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Metric Properties of Diestel–Leader Groups

Melanie Stein & Jennifer Taback

1. Introduction

We investigate the metric properties of a family of groups whose Cayley graphs
with respect to a carefully chosen generating set are the Diestel–Leader graphs
DL d(q), which are subsets of a product of d infinite trees of valence q + 1. We
call these groups Diestel–Leader groups and denote them �d(q). More general
Diestel–Leader graphs were introduced in [7] as a possible answer to the ques-
tion: “Is any connected, locally finite, vertex transitive graph quasi-isometric to
the Cayley graph of a finitely generated group?” It was first shown in [8] that
DL2(m, n), the Diestel–Leader graph that is a subset of a product of two trees of
respective valences m +1 and n +1, is not quasi-isometric to the Cayley graph of
any such finitely generated group. It is proved in [1] that Diestel–Leader graphs
that are subsets of the product of any number of trees of differing valence are not
Cayley graphs of finitely generated groups.

It is well known that the Cayley graph of the wreath product Ln = Zn � Z , often
called the lamplighter group, with respect to the generating set {t, ta, ta2, . . . , tan−1}
(where a is the generator of Zn and t generates Z) is the Diestel–Leader graph
DL2(n) (see e.g. [2; 14; 15]). This graph is a subset of the product of two trees of
constant valence n +1. The groups studied in this paper provide a geometric gen-
eralization of the family of lamplighter groups because their Cayley graphs gen-
eralize the geometry of the lamplighter groups; that is, their Cayley graphs with
respect to a natural generating set Sd,q are the “larger” Diestel–Leader graphs
DL d(q), which are subsets of the product of d trees of constant valence q +1 (and
are defined explicitly in Section 2).

Bartholdi, Neuhauser, and Woess [1] present a construction of a group that we
denote �d(q), a generating set Sd,q , and an identification of the graph DL d(q) with
the Cayley graph �(�d(q), Sd,q). They also provide a simple criterion for when
their construction holds: d = 2; d = 3; or, if d ≥ 4 and q = p

e1
1 p

e2
2 · · · per

r is the
prime power decomposition of q, then pi > d − 1 for all i. They show that the
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groups �d(q) are type Fd−1 but not Fd when d ≥ 3 and hence are not automatic.
We note that there are still open cases where it is not known whether DL d(q) is
the Cayley graph of a finitely generated group; the smallest open case is DL 4(2).

Random walks in the Cayley graph �(�d(q), Sd,q) are studied in [1], where a
presentation for the group is given explicitly. For example, when d = 3 the authors
obtain the presentation

�3(m) ∼= 〈a, s, t | am = 1, [a, at ] = 1, [s, t] = 1, as = aat 〉.
When m = p is prime, it is shown in [6] that �3(p) is a cocompact lattice in
Sol5(Fp((t))) and that its Dehn function is quadratic. The Dehn function of �3(m)

is studied for any m in [10], where it is shown to be at most quartic. It was men-
tioned to the authors by K.Wortman that arguments analogous to those of Gromov
in [9] imply that the Dehn function of �d(q) is quadratic regardless of the values
of d ≥ 3 and q. When the relation am = 1 is removed from the above presenta-
tion, one obtains Baumslag’s metabelian group �—which, in contrast to �3(m),
has exponential Dehn function [10]. Baumslag defined this group to provide the
first example of a finitely presented group with an abelian normal subgroup of
infinite rank.

It is noted in [1] that �d(q) is in most cases an automata group and hence
a self-similar group. Metric properties of self-similar groups are in general not
well understood. In this paper we seek to answer some of the standard geometric
group-theoretic questions related to metric properties of groups and their Cayley
graphs for these Diestel–Leader groups �d(q). Such properties often rely on the
ability to compute word length of elements within the group; we begin by prov-
ing that a particular combinatorial formula yields the word length of elements of
�d(q) with respect to the generating set Sd,q . This formula relies on the symme-
try present in the Diestel–Leader graph, and we subsequently use it to prove that
�d(q) has dead-end elements of arbitrary depth with respect to Sd,q . This gener-
alizes a result of Cleary and Riley [4; 5] which proves that �3(2) with respect to
a generating set similar to S3,2 has dead-end elements of arbitrary depth, the first
example of a finitely presented group with this property. The word-length formula
is used in later sections to show that �d(q) has infinitely many cone types and thus
no regular language of geodesics with respect to Sd,q .

2. Definitions and Background

To define DL d(q), let T be a homogeneous, locally finite, connected tree in which
the degree of each vertex is q + 1. This tree has an orientation such that each ver-
tex v has a unique predecessor v− and q successors w1, w2, . . . , wq where w−

i = v

for 1 ≤ i ≤ q. The transitive closure of the set of relationships of the form v− < v

induces the partial order �. In this partial order, any two vertices v, w ∈ T have a
greatest common ancestor v � w. Choose a base point o ∈ T and define a height
function h(v) = d(v, o � v) − d(o, o � v), where d(x, y) denotes the number of
edges on the unique path in T from x to y. With this definition, note that h(v−) =
h(v) − 1.
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Let T1, T2, . . . , Td denote d copies of the tree T with base points oi and height
functions hi for 1 ≤ i ≤ d. The Diestel–Leader graph DL d(q) is the graph whose
vertex set Vd(q) is the set of d-tuples (x1, x2, . . . , xd), where xi is a vertex of Ti

for each i and also h1(x1) + · · · + hd(xd) = 0. Two vertices x = (x1, . . . , xd) and
y = (y1, . . . , yd) are connected by an edge if and only if there are two indices i

and j, with i �= j, such that xi and yi are connected by an edge in Ti; xj and yj are
connected by an edge in Tj ; and xk = yk for k �= i, j.

There is a projection � : Vd(q) → (Z2)d given by

�(x) = �(x1, x2, . . . , xd) = ((m1, l1), (m2, l2), . . . , (md , ld)),

where mi = d(oi, oi �xi) and li = d(xi, oi �xi). In particular, 0 ≤ mi and 0 ≤ li

for all i. Note that, in Ti, the shortest path from oi to xi has length mi + li, and
recall that hi(xi) = li − mi. The defining conditions of the Diestel–Leader graph
ensure that

∑d
i=1(li − mi) = 0.

In [1] it is shown that these graphs are Cayley graphs of certain matrix groups
when a simple condition is satisfied. Specifically, let Lq be a commutative ring
of order q with multiplicative unit 1, and suppose Lq contains distinct elements
l1, . . . , ld−1 such that if d ≥ 3 then their pairwise differences are invertible. Define
a ring of polynomials in the formal variables t and (t + li)

−1 for 1 ≤ i ≤ d − 1
with finitely many nonzero coefficients lying in Lq :

Rd(Lq) = Lq[t, (t + l1)−1, (t + l2)−1, . . . , (t + ld−1)
−1].

It is proved in [1] that the group �d(Lq) (which we denote by �d(q)) of affine
matrices of the form(

(t + l1)k1 · · · (t + ld−1)
kd−1 P

0 1

)
with k1, k2, . . . , kd−1 ∈ Z and P ∈ Rd(Lq)

has Cayley graph DL d(q) with respect to the generating set Sd,q consisting of the
matrices (

t + li b

0 1

)±1

with b ∈ Lq , i ∈ {1, 2, . . . , d − 1}
and(

(t + li)(t + lj )−1 −b(t + lj )−1

0 1

)
with b ∈ Lq , i, j ∈ {1, 2, . . . , d −1}, i �= j.

It turns out that Lq always contains distinct elements l1, . . . , ld−1 satisfying the
invertibility conditions for pairwise differences when d = 2 or d = 3. When
d ≥ 4, however, Lq contains the desired elements only if all primes in the prime
power decomposition of q = p

e1
1 p

e2
2 · · · per

r satisfy pi > d − 1 for all i. We refer
the reader to [1] for more details on this construction and on the identification
between the group and the Cayley graph DL d(q).

