# Four-manifolds Admitting Hyperelliptic Broken Lefschetz Fibrations 

Kenta Hayano \& Masatoshi Sato

## 1. Introduction

A broken Lefschetz fibration is a smooth map from a four-manifold to a surface that has at most two types of singularities: Lefschetz singularity and indefinite fold singularity. This fibration was introduced in [1] as a fibration structure compatible with near-symplectic structures.

A simplified broken Lefschetz fibration is a broken Lefschetz fibration over the sphere that satisfies several conditions on fibers and singularities. This fibration was first defined by Baykur [3]. Despite the strict conditions in the definition of this fibration, it is known that every closed oriented four-manifold admits a simplified broken Lefschetz fibration. For a simplified broken Lefschetz fibration, we can define a monodromy representation of this fibration as we do for a Lefschetz fibration. Thus we can define hyperelliptic simplified broken Lefschetz fibrations as a generalization of hyperelliptic Lefschetz fibrations. Hyperelliptic Lefschetz fibrations have been studied in many fields-for example, algebraic geometry and topology-and it has been shown that the total spaces of such fibrations satisfy strong conditions on the signature, the Euler characteristic, and so on (see e.g. [10]). Furthermore, we can obtain a signature formula of hyperelliptic simplified broken Lefschetz fibrations similar to that of hyperelliptic Lefschetz fibrations (see [13]). It is therefore natural to ask how far total spaces of hyperelliptic simplified broken Lefschetz fibrations are restricted as well as what conditions these spaces satisfy. The following result gives a partial answer.

Theorem 1.1. Let $f: M \rightarrow S^{2}$ be a genus-g hyperelliptic simplified broken Lefschetz fibration. We assume that $g \geq 3$.
(i) Let s be the number of Lefschetz singularities of $f$ whose vanishing cycles are separating. Then there exists an involution

$$
\omega: M \rightarrow M
$$

such that the fixed point set of $\omega$ is the union of (possibly nonorientable) surfaces and $s$ isolated points. Moreover, $\omega$ can be extended to an involution

[^0]$$
\bar{\omega}: M \# s \overline{\mathbb{C P}^{2}} \rightarrow M \# s \overline{\mathbb{C P}^{2}}
$$
such that $M \# s \overline{\mathbb{C P}^{2}} / \bar{\omega}$ is diffeomorphic to $S \# 2 s \overline{\mathbb{C P}^{2}}$ for $S$ an $S^{2}$-bundle over $S^{2}$ and such that the quotient map
$$
/ \bar{\omega}: M \# s \overline{\mathbb{C P}^{2}} \rightarrow M \# s \overline{\mathbb{C P}^{2}} / \bar{\omega} \cong S \# 2 s \overline{\mathbb{C P}^{2}}
$$
is a double branched covering.
(ii) A regular fiber $F$ of the fibration $f$ represents a nontrivial rational homology class of $M$; that is, $[F] \neq 0$ in $H_{2}(M ; \mathbb{Q})$.

Remark 1.2. As we will state in Theorem 4.7, Theorem 1.1 can be generalized to directed broken Lefschetz fibrations, which we will define later (see Definition 2.2).

Remark 1.3. Auroux, Donaldson, and Katzarkov [1] gave a necessary and sufficient condition for a closed oriented four-manifold to admit a near-symplectic form. By using this result together with Theorem 1.1(i), we can prove that every total space of a hyperelliptic simplified broken Lefschetz fibration with genus $g \geq 3$ has a near-symplectic form. Moreover, we can take such a near-symplectic form so that all the fibers of the fibration are symplectic outside of the singularities.

Part (i) of Theorem 1.1 is a generalization of the results of Fuller [8] and of Siebert and Tian [17] on hyperelliptic Lefschetz fibrations. Indeed, they proved independently that, after blowing up $s$ times, the total space of a hyperelliptic Lefschetz fibration (with arbitrary genus) is a double branched covering of a manifold obtained by blowing up a sphere bundle over the sphere $2 s$ times, where $s$ is the number of Lefschetz singularities of the fibration whose vanishing cycles are separating. Fuller proved this statement by using handle decompositions and Kirby diagrams, whereas Siebert and Tian did so using complex geometry. We also use handle decompositions to prove Theorem 1.1(i), but our method is slightly different from that of Fuller; we give an involution of the total space of a fibration explicitly, and that explicit description is used in the proof of Theorem 1.1(ii).

