see also [25]),
but here we require a stronger result. What is needed is a full analogue for the
Sato–Tate density of the bound of Niederreiter [31] on the discrepancy in the dis-
tribution of values of Kloosterman sums. Fortunately, such a result can be ob-
tained by using the same methods because all of the underlying tools (namely,
[31, Lemma 3] and [22, Thm. 13.5.3]) apply to ψr,s(p) as well as to values of
Kloosterman sums. In particular, from [22, Thm. 13.5.3] it follows that

1

(p − 1)2

∑
r,s∈F∗

p

4r 3+27s2 �=0

sin((n + 1)ψr,s(p))

sin(ψr,s(p))
� np−1/2, n = 1, 2, . . . (18)

(see also the work of Fisher [16, Sec. 5]). Thus, as in [31], we have the following
lemma.

Lemma 8. For any prime p,

max
0≤α<β≤π

|#Tp(α,β) − µST(α,β)p2| � p7/4.

Michel [24, Prop. 1.1] gives a version of (18) for 1-parametric polynomial families
of curves in which the sum is also twisted by additive characters.

Lemma 9. For any prime p and uniformly over all integers m, for any polyno-
mials f(T ), g(T )∈ Z[T ] we have
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1

p

∑
a∈Fp

4f(a)3+27g2(a) �≡0 (modp)

sin((n + 1)ψf(a),g(a)(p))

sin(ψf(a),g(a)(p))
exp

(
2πi

ma

p

)
� np−1/2

for n = 1, 2, . . . .

Again, using the standard reduction between complete and incomplete sums (see
[19, Sec. 12.2]) reveals that Lemma 9 implies the following result.

Lemma 10. For any prime p, integer A ≥ 1, and polynomials f(T ), g(T ) ∈
Z[T ], we have

1

p

∑
|a|≤A

4f(a)3+27g2(a) �≡0 (modp)

sin((n + 1)ψf(a),g(a)(p))

sin(ψf(a),g(a)(p))
� np−1/2+o(1)

for n = 1, 2, . . . .

Let Tf,g,p(A;α,β) be the set of integers a with |a| ≤ A and such that the inequal-
ities α ≤ ψf(a),g(a)(p) ≤ β hold; as before, the angles

ψf(a),g(a)(p) = ψ(Ef(a),g(a);p)
are given by (5). Applying the technique of Niederreiter [31], we immediately
obtain the following analogue of Lemma 8.

Lemma 11. For any prime p, positive integer A < p/2, and polynomials
f(T ), g(T )∈Z[T ] such that 4f(T )3 + 27g(T )2 is not identical to zero, we have

max
0≤α<β≤π

|#Tf,g,p(A;α,β) − 2µST(α,β)A| � A1/2p1/4+o(1).

Proof. By [31, Lemma 3] we see that, for any integer k,

max
0≤α<β≤π

|#Tf,g,p(A;α,β) − 2µST(α,β)A|

� A

k
+

k∑
n=1

1

n

∣∣∣∣∣∣
∑

|a|≤A

4f(a)3+27g2(a) �≡0 (modp)

sin((n + 1)ψf(a),g(a)(p))

sin(ψf(a),g(a)(p))

∣∣∣∣∣∣
.

Applying Lemma 10 and choosing k = �A1/2p−1/4� now yields the desired bound.

Lemma 11 is a generalization of [25, Thm. 1.4] corresponding to the case of A =
(p − 1)/2 that follows directly from Lemma 9 applied with m = 0.

4. Main Results

4.1. General Estimate

We now have the following general result that can be applied to various families
of elliptic curves. We formulate it in a general way so that it can be applied to the
Lang–Trotter or Sato–Tate conjecture.
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Let us define

Eϑ(U,V ; z) = UVz−1/2−ϑ/2 + UV 1/2z−ϑ/2 + UVz−1

+ Uz1/2−ϑ + U + Vz1/2−ϑ/2 + V 1/2z1−ϑ/2.

Theorem 12. Suppose f(T ), g(T ) ∈ Z[T ] are not powers of another polyno-
mial over Q. Assume that for a prime p > 3 we are given a set S ⊆ F∗

p × F∗
p of

cardinality
#S ≤ p2−ϑ+o(1)

as p → ∞ for some absolute constant ϑ ≥ 0 and such that, if (r, s) ∈ S and
Ea,b(Fp) ∼= Er,s(Fp), then (a, b) ∈ S. Under these conditions, it follows that the
bound ∣∣∣∣Mp(S,A,B) − 4AB#S

(p − 1)2

∣∣∣∣ ≤ Eϑ(U,V ;p)po(1)

holds for any integers A,B ≥ 1, where

U = max{A,B} and V = min{A,B}.
Proof. Assume that A ≥ B. We can use Lemma 5 to derive

Mp(S,A,B) − 4AB#S
(p − 1)2

� 1

p − 1

∑
(r,s)∈S

∣∣∣∣#Zr,s(A,B;p) − 4AB

p − 1

∣∣∣∣ + AB

p
+ A + B.