In exploring the metric properties of the groups �d(q), and hence of the Cayley
graphs DL d(q), one often needs to keep track of edge types along a path in DL d(q)

rather than the specific generators that label the edges along the path. Given any
vertex x = (x1, x2, . . . , xd), by an edge of type ei − ej emanating from vertex x
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we mean an edge with one endpoint at x and the other at y = (y1, y2, . . . , yd),
where yk = xk for k /∈ {i, j} and where y−

i = xi and yj = x−
j . Note that hi(yi) =

hi(xi) +1 and hj(yj ) = hj(xj ) −1. There are exactly q possible choices for yi, so
there are q distinct edges of type ei − ej emanating from x.

Since the vertices of DL d(q) are identified with the elements of �d(q), we abuse
notation and consider the projection map � to be a map from the group �d(q) to
(Z2)d; thus we write

�(g) = �(x = (x1, x2, . . . , xd))

= (
(m1(g), l1(g)), (m2(g), l2(g)), . . . , (md(g), ld(g))

)
when g ∈ �d(q) is identified with the vertex x in DL d(q). We remark that the
base point vertex o = (o1, . . . , od) in DL d(q) is identified with the identity ele-
ment in �d(q).

3. Computing Word Length in �d(q) with Respect to Sd,q

Let Sd,q be the generating set for �d(q), so that the Cayley graph �(�d(q), Sd,q) is
DL d(q). We will show that the word length of an element with respect to Sd,q de-
pends only on �(g) and not on g itself. In the course of establishing the formula
for word length, it is often sufficient to keep track of a path’s edge types rather
than its edge labels. Given a vertex v ∈ DL d(q), we have defined edges of type
ei − ej emanating from v. By a path of type α1α2 . . . αr starting at v, where αk =
(eik − ejk

)pk with pk ≥ 0 for each k, we mean a path beginning at v that follows
p1 edges of type ei1 − ej1, then p2 edges of type ei2 − ej2 , and so on.

We begin by defining a function f from �d(q) to the natural numbers that is a
candidate for the word length function l : �d(q) → N for elements of �d(q) with
respect to the generating set Sd,q . For an element g ∈ �d(q), the value of f(g)

actually depends only on the d-tuple of ordered pairs

�(g) = (
(m1(g), l1(g)), (m2(g), l2(g)), . . . , (md(g), ld(g))

)
.

In order to define this function, one first considers all permutations of these ordered
pairs. For each permutation the goal is to construct a path in DL d(q), from the
identity vertex to g, in an order specified by the permutation. For a given per-
mutation σ ∈ (d , one component of the length fσ(g) of this path is found by
maximizing several quantities related to σ. To obtain the word length of g, we
minimize over the lengths of these paths.

For a given permutation σ ∈ (d , define the following quantities related to the
length of the path determined by σ from the identity to g.

Definition 1. Let g ∈ �d(q), with

�(g) = (
(m1(g), l1(g)), (m2(g), l2(g)), . . . , (md(g), ld(g))

)
and with σ in (d , the symmetric group on d letters. Define

• Aσ(d )(g) = ∑d
j=1 mσ(j)(g) and Aσ(i)(g) = ∑ i

j=2 mσ(j)(g) + ∑d−1
k=i lσ(k)(g)

for 2 ≤ i ≤ d − 1,
• fσ(g, i) = mσ(1)(g) + lσ(d )(g) + Aσ(i)(g) for 2 ≤ i ≤ d, and
• fσ(g) = max2≤i≤d fσ(g, i).
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We use these quantities to define the function f , which we shall prove yields the
word length of g ∈ �d(q) with respect to the generating set Sd,q .

Definition 2. For g ∈ �d(q), let f(g) = minσ∈(d
fσ(g).

Example. Let d = 3, choose any g with �(g) = ((5, 5), (3,10), (7, 0)), and
consider σ ∈ (3.

• When σ = id is the identity permutation, the preceding definitions yield
fid(g, 2) = 5 + 0 + (3 + 10) = 18 and fid(g, 3) = 5 + 0 + (5 + 3 + 7) = 20.

Thus, fid(g) = 20.

• Choosing σ = (1 2), we have f(1 2)(g, 2) = 3 + 0 + (5 + 5) = 13 and
f(1 2)(g, 3) = 3 + 0 + (5 + 3 + 7) = 18; hence f(1 2)(g) = 18.

• For any σ we have fσ(g, 3) = mσ(i)(g) + lσ(j)(g) +15 ≥ 18, so fσ(g) ≥ 18 for
all σ ∈ (3.

Minimizing over all σ ∈ (3, we conclude that f(g) = 18.

In order to establish that the function f just defined is the word-length function,
we use the following general lemma.

Lemma 1. Given a group G with generating set S, let l : G → N ∪ {0} be the
word length with respect to S. Let f : G → N ∪ {0} be another function that sat-
isfies the following statements:

(1) f(g) = 0 if and only if g is the identity element ;
(2) for every g ∈ G, l(g) ≥ f(g);
(3) for every g ∈ G, there exists some s ∈ S with f(gs) = f(g) − 1.

Then l(g) = f(g) for every g ∈ G.

Proof. Let g ∈ G, and suppose f(g) = n. Then by property (3) there exist
s1, s2, . . . , sn ∈S satisfying f(gs1s2 · · · sn) = 0. By property (1), g = s−1

n · · · s−1
2 s−1

1
and so l(g) ≤ f(g). Hence by property (2) we have l(g) = f(g).

Clearly, for the function f defined in Definition 1 we have f(g) = 0 if and only if
g is the identity element. The other two properties of the function f will be veri-
fied in Propositions 2 and 8. It then will follow from Lemma 1 that the function f

defined in Definition 1 is the word-length function for �d(q) with respect to the
generating set Sd,q .

Proposition 2. Let g ∈ �d(q) with

�(g) = (
(m1(g), l1(g)), (m2(g), l2(g)), . . . , (md(g), ld(g))

)
,

let f(g) be as in Definition 1, and let l(g) be the word length of g with respect to
the generating set Sd,q . Then l(g) ≥ f(g).

Proof. Let γ be a path of length n in DL d(q) from o to the vertex x identified
with g; thus γ corresponds naturally to a word a1a2a3 . . . an with ai ∈ Sd,q for
1 ≤ i ≤ n. We will show that for some choice of σ ∈ (d , we have n ≥ fσ(g, i)

for every 2 ≤ i ≤ d. It follows that n ≥ fσ(g) ≥ f(g) and thus l(g) ≥ f(g).
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We begin by choosing the permutation σ ∈ (d. Along the path γ from o to x,
there must be points where the kth coordinate is yk = ok � xk for 1 ≤ k ≤ d.

Let v1 be the first such point, so that v1
i1

= yi1 for some i1 with 1 ≤ i1 ≤ d. By
the definition of v1, we know that v1

k � xk = yk for k �= i1. Thus, on the portion
of the path from v1 to x, there must be points where the kth coordinate is yk =
ok � xk for each 1 ≤ k ≤ d, k �= i1. Let v2 be the first such point; then v2

i2
= yi2

for some i2 with 1 ≤ i2 ≤ d, i2 �= i1. Continuing in this manner, we define points
v1, v2, . . . , vd, each with a distinct associated coordinate i1, i2, . . . , id and such that
the (ik)th coordinate of vk is yik . Let σ ∈ (d be the unique permutation defined
by σ(k) = ik for 1 ≤ k ≤ d.

First we consider the point vj, 2 ≤ j ≤ d − 1, and suppose that the prefix
a1 . . . ar corresponds to the subpath of γ starting at o and ending at vj. Then, for
every p with 1 ≤ p ≤ j, the path a1 . . . ar must contain at least mσ(p)(g) edges
of type e t − eσ(p); here t �= σ(p) may vary by edge, so r ≥ ∑j

p=1 mσ(p)(g).

However, for every p with j ≤ p ≤ d, the path ar+1 . . . an must contain at least
lσ(p)(g) edges of type eσ(p) − e t (where again t �= σ(p) may vary by edge), so
n − r ≥ ∑d

p=j lσ(p)(g). Thus

n = r + (n − r) ≥
j∑

p=1

mσ(p)(g) +
d∑

p=j

lσ(p)(g)

= mσ(1)(g) + Aσ(j)(g) + lσ(d )(g)

= fσ(g, j)

for every 2 ≤ j ≤ d − 1.