Since the self-intersection of a regular fiber of a broken Lefschetz fibration is equal to 0 , we can obtain the following corollary immediately.

Corollary 1.4. A closed oriented four-manifold with definite intersection form cannot admit any hyperelliptic simpified broken Lefschetz fibrations with genus $g \geq 3$.

Note that the condition $g \geq 3$ is essential here. Indeed, it is proved in [1] that $S^{4}$ and $\# n \overline{\mathbb{C P}^{2}}(n \geq 1)$ admit genus-1 simplified broken Lefschetz fibrations. Since every simplified broken Lefschetz fibration with genus less than 3 is hyperelliptic, these examples mean that Corollary 1.4 does not hold without the assumption $g \geq 3$.

Remark 1.5. It is shown in [11] that a simply connected four-manifold with a positive definite intersection form cannot admit any genus-1 simplified broken Lefschetz fibrations except $S^{4}$. In particular, $\# n \mathbb{C P}^{2}(n \geq 1)$ cannot admit any genus-1
simplified broken Lefschetz fibrations. However, it is proved in [4] that the manifold $\# n \mathbb{C P}^{2}$ admits a genus-2 simplified broken Lefschetz fibration for any $n \geq 0$ (see [4, Thm. 18]). In the argument in [4], Baykur constructed a genus-2 simplified broken Lefschetz fibration in an explicit way. He did not mention vanishing cycles of this fibration, yet we can easily obtain these cycles by using the result in [12].

This result also means that Corollary 1.4 does not hold without the assumption on genus. Moreover, it is easy to see that the genus-2 fibration on $\# n \mathbb{C P}^{2}$ cannot be compatible with any near-symplectic forms even though $\# n \mathbb{C P}^{2}(n \geq 1)$ admits a near-symplectic form.

In general, a genus- $g$ simplified broken Lefschetz fibration can be changed into a genus- $(g+1)$ simplified broken Lefschetz fibration by a certain homotopy of fibrations, called flip and slip (for the detail of this homotopy, see e.g. [2]). Hence for any $g \geq 3$ we can easily construct genus- $g$ simplified broken Lefschetz fibrations on $S^{4}$ as well as on $\# n \mathbb{C P}^{2}$ and $\# n \overline{\mathbb{C P}^{2}}(n \geq 1)$. However, these fibrations are not hyperelliptic by Corollary 1.4.

In Section 2, we review the definitions of broken Lefschetz fibrations and simplified ones. We also review the basic properties of monodromy representations of broken Lefschetz fibrations. After reviewing the hyperelliptic mapping class group, we give the definition of hyperelliptic simplified broken Lefschetz fibrations. In Section 3, we prove a certain lemma on the subgroup of the hyperelliptic mapping class group consisting of elements that preserve a simple closed curve $c$. This lemma plays a key role in the proof of Theorem 1.1. In Section 4, we prove Theorem 1.1.

## 2. Preliminaries

### 2.1. Broken Lefschetz Fibrations

We start by giving the precise definition of broken Lefschetz fibrations.
Definition 2.1. Let $M$ and $\Sigma$ be compact oriented smooth manifolds of dimension 4 and 2, respectively. A smooth map $f: M \rightarrow \Sigma$ is called a broken Lefschetz fibration (BLF) if it satisfies the following conditions.
(1) $f^{-1}(\partial \Sigma)=\partial M$.
(2) $f$ has at most two types of singularities which is locally written as follows:

- $\left(z_{1}, z_{2}\right) \mapsto \xi=z_{1} z_{2}$, where $\left(z_{1}, z_{2}\right)$ (resp. $\xi$ ) is a complex local coordinate of $M$ (resp. $\Sigma$ ) compatible with its orientation;
- $\left(t, x_{1}, x_{2}, x_{3}\right) \mapsto\left(y_{1}, y_{2}\right)=\left(t, x_{1}^{2}+x_{2}^{2}-x_{3}^{2}\right)$, where $\left(t, x_{1}, x_{2}, x_{3}\right)$ (resp. $\left.\left(y_{1}, y_{2}\right)\right)$ is a real coordinate of $M$ (resp. $\Sigma$ ).