Furthermore, by Lemma 3 (and since A ≥ B) we see that

Mp(S,A,B) − 4AB#S
(p − 1)2

� � + ABp−1/2−ϑ+o(1) + Ap1/2−ϑ+o(1) + ABp−1 + A, (19)

where

� = 1

p − 1

∑
(r,s)∈S

∣∣∣∣#Zr,s(A,B;p) − 2A#Zs(B,p)

p − 1

∣∣∣∣.
By the Cauchy inequality, it follows that

�2 � #S
p2

∑
(r,s)∈S

∣∣∣∣#Zr,s(A,B;p) − 2A#Zs(B,p)

p − 1

∣∣∣∣
2

≤ p−ϑ+o(1)
∑

(r,s)∈S

∣∣∣∣#Zr,s(A,B;p) − 2A#Zs(B,p)

p − 1

∣∣∣∣
2

≤ p−ϑ+o(1)
∑

r,s∈F∗
p

∣∣∣∣#Zr,s(A,B;p) − 2A#Zs(B,p)

p − 1

∣∣∣∣
2

.

Now using Lemma 4 for each s ∈ F∗
p , we obtain
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�2 �
(
A

p
+ 1

)2(
B

p
+ 1

)
Bp2−ϑ+o(1).

Therefore,

� ≤ ABp−1/2−ϑ/2+o(1) + AB1/2p−ϑ/2+o(1) + Bp1/2−ϑ/2+o(1) + B1/2p1−ϑ/2+o(1).

Recalling (19) and using that

ABp−1/2−ϑ/2 > ABp−1/2−ϑ ,

we obtain ∣∣∣∣Mp(S,A,B) − 4AB#S
(p − 1)2

∣∣∣∣ ≤ Eϑ(A,B;p)po(1).

It is easy to see that the roles of A and B can be interchanged in all previous argu-
ments, which concludes the proof.

In all of this paper’s applications we have ϑ ≤ 1/2, in which case UVz−1/2−ϑ/2 ≥
UVz−1 and Uz1/2−ϑ ≥ U. As a result,

Eϑ(U,V ; z) � UVz−1/2−ϑ/2 + UV 1/2z−ϑ/2 + Uz1/2−ϑ

+ Vz1/2−ϑ/2 + V 1/2z1−ϑ/2. (20)

4.2. The Lang–Trotter Conjecture on Average

We now derive the following generalizations of (3).

Theorem 13. Suppose f(T ), g(T )∈ Z[T ] are not powers of another polynomial
over Q. Assume that positive integers A and B are such that, for some ε > 0,

max{AB1/2,A1/2B} ≥ x 5/4+ε and min{A,B} ≥ x1/2+ε.

Then
1

4AB

∑
|a|≤A

∑
|b|≤B

�LT
f(a),g(b)(t; x) = (C(t) + o(1))

√
x

log x

for some constant C(t) > 0 depending only on t.

Proof. In the notation of Sections 3.1 and 3.2, we have∑
|a|≤A

∑
|b|≤B

�LT
f(a),g(b)(t; x) =

∑
p≤x

Mp(Rp(t),A,B).

Assume that A ≥ B. Now from Theorem 12 applied with S = Rp(t) (thus ϑ =
1/2 by Lemma 6, so we can also use (20)), we derive

∑
|a|≤A

∑
|b|≤B

�LT
f(a),g(b)(t; x) − 4AB

∑
p≤x

Rp(t)

(p − 1)2

≤ (ABx1/4 + AB1/2x3/4 + Ax + Bx 5/4 + B1/2x7/4)xo(1)

as x → ∞.
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By Lemma 6 and Lemma 7 (taken with, say, C = 2) we see that

∑
p≤x

#Rp(t)

(p − 1)2
=

∑
p≤x

#Rp(t)

(
1

p2
+ O(p−3)

)

=
∑
p≤x

1

p2
#Rp(t) + O(1)

= C(t) li1/2(x) + O(x1/2(log x)−2).