For the case j = d, we use a slightly different argument. In this case, let a1 . . . ar

be the path from o to v1 and let ar+1 . . . as be the path from v1 to vd. Then the path
a1 . . . ar must contain at least mσ(1)(g) edges of type e t − eσ(1), so r ≥ mσ(1)(g).

Similarly, the path as+1 . . . an must contain at least lσ(d )(g) edges of type eσ(d )−e t ,
so n − s ≥ lσ(d )(g).

For each p �= 1 we have yσ(p) � v1
σ(p) = yσ(p) and so, for each such p, there

must be at least hσ(p)(v
1
σ(p)) − hσ(p)(yσ(p)) letters corresponding to generators

of type e t − eσ(p) for various choices of t in the word ar+1 . . . as . Therefore,
s−r ≥ ∑d

p=2 hσ(p)(v
1
σ(p))−hσ(p)(yσ(p)). Now, since

∑d
p=1 hσ(p)(v

1
σ(p)) = 0 and

hσ(1)(v
1
σ(1)) = −mσ(1)(g), it follows that

∑d
p=2 hσ(p)(v

1
σ(p)) = −hσ(1)(v

1
σ(1)) =

mσ(1)(g). Furthermore, hσ(p)(yσ(p)) = −mσ(p)(g) for every 2 ≤ p ≤ d. Hence

s − r ≥
d∑

p=2

(hσ(p)(v
1
σ(p)) − hσ(p)(yσ(p)))

= mσ(1)(g) −
d∑

p=2

hσ(p)(yσ(p))

=
d∑

p=1

mσ(p)(g) = Aσ(d )(g).

Thus we have
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n = r + (s − r) + (n − s)

≥ mσ(1)(g) + Aσ(d )(g) + lσ(d )(g)

= fσ(g, d).

Hence we have shown that n ≥ fσ(g, j) for every 2 ≤ j ≤ d, as desired.

To complete the argument, we must prove that f satisfies the third and final prop-
erty of Lemma 1. In doing so, it is often necessary to keep track of which values
of lχ(i)(g) in �(g) are zero for a given permutation χ, so we first prove several
preliminary lemmas.

Lemma 3. Let χ ∈ (d be any permutation and g ∈ �d(q) any nontrivial element.

(1) If lχ(d )(g) = 0, let n be the maximal value of j with 1 ≤ j ≤ d − 1 such that
lχ(j)(g) �= 0. Then

max
2≤i≤d

Aχ(i)(g) = max
2≤i≤n,i=d

Aχ(i)(g).

(2) If lχ(1)(g) = 0, let k be the minimum value of j with 2 ≤ j ≤ d such that
lχ(j)(g) �= 0. Then

max
2≤i≤d

Aχ(i)(g) = max
k≤i≤d

Aχ(i)(g).

Proof. Since g is nontrivial, the values of n and k as defined in (1) and (2) both exist.
The proof of (1) follows because, if lχ(n+1)(g) = lχ(n+2)(g) = · · · = lχ(d−1)(g) =
0, then for n+1 ≤ i ≤ d −1 we have Aχ(i)(g) ≤ Aχ(d )(g). Similarly, to prove (2),
if lχ(2)(g) = · · · = lχ(k−1)(g) = 0 for 2 ≤ i ≤ k −1 then Aχ(i)(g) ≤ Aχ(k)(g).

Lemma 4. Fix g ∈ �d(q). Let σ ∈ (d with lσ(1)(g) = 0. Let τ ∈ (d be defined
by τ(i) = σ(i + 1) for 1 ≤ i < d and τ (d) = σ(1). Then fσ(g) ≥ fτ(g).

Proof. First note that, for 2 ≤ i ≤ d − 2,

Aσ(i+1)(g) = mσ(2)(g) + · · · + mσ(i+1)(g) + lσ(i+1)(g) + · · · + lσ(d−1)(g)

and

Aτ(i)(g) = mτ(2)(g) + · · · + mτ(i)(g) + lτ (i)(g) + · · · + lτ (d−1)(g)

= mσ(3)(g) + · · · + mσ(i+1)(g) + lσ(i+1)(g) + · · · + lσ(d )(g).

Hence for 2 ≤ i ≤ d − 2 we have

Aσ(i+1)(g) = Aτ(i)(g) + mσ(2)(g) − lσ(d )(g). (∗)

The lemma is clearly true if g is the identity element, so we may assume for the
rest of the proof that g is nontrivial. Using the definition of k given in Lemma 3,
we have max2≤i≤d Aσ(i)(g) = maxk≤i≤d Aσ(i)(g). We may therefore assume that
fσ(g) = fσ(g, i) for k ≤ i ≤ d; that is, fσ(g) = mσ(1)(g) + lσ(d )(g) + Aσ(i)(g)

for some i with k ≤ i ≤ d. We must show for each j, 2 ≤ j ≤ d, that fσ(g, i) ≥
fτ(g, j). From this it will follow that fσ(g) ≥ fτ(g), as desired. We consider
three subcases.
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Case 1: 2 ≤ j ≤ d − 2. In this case we see that

fσ(g, i) = mσ(1)(g) + lσ(d )(g) + Aσ(i)(g)

≥ mσ(1)(g) + lσ(d )(g) + Aσ(j+1)(g)

= mσ(1)(g) + lσ(d )(g) + Aτ(j)(g) + mσ(2)(g) − lσ(d )(g)

≥ mσ(2)(g) + Aτ(j)(g)

= mτ(1)(g) + lτ (d )(g) + Aτ(j)(g)

= fτ(g, j).

Here the first inequality holds because fσ(g) = fσ(g, i) and so Aσ(i)(g) ≥
Aσ(j)(g) for i �= j, the next line follows from (∗), and the penultimate equal-
ity holds because

lτ (d )(g) = lσ(1)(g) = 0.

Case 2: j = d. Then

fσ(g, i) = mσ(1)(g) + lσ(d )(g) + Aσ(i)(g)

≥ mσ(1)(g) + lσ(d )(g) + Aσ(k)(g)

= mσ(1)(g) + mσ(2)(g) + · · · + mσ(k)(g) + lσ(k)(g)

+ lσ(k+1)(g) + · · · + lσ(d )(g)

≥ mσ(2)(g) + 0 + lσ(k)(g) + lσ(k+1)(g) + · · · + lσ(d )(g)

= mτ(1)(g) + lτ (d )(g) +
d∑

r=1

mτ(r)(g) = fτ(g, d).

The last line relies on the facts that lτ (d )(g) = lσ(1)(g) = 0 and that, by our choice
of k,

d∑
r=1

mτ(r)(g) =
d∑

r=1

mσ(r)(g) =
d∑

r=1

lσ(r)(g) =
d∑

r=k

lσ(r)(g).

Case 3: j = d − 1. In this case we differentiate between 2 ≤ i ≤ d − 1 and
i = d. Recall that fσ(g) = fσ(g, i).

First let 2 ≤ i ≤ d − 1 and recall that lτ (d )(g) = lσ(1)(g) = 0 by assumption.
In this case,

fτ(g, d − 1) = mτ(1)(g) + mτ(2)(g) + · · · + mτ(d−1)(g) + lτ (d−1)(g) + lτ (d )(g)

= mσ(2)(g) + · · · + mσ(d )(g) + lσ(d )(g).

We also assume that Aσ(i) ≥ Aσ(d ). Writing out this inequality and canceling iden-
tical terms from both sides yields

lσ(i)(g) + lσ(i+1)(g) + · · · + lσ(d−1)(g)

≥ mσ(1)(g) + mσ(i+1)(g) + mσ(i+2)(g) + · · · + mσ(d )(g).

Therefore,
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fσ(g, i) = mσ(1)(g) + mσ(2)(g) + · · · + mσ(i)(g) + lσ(i)(g) + · · · + lσ(d )(g)

≥ (mσ(1)(g) + · · · + mσ(i)(g))

+ (mσ(1)(g) + mσ(i+1)(g) + mσ(i+2)(g) + · · · + mσ(d )(g)) + lσ(d )(g)

≥ mσ(2)(g) + · · · + mσ(d )(g) + lσ(d )(g)

= mτ(1)(g) + mτ(2)(g) + · · · + mτ(d−1)(g) + lτ (d−1)(g) + lτ (d )(g)

= fτ(g, d − 1).