The first singularity in condition (2) is called a Lefschetz singularity and the second is called an indefinite fold singularity. We denote by $\mathcal{C}_{f}$ the set of Lefschetz singularities of $f$ and by $Z_{f}$ the set of indefinite fold singularities of $f$. Note that a Lefschetz fibration is a BLF that has no indefinite fold singularities.

Let $f: M \rightarrow S^{2}$ be a BLF over the 2-sphere. Suppose that the restriction of $f$ to the set of singularities is injective and that the image $f\left(Z_{f}\right)$ is the disjoint union of embedded circles parallel to the equator of $S^{2}$. We put $f\left(Z_{f}\right)=Z_{1} \amalg \cdots \amalg Z_{m}$, where $Z_{i}$ is the embedded circle in $S^{2}$. We choose a path $\alpha:[0,1] \rightarrow S^{2}$ that satisfies the following properties:
(1) $\operatorname{Im} \alpha$ is contained in the complement of $f\left(\mathcal{C}_{f}\right)$;
(2) $\alpha$ starts at the south pole $p_{s} \in S^{2}$ and connects the south pole to the north pole $p_{n} \in S^{2}$
(3) $\alpha$ intersects each component of $f\left(Z_{f}\right)$ at a single point transversely.

We put $\left\{q_{i}\right\}=Z_{i} \cap \operatorname{Im} \alpha$ and $\alpha\left(t_{i}\right)=q_{i}$. We assume that $q_{1}, \ldots, q_{m}$ appear in this order when we go along $\alpha$ from $p_{s}$ to $p_{n}$ (see Figure 1).


Figure 1 Example of the path $\alpha$; the bold circles describe $f\left(Z_{f}\right)$

The preimage $f^{-1}(\operatorname{Im} \alpha)$ is a three-manifold that is a cobordism between $f^{-1}\left(p_{s}\right)$ and $f^{-1}\left(p_{n}\right)$. By the local coordinate description of the indefinite fold singularity, it is easy to see that $f^{-1}\left(\alpha\left(\left[0, t_{i}+\varepsilon\right]\right)\right)$ is obtained from $f^{-1}\left(\alpha\left(\left[0, t_{i}-\varepsilon\right]\right)\right)$ by either 1- or 2-handle attachment for each $i=1, \ldots, m$. In particular, we obtain a handle decomposition of the cobordism $f^{-1}(\operatorname{Im} \alpha)$.

Definition 2.2. A BLF $f$ is said to be directed if it satisfies the following conditions:
(1) the restriction of $f$ to the set of singularities is injective and the image $f\left(Z_{f}\right)$ is the disjoint union of embedded circles parallel to the equator of $S^{2}$;
(2) all the handles in the handle decomposition of $f^{-1}(\operatorname{Im} \alpha)$ just described are of index 1 ; and
(3) all Lefschetz singularities of $f$ are in the preimage of the component of $S^{2} \backslash$ $\left(Z_{1} \amalg \cdots \amalg Z_{m}\right)$, which contains the point $p_{n}$.

Condition (3) is not essential. Indeed, we can change a BLF $f$ by a homotopy that satisfies conditions (1) and (2) so that it satisfies condition (3) (cf. [3]).