Disregarding the term ABx1/4 (which is obviously smaller than the contribution
from the error term in the previous formula), we therefore obtain∑

|a|≤A

∑
|b|≤B

�LT
f(a),g(b)(t; x) − 4ABC(t) li1/2(x)

� (AB1/2x3/4 + Ax + Bx 5/4 + B1/2x7/4)xo(1) + ABx1/2(log x)−2

� ABx1/2+o(1)(B−1/2x1/4 + B−1x1/2 + A−1x3/4 + A−1B−1/2x 5/4)

+ ABx1/2(log x)−2.

Since A ≥ B, it follows that A3/2 ≥ AB1/2 ≥ x 5/4+ε. Thus A ≥ x 5/6+2ε/3 and,
after simple calculations, we obtain the desired result in the case A ≥ B.

The proof is completely analogous in the case A < B.

Since max{AB1/2,A1/2B} ≥ (AB)3/4, we can replace the first condition of Theo-
rem 13 with AB ≥ x 5/3+ε.

4.3. The Sato–Tate Conjecture on Average

We now use Theorem 12 to obtain a generalization of (8) and (9). Recall that the
Sato–Tate density µST(α,β) is given by (7).

Theorem 14. Suppose f(T ), g(T )∈ Z[T ] are not powers of another polynomial
over Q. Assume that positive integers A and B are such that, for some ε > 0,

max{AB1/2,A1/2B} ≥ x1+ε and min{A,B} ≥ x1/2+ε.

Then, for all real numbers 0 ≤ α < β ≤ π, we have

1

4AB

∑
|a|≤A

∑
|b|≤B

�ST
f(a),g(b)(α,β; x) = (µST(α,β) + O(x−δ))π(x),

where δ > 0 depends only on ε.

Proof. In the notation of Sections 3.1 and 3.2, we have∑
|a|≤A

∑
|b|≤B

�ST
f(a),g(b)(α,β; x) =

∑
p≤x

Mp(Tp(α,β),A,B).

Assume that A ≥ B. Now from Theorem 12 applied with S = Tp(α,β) (thus
ϑ = 0, so we can also use (20)), we derive
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∑
|a|≤A

∑
|b|≤B

�ST
f(a),g(b)(α,β; x) − 4AB

∑
p≤x

Tp(α,β)

(p − 1)2

≤ (ABx1/2 + AB1/2x + Ax3/2 + Bx3/2 + B1/2x 2)xo(1)

as x → ∞. Since A ≥ B, this expression can be simplified to read
∑

|a|≤A

∑
|b|≤B

�ST
f(a),g(b)(α,β; x) − 4AB

∑
p≤x

Tp(α,β)

(p − 1)2

≤ (ABx1/2 + AB1/2x + Ax3/2 + B1/2x 2)xo(1).

Now using Lemma 8 (which contributes ABx3/4+o(1) to the error term and thus
dominates the term ABx1/2+o(1)), we obtain∑

|a|≤A

∑
|b|≤B

�ST
f(a),g(b)(α,β; x) − 4µST(α,β)ABπ(x)

≤ (ABx3/4 + AB1/2x + Ax3/2 + B1/2x 2)xo(1)

= ABx1+o(1)(x−1/4 + B−1/2 + B−1x1/2 + A−1B−1/2x).

Some simple calculations now yield the desired result in the case A ≥ B.

In the case A < B, the proof is completely analogous.

Since max{AB1/2,A1/2B} ≥ (AB)3/4, we can replace the first condition of Theo-
rem 14 with AB ≥ x4/3+ε.

Finally, from Lemma 11 we immediately obtain the following result for 1-
parametric families of elliptic curves.

Theorem 15. Suppose f(T ), g(T ) ∈ Z[T ] are such that 4f(T )3 + 27g(T )2 is
not identical to zero. Assume that a positive integerA is such that, for some ε > 0,

A ≥ x1/2+ε.

Then, for all real numbers 0 ≤ α < β ≤ π we have

1

2A

∑
|a|≤A

�ST
f(a),g(a)(α,β; x) = (µST(α,β) + O(x−δ))π(x),

where δ > 0 depends only on ε.

5. Comments

We remark that Theorem 15 may seem to imply Theorem 14 (i.e., for every b with
|b| ≤ B one could attempt to apply Theorem 15 to the corresponding family of
curves). However, this is not the case because of the uniformity issue with respect
to b. Note that Theorem 14 is just an example of several similar results that hold
under the same conditions on A and B and describe the distribution of curves with
special properties. As in [5; 6], these properties may include cyclicity, primality,
or divisibility of #Ef(a),g(b)(Fp) by a given integer. That being said, it is not clear
how to obtain analogues of Theorem 15 for such questions.
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