Now let i = d. In this case,

fσ(g, d) = mσ(1)(g) + lσ(d )(g) +
d∑

r=1

mσ(i)(g)

≥ mσ(2)(g) + · · · + mσ(d )(g) + lσ(d )(g)

= mτ(1)(g) + mτ(2)(g) + · · · + mτ(d−1)(g) + lτ (d−1)(g)

= mτ(1)(g) + mτ(2)(g) + · · · + mτ(d−1)(g) + lτ (d−1)(g) + lτ (d )(g)

= fτ(g, d − 1).

If g ∈ �d(q) is nontrivial, let .g = {σ ∈ (d | f(g) = fσ(g)} and let .′
g =

{σ ∈ .g | lσ(1)(g) �= 0}. Then Lemma 4 has the following corollary.

Corollary 5. If g ∈ �d(q) is not the identity element, then .′
g is not empty.

In other words, there exists a σ ∈ (d such that f(g) = fσ(g) and lσ(1)(g) �= 0.

Proof. Suppose that χ ∈ .g and lχ(1)(g) = 0. Let k be defined as in Lemma 3.
Then k − 1 applications of Lemma 4 yields the corollary.

Lemma 6. Let g ∈ �d(q) and σ ∈ (d with mσ(d )(g) = lσ(d )(g) = 0. Define
τ ∈ (d such that τ(1) = σ(d) and τ(i) = σ(i − 1) for i ≥ 2. Then fσ(g) =
fτ(g).

Proof. One can argue as in the previous lemma to verify directly that fσ(g, d) =
fτ(g, 2) and that fσ(g, i) = fτ(g, i + 1) for 2 ≤ i ≤ d − 1.

We immediately obtain the following corollary.

Corollary 7. If g ∈ �d(q) is not the identity element, then there exists σ ∈.g

such that either lσ(d )(g) �= 0 or mσ(d )(g) �= 0.

The next proposition uses the preceding lemmas and corollaries to prove that the
function f satisfies condition (3) of Lemma 1.

Proposition 8. Let g ∈ �d(q) be a nontrivial group element, and let f(g) be as
in Definition 1. Then there exists s ∈ Sd,q with f(gs) = f(g) − 1.

Proof. If g ∈ Sd,q , that is, if g is a generator of �d(q), then it is easy to see that
f(g) = 1 and (choosing s = g−1) that f(gs) = 0; hence the condition of the
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proposition is satisfied. From now on we assume that g /∈ Sd,q , which means that
for any s ∈ Sd,q we know that gs is nontrivial.

Let x be the vertex in DL d(q) identified with g, and recall that we write �(g)

for �(x).

Case 1. There exists a σ ∈ .g with lσ(d )(g) �= 0. If, in addition, lσ(1)(g) > 0
or lσ(1)(g) = mσ(1)(g) = 0, then choose s to be any generator corresponding to an
edge of type eσ(1) − eσ(d ). If lσ(1)(g) = 0 and mσ(1)(g) > 0, let w be the vertex in
Tσ(1) adjacent to xσ(1) on the unique shortest path from oσ(1) to xσ(1). Choose s to
be any generator of type eσ(1) −eσ(d ), so that if z is the vertex in DL d(q) identified
with gs then zσ(1) �= w. Consequently,

(1) (mσ(d )(gs), lσ(d )(gs)) = (mσ(d )(g), lσ(d )(g) − 1),
(2) (mσ(1)(gs), lσ(1)(gs)) = (mσ(1)(g), lσ(1)(g) + 1), and
(3) (mσ(i)(gs), lσ(i)(gs)) = (mσ(i)(g), lσ(i)(g)) for i �= 1, d.

However, this implies that Aσ(i)(gs) = Aσ(i)(g) for every 2 ≤ i ≤ d, and hence

fσ(gs) = mσ(1)(gs) + lσ(d )(gs) + max
2≤i≤d

Aσ(i)(gs)

= mσ(1)(g) + (lσ(d )(g) − 1) + max
2≤i≤d

Aσ(i)(g)

= fσ(g) − 1.

First we note that the inequality f(g) − 1 ≥ f(gs) is not hard to verify, given
that f(g)−1 = fσ(g)−1 = fσ(gs) ≥ fτ(gs) for any τ ∈ .gs. Hence f(g)−1 ≥
f(gs).

Now, for any τ ∈ (d , it follows that: mτ(i)(gs) = mτ(i)(g) for every 1 ≤ i ≤ d;
lτ (i)(gs) �= lτ (i)(g) for only two choices of i; and lτ (i)(gs) = lτ (i)(g)−1 for one of
those choices and lτ (i)(gs) = lτ (i)(g) +1 for the other. For any value of i, lτ (i)(g)

(resp. lτ (i)(gs)) appears at most in the formula for fτ(g, i) (resp. fτ(gs, i)); there-
fore, fτ(g)−1 ≤ fτ(gs). Thus for τ ∈ .gs we have f(gs) = fτ(gs) ≥ fτ(g)−1 ≥
f(g) −1 and so f(gs) ≥ f(g) −1 as well. Hence f(gs) = f(g) −1, as desired.

Case 2. For every χ ∈ .g , assume that lχ(d )(g) = 0. We can now apply Corol-
lary 7 to choose σ ∈ .g such that mσ(d )(g) �= 0.

Let w be the vertex in Tσ(d ) adjacent to xσ(d ) on the unique shortest path from
oσ(d ) to xσ(d ), and let n be as defined in Lemma 3. Choose the generator s ∈ Sd,q

of type eσ(d ) − eσ(n) such that, if z is the vertex in DL d(q) identified with gs, then
zσ(d ) = w. Then we have, for the pair σ and s:

(1) (mσ(d )(gs), lσ(d )(gs)) = (mσ(d )(g) − 1, lσ(d )(g)), where
lσ(d )(gs) = lσ(d )(g) = 0;

(2) (mσ(n)(gs), lσ(n)(gs)) = (mσ(n)(g), lσ(n)(g) − 1);
(3) (mσ(i)(gs), lσ(i)(gs)) = (mσ(i)(g), lσ(i)(g)) for i �= n, d.

For the preceding choice of σ and s, we claim that fσ(gs) = fσ(g)−1. Applying
Lemma 3 to g reveals that

fσ(g) = mσ(1)(g) + lσ(d )(g) + max
2≤i≤n,i=d

Aσ(i)(g).
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Because the only index for which lσ(i)(gs) �= lσ(i)(g) is i = n, we again see that
lσ(j)(gs) = 0 for j > n. Applying Lemma 3 to gs now yields

fσ(gs) = mσ(1)(gs) + lσ(d )(gs) + max
2≤i≤n,i=d

Aσ(i)(gs).

It follows from the definition of s that Aσ(d )(gs) = Aσ(d )(g) − 1. Similarly, for
2 ≤ i ≤ n we have Aσ(i)(gs) = Aσ(i)(g) − 1, since neither expression contains
mσ(d ) and both contain lσ(n). Therefore,

max
2≤i≤n,i=d

Aσ(i)(gs) = max
2≤i≤n,i=d

(Aσ(i)(g) − 1) =
(

max
2≤i≤n,i=d

Aσ(i)(g)
)

− 1.

Combining the arguments so far, we obtain

fσ(gs) = mσ(1)(gs) + lσ(d )(gs) + max
2≤i≤n,i=d

Aσ(i)(gs)

= mσ(1)(g) + lσ(d )(g) + max
2≤i≤n,i=d

Aσ(i)(g) − 1 = fσ(g) − 1.

Since fσ(g) = f(g) and f(gs) ≤ fσ(gs), it follows immediately from the equal-
ity fσ(gs) = fσ(g) − 1 that f(gs) ≤ f(g) − 1.

To complete the proof of Proposition 8, we must show that f(gs) ≥ f(g) − 1.

First note that, for any χ ∈ (d , it follows from the definition of f that fχ(gs) ≥
fχ(g)−3. We now show that this inequality can be improved slightly for τ ∈ .′

gs;
for such τ we will show that fτ(gs) ≥ fτ(g) − 2. Suppose to the contrary that
τ ∈ .′

gs and fτ(gs) = fτ(g) − 3. This can occur in only one way; namely, all
three of the following conditions must be met:

(1) τ(1) = σ(d ),
(2) τ(d ) = σ(n), and
(3) max2≤i≤n,i=d Aτ(i)(gs) = Aτ(d )(gs).