For a directed BLF $f$, we assume that the set of indefinite fold singularities of $f$ is connected and that all the fibers of $f$ are connected. We call such a BLF a simplified broken Lefschetz fibration (SBLF). For an SBLF $f, Z_{f}$ is empty set or an embedded circle in $M$. If $Z_{f}$ is not empty, then the image $f\left(Z_{f}\right)$ is an embedded circle in $S^{2}$. Thus $S^{2} \backslash$ Int $v f\left(Z_{f}\right)$ consists of two 2-disks, $D_{1}$ and $D_{2}$, and the genus of the regular fiber of the fibration res $f: f^{-1}\left(D_{1}\right) \rightarrow D_{1}$ is just 1 higher than that of the fibration res $f: f^{-1}\left(D_{2}\right) \rightarrow D_{2}$. We call $f^{-1}\left(D_{1}\right)$ (resp. $f^{-1}\left(D_{2}\right)$ ) the higher side (resp. lower side) of $f$ and call $f^{-1}\left(\nu f\left(Z_{f}\right)\right)$ the round cobordism of $f$. By our definition, all Lefschetz singularities of $f$ are in the higher side of $f$. We call the genus of the regular fiber in the higher side the genus of $f$.

### 2.2. Monodromy Representations

Let $f: M \rightarrow B$ be a genus- $g$ Lefschetz fibration. We denote by $\mathcal{C}_{f}=\left\{z_{1}, \ldots, z_{n}\right\}$ the set of Lefschetz singularities of $f$ and put $y_{i}=f\left(z_{i}\right)$. For a base point $y_{0} \in$ $B \backslash f\left(\mathcal{C}_{f}\right)$ we can define a homomorphism $\varrho_{f}: \pi_{1}\left(B \backslash f\left(\mathcal{C}_{f}\right), y_{0}\right) \rightarrow \mathcal{M}_{g}$, called a monodromy representation of $f$, where $\mathcal{M}_{g}=\operatorname{Diff}^{+} \Sigma_{g} / \operatorname{Diff}_{0}^{+} \Sigma_{g}$ is the mapping class group of the closed oriented surface $\Sigma_{g}$. We endow the $C^{\infty}$ topology with $\mathrm{Diff}^{+} \Sigma_{g}$ so that $\mathrm{Diff}_{0}^{+} \Sigma_{g}$ is the component of Diff ${ }^{+} \Sigma_{g}$ containing the identity map. (Readers are referred to [9] for the precise definition of monodromy representations.)

We examine the case $B=D^{2}$. For each $i=1, \ldots, n$ we take embedded paths $\alpha_{1}, \ldots, \alpha_{n} \subset D^{2}$ that satisfy the following conditions:

- each $\alpha_{i}$ connects $y_{0}$ to $y_{i}$;
- $\alpha_{i} \cap f\left(\mathcal{C}_{f}\right)=\left\{y_{i}\right\}$;
- $\alpha_{i} \cap \alpha_{j}=\left\{y_{0}\right\}$ for all $i \neq j$; and
- $\alpha_{1}, \ldots, \alpha_{n}$ appear in this order when we travel counterclockwise around $y_{0}$.

For each $i=1, \ldots, n$, denote by $a_{i} \in \pi_{1}\left(D^{2} \backslash f\left(\mathcal{C}_{f}\right), y_{0}\right)$ the element represented by the loop obtained when we connect a counterclockwise circle around $y_{i}$ to $y_{0}$ by using $\alpha_{i}$. We put $W_{f}=\left(\varrho_{f}\left(a_{1}\right), \ldots, \varrho_{f}\left(a_{n}\right)\right) \in \mathcal{M}_{g}{ }^{n}$; this sequence is called a Hurwitz system of $f$. By the conditions on paths $\alpha_{1}, \ldots, \alpha_{n}$, the product $\varrho_{f}\left(a_{1}\right) \cdots \varrho_{f}\left(a_{n}\right)$ is equal to the monodromy of the boundary of $D^{2}$. It is known that each $\varrho_{f}\left(a_{i}\right)$ is the right-handed Dehn twist along a simple closed curve $c_{i}$, called a vanishing cycle of the Lefschetz singularity $z_{i}[14 ; 16]$.