Now τ ∈ .′
gs implies that lτ (1)(gs) �= 0, but condition (1) requires that lτ (1)(gs) =

lσ(d )(gs) = lσ(d )(g) = 0, a contradiction. Thus, for all τ ∈ .′
gs we must have

fτ(gs) ≥ fτ(g) − 2.

It follows from Corollary 5 that .′
gs is not empty, so we may choose χ ∈ .′

gs .

If χ /∈ .g then fχ(g) > fσ(g). Thus we have f(gs) = fχ(gs) ≥ fχ(g) − 2 >

fσ(g) − 2 and hence f(gs) ≥ fσ(g) − 1 = f(g) − 1, as desired.
On the other hand, if χ ∈ .g then we make the following claim.

Claim. If χ ∈ .g , then there exists a τ ∈ .′
gs with fτ(gs) ≥ fτ(g) − 1.

Proposition 8 follows immediately from the claim, as follows. Let τ be as in the
claim, so that fτ(gs) ≥ fτ(g)−1. Then f(gs) = fτ(gs) ≥ fτ(g)−1 ≥ f(g)−1
and hence f(gs) ≥ f(g) − 1, as desired.

To prove the claim, if fχ(gs) ≥ fχ(g) − 1 then simply let τ = χ. If fχ(gs) =
fχ(g) − 2 then we use χ to construct τ ∈ .′

gs such that fτ(gs) ≥ fτ(g) − 1, as
follows.

There exist distinct u, v ∈ {1, 2, . . . , d} such that χ(u) = σ(d ) and χ(v) = σ(n).

We now show that 1 < u < v < d. To see that 1 < u, observe that lσ(d )(gs) =
0 but lχ(1)(gs) �= 0 since χ ∈ .′

gs; hence σ(d ) �= χ(1) (i.e., u �= 1). To see that
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v < d, observe that lσ(n)(g) = lχ(v)(g) �= 0. Recall that, since χ ∈ .g , we must
have lχ(d )(g) = 0 and hence v �= d.

Finally, we need to show that u < v. Since χ(1) �= σ(d ), it follows that
mχ(1)(gs) = mχ(1)(g). Also, since χ(v) �= χ(d ) we have lχ(d )(gs) = lχ(d )(g).

Thus, for fχ(gs) = fχ(g) − 2 it must be that

max
2≤i≤d

Aχ(i)(g) − max
2≤i≤d

Aχ(i)(gs) = 2.

The only way this can happen is if max2≤i≤d Aχ(i)(g) is realized by an expression
that contains both mσ(d )(g) and lσ(n)(g), that is, both mχ(u)(g) and lχ(v)(g). By
construction of the terms Aχ(i)(g), we must have u < v for this to occur; for if u >

v and if lχ(v)(g) were a term in the expression that realized max2≤i≤d Aχ(i)(g), then
this expression would also contain lχ(u)(g) and not mχ(u)(g) as required. There-
fore, u < v.

We now construct τ ∈ .′
gs satisfying fτ(gs) ≥ fτ(g) − 1. We let u and v be as

before, and we set the following definitions:

• for i < u, let τ(i) = χ(i);
• for u ≤ i < v, let τ(i) = χ(i + 1);
• for i = v, let τ(v) = χ(u);
• for i > v, let τ(i) = χ(i).

We first show that τ ∈ .′
gs . Since χ(1) = τ(1) and χ(d ) = τ(d ), we claim that

for any i with 2 ≤ i ≤ d we have Aτ(i)(gs) ≤ max2≤j≤d Aχ(j)(gs). This is clearly
true when i = d, since Aτ(d )(gs) = Aχ(d )(gs). We next consider the four remain-
ing cases, and we abuse our notation by writing mχ(i), lχ(i), and Aχ(i) instead of
mχ(i)(gs), lχ(i)(gs), and Aχ(i)(gs), respectively.

Case I: i < u. Then

Aχ(i) = mχ(2) + · · · + mχ(i) + lχ(i) + · · · + lχ(u) + · · · + lχ(v) + · · · + lχ(d−1)

= mχ(2) + · · · + mχ(i) + lχ(i) + · · · + lχ(u−1) + lχ(u+1) + · · · + lχ(v)

+ lχ(u) + lχ(v+1) + · · · + lχ(d−1)

= mτ(2) + · · · + mτ(i) + lτ (i) + · · · + lτ (d−1)

= Aτ(i).

Here the second equality follows from the first via rearranging terms and is then
rewritten with equivalent indices for τ in the third equality.

Case II: u ≤ i < v. Then

Aτ(i) = mτ(2) + · · · + mτ(u) + · · · + mτ(i) + lτ (i) + · · · + lτ (d−1)

= mχ(2) + · · · + mχ(u−1) + mχ(u+1) + · · · + mχ(i+1) + lχ(i+1) + · · · + lχ(v)

+ lχ(u) + lχ(v+1) + · · · + lχ(d−1)

< mχ(2) + · · · + mχ(u−1) + mχ(u) + mχ(u+1) + · · · + mχ(i+1)

+ lχ(i+1) + · · · + lχ(v) + lχ(v+1) + · · · + lχ(d−1)

= Aχ(i+1);
here the inequality is obtained by including the “missing” term mχ(u) = mσ(d ) >

0 and omitting lχ(u) = 0 from the expression.
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Case III: i = v. Recall that τ(v) = χ(u) = σ(d ), and note that τ(v − 1) =
χ(v) by the definition of τ. Then

Aτ(v) = mτ(2) + · · · + mτ(u−1) + mτ(u) + · · · + mτ(v−1) + mτ(v)

+ lτ (v) + · · · + lτ (d−1)

= mχ(2) + · · · + mχ(u−1) + mχ(u+1) + · · · + mχ(v) + mχ(u)

+ lχ(u) + lχ(v+1) + · · · + lχ(d−1)

≤ mχ(2) + · · · + mχ(u−1) + mχ(u) + mχ(v) + lχ(v) + · · · + lχ(d−1) = Aχ(v),

where the final line is obtained from the preceding equality by rearranging the
existing terms, omitting lχ(u) = 0, and adding in the term lχ(v).

Case IV: i > v. Then

Aχ(i) = mχ(2) + · · · + mχ(u) + · · · + mχ(v) + · · · + mχ(i) + lχ(i) + · · · + lχ(d−1)

= mχ(2) + · · · + mχ(u−1) + mχ(u+1) + · · · + mχ(v) + mχ(u)

+ mχ(v+1) + · · · + mχ(i) + lχ(i) + · · · + lχ(d−1)

= Aτ(i).

Combining these cases shows that, for all 2 ≤ i ≤ d, we have Aτ(i)(gs) ≤
max2≤j≤d Aχ(j)(gs). Thus fτ(gs) ≤ fχ(gs) = f(gs) and hence f(gs) = fτ(gs);
that is, τ ∈ .gs. Now, since χ ∈ .′

gs , this implies that lχ(1)(gs) �= 0. But τ(1) =
χ(1) and so lτ (1)(gs) �= 0 as well; therefore, τ ∈ .′

gs .

Finally, it remains to show that fτ(gs) = fτ(g) − 1. Recall from the definition
of τ that τ(v) = χ(u) = σ(d ) and τ(v − 1) = χ(v) = σ(n). From the choice of
s, recall that

(1) (mσ(d )(gs), lσ(d )(gs)) = (mσ(d )(g) − 1, lσ(d )(g)),
(2) (mσ(n)(gs), lσ(n)(gs)) = (mσ(n)(g), lσ(n)(g) − 1), and
(3) (mσ(i)(gs), lσ(i)(gs)) = (mσ(i)(g), lσ(i)(g)) for i �= n, d.

Comparing Aτ(i)(gs) and Aτ(i)(g) shows that Aτ(i)(gs) = Aτ(i)(g)−1 for all pos-
sible values of i.

From the definition of τ we see that

mτ(1)(g) = mχ(1)(g) = mχ(1)(gs) = mτ(1)(gs)

and
lτ (d )(g) = lχ(d )(g) = lχ(d )(gs) = lτ (d )(gs).

Thus fτ(gs) = fτ(g) − 1, which concludes the proof of the claim and hence of
Proposition 8.

4. Comparing Word Length in �d(q) and
Distance in the Product of Trees

Since the Diestel–Leader graph DL d(q) is a subset of the product of d trees of va-
lence q +1, it is natural to compare the word metric on the Cayley graph DL d(q) to
the product metric on the product of trees. This product metric assigns every edge
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length 1 and simply counts edges in each tree between the coordinates correspond-
ing to two different group elements. It is a straightforward consequence of the
word-length formula that these two metrics are quasi-isometric. In Corollary 10
we extend the word-length function f to compute the distance in the word metric
(with respect to the generating set Sd(q)) between arbitrary group elements. We
conclude with a corollary that constructs a family of quasi-geodesic paths from
the vertex corresponding to the identity to a vertex corresponding to any group
element.

Theorem 9. Let l(g) denote the word length of g ∈ �d(q) with respect to the
generating set Sd,q . Let dT (g) be the distance in the product metric on the prod-
uct of trees between g in DL d(q) and ε, the fixed base point corresponding to the
identity in �d(q). Then

1

2
dT (g) ≤ l(g) ≤ 2dT (g);

that is, the word length is quasi-isometric to the distance from the identity in the
product metric on the product of trees.

Proof. Let �(g) = ((m1, l1), (m2, l2), . . . , (md , ld)). It follows that dT (g) =∑d
i=1 mi + li = 2

∑d
i=1 mi. Using the word-length formula from Section 3, we

see that, for some σ ∈ ((d),

l(g) = fσ(g) = (mσ(1) + lσ(d )) + max
2≤i≤d

Aσ(i)

≤
( d∑

i=1

mi +
d∑

i=1

li

)
+

d∑
i=1

mi +
d∑

i=1

li = 2dT (g).

To obtain a lower bound, note that

l(g) = min
σ∈(d

fσ(g) = min
σ∈(d

(
mσ(1) + lσ(d ) + max

2≤i≤d
Aσ(i)(g)

)

≥ min
σ∈(d

(
max

2≤i≤d
Aσ(i)(g)

)
.

Yet for every σ ∈ (d we have max2≤i≤d Aσ(i)(g) ≥ Aσ(d )(g) = ∑d
i=1 mi, so

l(g) ≥
d∑

i=1

mi = 1

2
dT (g).

Combining these inequalities proves the theorem.

The first corollary to Theorem 9 requires that we extend the techniques of Sec-
tion 3 in order to compute the distance in the word metric between arbitrary group
elements.

Corollary 10. Let g, h ∈ �d(q), and let dT (g, h) denote the distance between
the two vertices in DL d(q) corresponding to g and h with respect to the product
metric on the product of trees. Then
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1

2
dT (g, h) ≤ l(g−1h) ≤ 2dT (g, h).

Proof. In Section 3 we show that l(g) = f(g) for the function f defined there.
The calculation of the value of f(g) depends only on the coordinates of �(g) =(
(m1(g), l1(g)), . . . , (md(g), ld(g))

)
. Recall that if g corresponds to the vertex

(g1, . . . , gd) in DL d(q) then, for 1 ≤ i ≤ d,

(mi(g), li(g)) = (dTi
(oi, oi � gi), dTi

(gi, oi � gi)),

where (o1, . . . , od) is the vertex in DL d(q) corresponding to the identity element
of �d(q). Define an analogous relative projection function �h(g) = (

(mh,1(g),
lh,1(g)), . . . , (mh,d(g), lh,d(g))

)
, where for 1 ≤ i ≤ d we have

(mh,i(g), lh,i(g)) = (dTi
(hi, hi � gi), dTi

(gi, hi � gi)).

Now define fh(g) as in Section 3, replacing �(g) with �h(g). Because the proof
that l(g) = f(g) is strictly combinatorial, the arguments in Section 3 imply that
fh(g) computes the word length of g−1h with respect to the generating set Sd,q;
the corollary then follows directly from Theorem 9.

The component of the word-length function that computes the maximum of the
quantities Aσ(i) over σ ∈ (d presents a combinatorial obstruction to writing down
a family of geodesic paths representing elements of �d(q). The symmetry present
in the Diestel–Leader graphs gives rise to a natural family of paths, described
by edge labels, with the property that any path with these edge labels is a quasi-
geodesic path in the Cayley graph DL d(q). Although it is often not difficult to
write down a family of quasi-geodesic paths in a Cayley graph, the paths we de-
scribe are especially natural to traverse and the construction is valid when the trees
are permuted, which captures the symmetry of the Diestel–Leader graphs. Hence
we note in what follows that they are quasi-geodesics.

Let g ∈ �d(q) have projection �(g) = ((m1, l1), (m2, l2), . . . , (md , ld)). Con-
sider the sequence of edge labels

(ed − e1)m1(ed − e2)m2 . . . (ed − ed−1)
md−1(e1 − ed)l1(e2 − ed)l2

. . . (ed−1 − ed)ld−1(e1 − ed)α(ed − e1)ld,

where α = md + (m1+· · ·+md−1)− (l1+· · ·+ ld−1) = md +(∑d
i=1 mi −md

)−(∑d
i=1 mi − ld

) = ld . We claim there is such a path ζg from the base point ε to the
point γ ∈ DL d(q) identified with g; in general, there are many possible choices
of a path with the preceding edge labels. Moreover, this construction holds under
permutation of the trees T1, T2, . . . , Td.

Corollary 11. Let g ∈ �d(q), and let ζg be any path from ε to γ with the edge
labels listed above. Then ζg is a quasi-geodesic path.

Proof. The corollary follows from combining Theorem 9 and Corollary 10 and
checking that, for any two points h1 and h2 along ζg , the distance between them
along the path ζg is coarsely equivalent to the distance between them in the prod-
uct metric on the product of trees.
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5. Dead-end Elements

In a group G with finite generating set S, an element that corresponds to a ver-
tex x ∈ �(G, S) is a dead-end element if no geodesic ray in �(G, S) from can be
extended past x and remain geodesic. Intuitively, the depth of the dead-end ele-
ment g is the length of the shortest path in �(G, S) from g to any point in the
complement of the ball of radius l(g). Both the existence and depth of dead-end
elements depend on the generating set; in [13] an example is given of a finitely
generated group that has dead-end elements of finite depth with respect to one
generating set yet of unbounded depth with respect to another. Theorem 12 gen-
eralizes the main result of [4; 5]—namely, that �3(2) has dead-end elements of
arbitrary depth with respect to a generating set similar to S3,2.

Definition 3. An element g in a finitely generated group G is a dead-end ele-
ment with respect to a finite generating set S for G if l(g) = n and l(gs) ≤ n

for all generators s in S ∪ S−1, where l(g) denotes the word length of g ∈ G with
respect to S.

Definition 4. A dead-end element g in a finitely generated group G with re-
spect to a finite generating set S has depth k if k is the largest integer with the
following property. If the word length of g is n, then l(gs1s2 · · · sr ) ≤ n for 1 ≤
r < k and all choices of generators si ∈ S ∪ S−1.

The goal of this section is to prove the following theorem.

Theorem 12. The group �d(q) has dead-end elements of arbitrary depth with
respect to the generating set Sd,q .

The outline of the proof of Theorem 12 mimics the outline of the proof in [4; 5].
However, the details of the proofs are quite different. In [4; 5], the lamplighter
model of an element of �3(2) is used to compute word length as well as lemmas
analogous to those that follow here. This model extends the well-known lamp-
lighter model of an element in Ln = Zn �Z (due to J. Cannon) in which a group ele-
ment of Ln is visualized using a bi-infinite string of multi-state light bulbs placed
at integer points on a number line along with a “lamplighter”. Then g ∈ Ln cor-
responds to a finite collection of illuminated bulbs and an integral position of the
lamplighter. However, in �3(2) the “lampstand” (analogous to Z for Ln) consists
of three bi-infinite rays, the illuminated bulbs are obtained using a series of rela-
tions derived from Pascal’s triangle modulo 2, and the “lamplighter” moves over
a Z × Z grid. A precise extension of this model to describe elements of �d(q) for
d > 3 seems ambiguous. The proofs given here rely instead on the geometry of
the Diestel–Leader graphs and their inherent symmetry.