Remark 2.3. The sequence $W_{f}$ is not unique for $f$. Indeed, it depends on the choice of paths $\alpha_{1}, \ldots, \alpha_{n}$ and the choice of the identification of $f^{-1}\left(y_{0}\right)$ with the closed oriented surface $\Sigma_{g}$. Yet it is known that another Hurwitz system, $\tilde{W}_{f}$, is obtained from $W_{f}$ by successive application of the transformations

- $\left(\ldots, g_{i}, g_{i+1}, \ldots\right) \mapsto\left(\ldots, g_{i+1}, g_{i+1}^{-1} g_{i} g_{i+1}, \ldots\right)$ (and its inverse transformation) and
- $\left(g_{1}, \ldots, g_{n}\right) \mapsto\left(h^{-1} g_{1} h, \ldots, h^{-1} g_{n} h\right)$,
where $g_{i}, h \in \mathcal{M}_{g}$ (cf. [9]). Two sequences of elements in $\mathcal{M}_{g}$ are said to be Hurwitz equivalent if one is obtained from the other by successive application of the transformations just described.

Let $\hat{f}: M \rightarrow S^{2}$ be a genus- $g$ SBLF with nonempty indefinite fold singularities. We denote by $M_{h}$ the higher side of $\hat{f}$. The restriction res $\hat{f}: M_{h} \rightarrow D^{2}$ is a Lefschetz fibration over $D^{2}$. Thus, a monodromy representation and a Hurwitz system of res $\hat{f}$ can be defined and are called (respectively) a monodromy representation and a Hurwitz system of $\hat{f}$, which we denote by $\varrho_{\hat{f}}$ and $W_{\hat{f}}$. For the Lefschetz fibration res $\hat{f}: M_{h} \rightarrow D^{2}$, we choose a base point $y_{0}$ and paths $\alpha_{1}, \ldots, \alpha_{n}$ as in the previous paragraph. We also take a path $\alpha:[0,1] \rightarrow S^{2}$ that satisfies the following conditions:

- $\alpha$ connects $y_{0}$ to a point in the image of the lower side of $\hat{f}$;
- $\alpha \cap \alpha_{i}=\left\{y_{0}\right\}$ for each $i=1, \ldots, n$;
- $\alpha$ intersects the image $\hat{f}\left(Z_{\hat{f}}\right)$ at one point transversely; and
- $\alpha_{1}, \ldots, \alpha_{n}, \alpha$ appear in this order when we travel counterclockwise around $y_{0}$.

We put $q=\alpha(t) \in \operatorname{Im} \alpha \cap \hat{f}\left(Z_{\hat{f}}\right)$. The preimage $\hat{f}^{-1}(\alpha([0, t+\varepsilon]))$ is obtained from the preimage $\hat{f}^{-1}(\alpha([0, t-\varepsilon])) \cong \hat{f}^{-1}\left(p_{0}\right) \times[0, t-\varepsilon]$ by 2-handle attachment. We regard the attaching circle $c$ of the 2 -handle as a simple closed curve in $\hat{f}^{-1}\left(p_{0}\right) \cong \Sigma_{g}$, which we call a vanishing cycle of the indefinite fold singularity of $\hat{f}$.

Lemma 2.4 (Auroux, Donaldson, and Katzarkov [1]; see also Baykur [3]). The product $\varrho_{\hat{f}}\left(a_{1}\right) \cdots \varrho_{\hat{f}}\left(a_{n}\right)$ is contained in $\mathcal{M}_{g}(c)$, where $\mathcal{M}_{g}(c)$ is the subgroup of the group $\mathcal{M}_{g}$ consisting of elements represented by a map that preserves the curve $c$.