Begin by defining, for any n ∈ Z
+, the set

Hn = {
g ∈ �d(q) | �(g) = (

(m1(g), l1(g)), (m2(g), l2(g)), . . . , (md(g), ld(g))
)

with 0 ≤ mi(g) ≤ n and 0 ≤ li(g) ≤ mi(g) + n for all 1 ≤ i ≤ d
}
.
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In the next two lemmas we show that the word length of any point in Hn with re-
spect to Sd,q is bounded and describe a set of vertices in Hn at maximal distance
from the identity. Proofs of both lemmas follow easily from the word-length for-
mula proved in Section 3.

Lemma 13. If g ∈ Hn, then l(g) ≤ (d + 2)n.

Proof. Let g ∈ Hn with �(g) = ((m1, l1), (m2, l2), . . . , (md , ld)). Choose σ ∈
(d so that lσ(1) ≥ lσ(2) ≥ · · · ≥ lσ(d ). We claim that mσ(1) + Aσ(i)(g) + lσ(d ) ≤
(d + 2)n for every 2 ≤ i ≤ d and hence fσ(g) ≤ (d + 2)n. It then follows from
the word-length formula that l(g) ≤ fσ(g) ≤ (d + 2)n.

Choose k such that lσ(k) > n but lσ(k+1) ≤ n and such that k = 0 if lσ(i) ≤ n for
every i. Since

d∑
i=1

lσ(i)(g) =
d∑

i=1

mσ(i)(g) ≤ dn,

it follows that k < d. Furthermore, we claim that lσ(i) +· · ·+ lσ(d ) ≤ (d − i +1)n

for 1 ≤ i ≤ d. This is clear if i ≥ k+1, since then each term in the sum is less than
n. But if 1 ≤ i ≤ k +1 then lσ(1) +· · ·+ lσ(i−1) ≥ (i −1)n, so lσ(i) +· · ·+ lσ(d ) ≤
dn − (−i + 1)n = (d − i + 1)n.

For 2 ≤ j ≤ d − 1, we see that

mσ(1) + Aσ(j)(g) + lσ(d ) =
j∑

i=1

mσ(i) +
d∑

i=j

lσ(i)

≤ jn + (d − j + 1)n = (d + 1)n.

But Aσ(d )(g) = ∑d
i=1 mσ(d ) ≤ dn and so mσ(1) + Aσ(d )(g) + lσ(d ) ≤ (d + 2)n.

Thus mσ(1) + Aσ(i)(g) + lσ(d ) ≤ (d + 2)n for every 2 ≤ i ≤ d, as claimed, and
the lemma follows.

The next lemma is an immediate consequence of the word-length formula from
Section 3.

Lemma 14. If gn ∈ Hn and �(gn) = ((n, n), (n, n), . . . , (n, n)), then l(g) =
(d + 2)n.

The proof of Theorem 12 follows easily from Lemmas 13 and 14.

Proof of Theorem12. Let gn ∈Hn be any element with �(gn) = ((n, n), (n, n), . . . ,
(n, n)). In Lemma 14 it is shown that l(g) = (d + 2)n. It follows immediately
from Lemma 13 that gn is a dead-end element because all vertices adjacent to gn

lie in Hn.

To see that the depth of gn is at least n, note that the length of a path from gn

to a point outside Hn must contain a subpath of at least n edges. Thus the depth
of gn is at least n, and we conclude that �d(q) has dead-end elements of arbitrary
depth with respect to the generating set Sd,q .



382 Melanie Stein & Jennifer Taback

6. Cone Types and Geodesic Languages

We now prove that �d(q) has no regular language of geodesics with respect to
the generating set Sd,q; in other words, there is no collection of geodesic repre-
sentatives for elements of �d(q) that is accepted by a finite-state automaton. The
existence of a regular language of geodesics for a finitely generated group G is
equivalent to the finiteness of the set of cone types of G (see e.g. [11, Thm. 9.28]
for a proof of this equivalence). We prove that �d(q) has infinitely many cone
types with respect to the generating set Sd,q , and it follows that �d(q) has no reg-
ular language of geodesics with respect to Sd,q .

We begin by defining the cone and the cone type of an element g ∈ G, where G

is a group with finite generating set S. Cannon [3] defined the cone type of an ele-
ment w ∈ G to be the set of geodesic extensions of w in the Cayley graph �(G, S).

Definition 5. A path p is outbound if d(1, p(t)) is a strictly increasing func-
tion of t. For a given g ∈ G, the cone at g, denoted C ′(g), is the set of all outbound
paths starting at g. Define the cone type of g, denoted C(g), to be g−1C ′(g).

This definition applies both in the discrete setting of the group and in the one-
dimensional metric space that is the Cayley graph. A subtlety is that if the presen-
tation for G includes odd-length relators, then the cone type of an element in the
Cayley graph may include paths that end at the middle of an edge. If the presen-
tation for G consists entirely of even-length relators, then every cone type viewed
in the Cayley graph consists entirely of full edge paths. We refer the reader to [11]
or [12] for a more detailed discussion of cone types.

Theorem 15. The group �d(q) has infinitely many cone types with respect to the
generating set Sd,q .

The following corollary is an immediate consequence of Theorem 15.

Corollary 16. The group �d(q) has no regular language of geodesics with re-
spect to the generating set Sd,q .

We begin with a lemma stating sufficient but not necessary conditions on σ ∈ (d

to ensure that f(g) = fσ(g); this lemma will be extremely useful in the proof of
Theorem 15, given that realizing when f(g) = fσ(g) for a particular g ∈ �d(q)

and σ ∈ (d can be difficult. Recall that we identify g ∈ �d(q) with the vertex x ∈
DL d(q) corresponding to it and that we abuse notation by writing �(g) for �(x).

Lemma 17. Let g ∈ �d(q) have projection

�(g) = (
(m1(g), l1(g)), (m2(g), l2(g)), . . . , (md(g), ld(g))

)
.

If σ ∈ (d satisfies

(1) minτ∈(d
mτ(1)(g) + lτ (d )(g) = mσ(1)(g) + lσ(d )(g) and

(2) max2≤i≤d Aσ(i)(g) = Aσ(d )(g),

then f(g) = fσ(g).
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Proof. Let σ be as in the statement of the lemma, and let τ be any element of (d.

It is always true that max2≤i≤d Aτ(i)(g) ≥ Aτ(d )(g) and, by the choice of σ, that
mτ(1)(g) + lτ (d )(g) ≥ mσ(1)(g) + lσ(d )(g). Therefore,

fτ(g) = mτ(1)(g) + lτ (d )(g) + max
2≤i≤d

Aτ(i)(g)

≥ mσ(1)(g) + lσ(d )(g) + Aτ(d )(g)

= mσ(1)(g) + lσ(d )(g) + Aσ(d )(g)

= fσ(g).

Hence, by the definition of f(g), we must have f(g) = fσ(g).

To prove Theorem 15 we define a sequence of elements {gn} such that there is a
geodesic path of length n from gn terminating at a dead-end element and such that
no shorter geodesic path from gn reaches any other dead-end element of the group.
Thus each gn lies in a different cone type, and the theorem follows.

Proof of Theorem 15. Let gn for n ∈ Z
+ be any element with projection

�(gn) = ((2n, 3n), (3n, 4n), (4n, 5n), (5n, 6n),

. . . , ((d − 1)n, dn), (dn, 3n), (2n, n)).

We start by showing that f(gn) = fε(gn) for ε the identity permutation and specif-
ically that f(gn) = 3n + ∑d

i=1 mi(gn).

First note that minτ∈(d
mτ(1)(gn) + lτ (d )(gn) = 3n = mε(1)(gn) + lε(d )(gn).

Second, consider Aε(d )(gn) = 2n + ∑d
j=2 jn = 4n + ∑d

j=3 jn and compare this
value to Aε(i)(gn) for i �= d. When 2 ≤ i < d − 1,

Aε(i)(gn) = [m2(gn) + m3(gn) + · · · + mi(gn)] + [li(gn) + · · · + ld−1(gn)]

= [3n + 4n + · · · + (i + 1)n] + [(i + 2)n + · · · + dn + 3n]

= 3n +
d∑

j=3

jn < 4n +
d∑

j=3

jn = Aε(d )(gn).