For an element $\psi \in \mathcal{M}_{g}(c)$, we take a representative $T \in \psi$ such that $T$ preserves the curve $c$. Then $T$ induces the homeomorphism $T: \Sigma_{g} \backslash c \rightarrow \Sigma_{g} \backslash c$, and this homeomorphism can be extended to the homeomorphism $\hat{T}: \Sigma_{g-1} \rightarrow \Sigma_{g-1}$ by regarding $\Sigma_{g} \backslash c$ as the genus- $(g-1)$ surface with two punctures. Eventually, we can define the homomorphism $\Phi_{c}$ as follows:

$$
\begin{array}{cc}
\Phi_{c}: \mathcal{M}_{g}(c) & \mathcal{M}_{g-1} \\
\psi & \psi \\
\psi=[T] \longmapsto & {[\hat{T}] .}
\end{array}
$$

Remark 2.5. Let $c \subset \Sigma_{g}$ be a separating simple closed curve. We can regard $\Sigma_{g} \backslash c$ as the disjoint union of the two once-punctured surfaces of genus $h$ and $g-h$. Thus, we can define the homomorphism $\Phi_{c}: \mathcal{M}_{g}\left(c^{\text {ori }}\right) \rightarrow \mathcal{M}_{h} \times \mathcal{M}_{g-h}$ as we define $\Phi_{c}$ for a nonseparating curve $c$, where $\mathcal{M}_{g}\left(c^{\text {ori }}\right)$ is the subgroup of $\mathcal{M}_{g}(c)$ consisting of elements represented by maps that preserve $c$ and its orientation.

Lemma 2.6 [3]. The product $\varrho_{\hat{f}}\left(a_{1}\right) \cdots \varrho_{\hat{f}}\left(a_{n}\right)$ is contained in the kernel of $\Phi_{c}$. Conversely, if simple closed curves $c, c_{1}, \ldots, c_{n} \subset \Sigma_{g}$ satisfy the conditions

- $c$ is nonseparating and
- $t_{c_{1}} \cdots t_{c_{n}} \in \operatorname{Ker} \Phi_{c}$,
then there exists a genus-g SBLF $f: M \rightarrow S^{2}$ such that $W_{f}=\left(t_{c_{1}}, \ldots, t_{c_{n}}\right)$ and a vanishing cycle of the indefinite fold of $f$ is $c$.


### 2.3. The Hyperelliptic Mapping Class Group

Let $\Sigma_{g}$ be a closed oriented surface of genus $g \geq 1$. Denote by $\iota: \Sigma_{g} \rightarrow \Sigma_{g}$ the involution described in Figure 2.


Figure 2 Hyperelliptic involution on the surface $\Sigma_{g}$

Let $C(\iota)$ denote the centralizer of $\iota$ in the diffeomorphism group $\operatorname{Diff}_{+} \Sigma_{g}$, and endow $C(\iota) \subset \operatorname{Diff}_{+} \Sigma_{g}$ with the relative topology. The inclusion homomorphism $C(\iota) \rightarrow$ Diff $_{+} \Sigma_{g}$ induces a natural homomorphism $\pi_{0} C(\iota) \rightarrow \mathcal{M}_{g}$ between their path-connected components.

Theorem 2.7 (Birman and Hilden [6]). When $g \geq 2$, the homomorphism $\pi_{0} C(\iota) \rightarrow \mathcal{M}_{g}$ is injective.

Denote the image of this homomorphism by $\mathcal{H}_{g}$ for $g \geq 1$. This group is called the hyperelliptic mapping class group. In fact, the authors also proved the same result in more general settings (see [6] for details).

A Lefschetz fibration is said to be hyperelliptic if we can take an identification of the fiber of a base point with the closed oriented surface so that the image of the monodromy representation of the fibration is contained in the hyperelliptic mapping class group. Thus, it is natural to generalize this definition to directed (and especially simplified) BLFs as follows. Let $f: M \rightarrow S^{2}$ be a directed BLF. We use the same notation as in the argument preceding Definition 2.2. We take a disk neighborhood $D \subset S^{2} \backslash f\left(Z_{f}\right)$ of $p_{n}$ so that $f\left(\mathcal{C}_{f}\right)$ is contained in $D$. We put

$$
r_{i}=\alpha\left(\frac{t_{i}+t_{i+1}}{2}\right) \quad(i=1, \ldots, m-1) \quad \text { and } \quad r_{m}=p_{n}
$$