When i = d − 1 we see that

Ad−1(gn) = 3n +
d∑

j=3

jn < 4n +
d∑

j=3

jn = Aε(d )(gn).

It then follows from Lemma 17 that f(gn) = fε(gn) = 3n + ∑d
i=1 mi(gn). We

note for later use that Aε(d )(gn) − Aε(i)(gn) = n when i �= d.

Let hn be any point connected to gn by a path of length at most n in DL d(q).

Then hn has projection

�(hn) = ((2n, 3n − r1), (3n, 4n − r2), (4n, 5n − r3), (5n, 6n − r4),

. . . , ((d − 1)n, dn − rd−2), (dn, 3n − rd−1), (2n, n − rd)),

where the ri satisfy the following statements:
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(1)
∑d

i=1 ri = 0; and
(2) the sum of the positive ri is at most n and so the sum of the negative ri is at

least −n.

We use Lemma 17 again to calculate f(hn). Observe that, for any τ ∈ (d ,

min
τ∈(d

mτ(1)(hn) + lτ (d )(hn) = 3n − rd = mε(1)(hn) + lε(d )(hn)

and that 2n ≤ 3n−rd ≤ 4n. Moreover, Aε(d )(hn) = Aε(d )(gn). We now compare
Aε(i)(gn) and Aε(i)(hn) for i �= d and obtain

Aε(i)(hn) = 3n + 4n + · · · + (i + 1)n + (i + 2)n − ri

+ (i + 3)n − ri+1 + · · · + dn − rd−2 + 3n − rd−1

= Aε(i)(gn) − (ri + · · · + rd−1) ≤ Aε(i)(gn) + n.

We have already shown that Aε(d )(gn)−Aε(i)(gn) = n for 2 ≤ i < d. Combining
this with the preceding inequality yields

Aε(i)(hn) ≤ Aε(i)(gn) + n = Aε(d )(gn) − n + n = Aε(d )(gn) = Aε(d )(hn);
hence max2≤i≤d Aε(i)(hn) = Aε(d )(hn). Lemma 17 then implies that

f(hn) = fε(hn) = 3n − rd + Aε(d )(hn).

Next, we choose hn to be a point of the form just described that is connected
to gn by a path of length at most n − 1. We show that hn is not a dead-end ele-
ment by exhibiting a generator s such that f(hns) = f(hn) + 1. Let s ∈ Sd,q be a
generator corresponding to an edge of type ed − e1 emanating from hn, so that

�(hns) = ((2n, 3n − r1 − 1), (3n, 4n − r2), (4n, 5n − r3), (5n, 6n − r4),

. . . , ((d − 1)n, dn − rd−2), (dn, 3n − rd−1), (2n, n − rd + 1)).

As the ordered pairs in the projection are unchanged between �(hn) and �(hns)

except in the second coordinate of the first and last ordered pairs, it is still the case
that max2≤i≤d Aε(i)(hns) = Aε(d )(hns). Note in addition that

min
τ∈(d

mτ(1)(hns) + lτ (d )(hns) = 3n − rd + 1 = mε(1)(hns) + lε(d )(hns).

The maximum value of 3n − rd + 1 is 4n; it may be possible to achieve a value
of 4n using another permutation in (d , but if 3n − rd + 1 = 4n then the value
of mτ(1)(hns) + lτ (d )(hns) can never be less than 4n with any nonidentity per-
mutation. Thus we can achieve the minimum value of this quantity by using ε.

Lemma 17 now implies that f(hns) = fε(hns) = 3n − rd + 1 + Aε(d )(hns) =
3n− rd +1+Aε(d )(hn) = f(hn)+1; hence hn is not a dead-end element in �d(q)

with respect to the generating set Sd,q .

We now show that there is a geodesic path of length n from gn that terminates at
a dead-end element, which we denote gn,n. Namely, consider any path of length n

originating at gn with the property that the ith point on the path, denoted gn,i, has
projection

�(gn,i ) = ((2n, 3n − i), (3n, 4n), (4n, 5n), (5n, 6n),

. . . , ((d − 1)n, dn), (dn, 3n), (2n, n + i))
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for 1 ≤ i ≤ n. Letting r1 = i, rd = −i, and rj = 0 for 1 < j < d, the preceding
argument implies that

f(gn,i ) = fε(gn,i ) = 3n − rd + Aε(d )(gn,i ) = 3n − rd + Aε(d )(gn)

= f(gn) − rd = f(gn) + i.

Therefore, this path is geodesic.
We now show that the endpoint gn,n of this path, which has projection

�(gn,n) = ((2n, 2n), (3n, 4n), (4n, 5n), (5n, 6n),

. . . , ((d − 1)n, dn), (dn, 3n), (2n, 2n)),

is a dead-end element in �d(q) with respect to the generating set Sd,q .

We know that f(gn,n) = 4n + Aε(d )(gn,n). Let s ∈ Sd,q be any generator such
that gn,ns �= gn,n−1. We must show that f(gn,ns) ≤ f(gn,n). Since li(gn,n) > 0
for all i, there must be indices j �= k with

(1) (mj(gn,ns), lj(gn,ns)) = (mj(gn,n), lj(gn,n) + 1),
(2) (mk(gn,ns), lk(gn,ns)) = (mk(gn,n), lk(gn,n) − 1), and
(3) (mr(gn,ns), lr (gn,ns)) = (mr(gn,n), lr (gn,n)) for r �= j, k.

Case 1: k = d. Using the identity permutation ε, observe that

min
τ∈(d

mτ(1)(gn,ns) + lτ (d )(gn,ns) = 4n − 1 = mε(1)(gn,ns) + lε(d )(gn,ns).

It may now be the case that Aε(i)(gn,ns) = Aε(i)(gn,n) + 1 for some i; however,
it is always true that for 2 ≤ i ≤ d − 1 we have Aε(i)(gn,ns) ≤ Aε(i)(gn,n) + 1.

Since Aε(d )(gn,n) − Aε(i)(gn,n) = n, for 2 ≤ i ≤ d − 1 it follows that

Aε(i)(gn,ns) ≤ Aε(i)(gn,n) + 1 ≤ Aε(i)(gn,n) + n = Aε(d )(gn,n) = Aε(d )(gn,ns).

Then, by Lemma 17, f(gn,ns) = fε(gn,ns) = 4n − 1 + Aε(d )(gn,ns). Since
Aε(d )(gn,ns) = Aε(d )(gn,n) we see that f(gn,ns) = f(gn,n) − 1.

Case 2: k = 1. Replacing ε with the permutation σ = (1 d) ∈ (d , the argu-
ment in Case 1 shows that f(gn,ns) = fσ(gn,ns) = f(gn,n) − 1.

Case 3: 2 ≤ k ≤ d − 1 and j �= d. First note that

min
τ∈(d

mτ(1)(gn,ns) + lτ (d )(gn,ns) = 4n = mε(1)(gn,ns) + lε(d )(gn,ns)

and that Aε(d )(gn,ns) = Aε(d )(gn,n). As in the preceding cases, Aσ(i)(gn,ns) ≤
Aε(i)(gn,n) + 1 for 2 ≤ i ≤ d − 1 and the same reasoning as before yields
Aε(i)(gn,ns) ≤ Aε(d )(gn,ns). Altogether, then, we have f(gn,ns) = fε(gn,ns) =
4n + Aε(d )(gn,ns). Since Aε(d )(gn,ns) = Aε(d )(gn,n) it follows that f(gn,ns) =
f(gn,n).

Case 4: 2 ≤ k ≤ d − 1 and j = d. Replacing ε with the permutation σ =
(1 d) ∈ (d , the argument in Case 3 shows that f(gn,ns) = fσ(gn,ns) = f(gn,n).

Combining Cases 1–4 shows that f(gn,ns) ≤ f(gn,n) for all s ∈ Sd,q . Therefore,
gn,n is a dead-end element in �d(q) with respect to this generating set.
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Thus, there is a geodesic path of length n from gn that terminates at a dead-end
element of �d(q), and no shorter path from gn reaches a dead-end element. Hence
each gn lies in a distinct cone type, from which the theorem follows.
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