Let $d_{i} \subset f^{-1}\left(r_{i}\right)$ be the vanishing cycle of $Z_{i}$ determined by $\alpha$. After fixing an identification of $f^{-1}\left(r_{m}\right)$ with $\Sigma_{g_{1}} \amalg \cdots \amalg \Sigma_{g_{k}}$, we obtain an involution $\iota_{i}$ on $f^{-1}\left(r_{i}\right)$ induced by the hyperelliptic involution on $f^{-1}\left(r_{m}\right)$ because we can use $\alpha$ to identify $f^{-1}\left(r_{i-1}\right) \backslash\{$ two points $\}$ with $f^{-1}\left(r_{i}\right) \backslash d_{i}$. We say that $f$ is hyperelliptic if it satisfies the following conditions for a suitable identification of $f^{-1}\left(r_{m}\right)$ with $\Sigma_{g_{1}} \amalg \cdots \amalg \Sigma_{g_{k}}:$

- the image of the monodromy representation of the Lefschetz fibration
res $f: f^{-1}(D) \rightarrow D$ is contained in the group $\mathcal{H}_{g}$; and
- $d_{i}$ is preserved by the involution $\iota_{i}$ up to isotopy.

We shall use HSBLF to denote a hyperelliptic simplified BLF.

Remark 2.8. Every SBLF whose genus is no more than 2 is hyperelliptic since $\mathcal{H}_{g}=\mathcal{M}_{g}$ and since all simple closed curves in $\Sigma_{g}$ are preserved by $\iota$ if $g \leq 2$.

### 2.4 Handle Decompositions

Let $f: M \rightarrow S^{2}$ be a genus- $g$ SBLF, and let $M_{h}$ (resp., $M_{r}$ and $M_{l}$ ) be the higher side (resp., the round cobordism and the lower side) of $f$. The restriction res $f: M_{h} \rightarrow D^{2}$ is a Lefschetz fibration over the disk. We choose $y_{0} \in D^{2}$ and $\alpha_{1}, \ldots, \alpha_{n} \subset D^{2}$ as in Section 2.2. Let $D \subset \operatorname{Int} D^{2} \backslash \mathcal{C}_{f}$ be a disk whose boundary intersects each path $\alpha_{i}$ at one point transversely. Denote by $w_{i} \in \partial D$ the intersection between $\partial D$ and $\alpha_{i}$ and by $c_{i} \subset f^{-1}\left(w_{i}\right)$ a vanishing cycle of the Lefschetz singularity in the fiber $f^{-1}\left(y_{i}\right)$.

Theorem 2.9 (Kas [14]). The higher side $M_{h}$ is obtained by attaching $n$ 2handles to $f^{-1}(D) \cong D \times \Sigma_{g}$; the attaching circles are $c_{1}, \ldots, c_{n}$, and the framings of these handles are -1 relative to the framing along the fiber.

We call $R^{\lambda}=[0,1] \times D^{\lambda} \times D^{3-\lambda} /\left(\left(1, x_{1}, x_{2}, x_{3}\right) \sim\left(0, \pm x_{1}, x_{2}, \pm x_{3}\right)\right)$ a (4dimensional) round $\lambda$-handle $(\lambda=1,2)$; then $X^{4} \cup_{\varphi} R^{\lambda}$ is a four-manifold obtained by attaching a round $\lambda$-handle to the four-manifold $X^{4}$, where $\varphi:[0,1] \times$ $\partial D^{\lambda} \times D^{3-\lambda} / \sim \rightarrow \partial X$ is an embedding. A round handle $R^{\lambda}$ is said to be untwisted if the sign in the equivalence relation is positive and is said to be twisted otherwise.

ThEOREM 2.10 ([1]; cf. [3]). The union $M_{h} \cup M_{r}$ is obtained by attaching a round 2-handle to $M_{h}$. Moreover, a circle $\{t\} \times \partial D^{2} \times\{0\}$ in the attaching region of $R^{2}$ is attached along a vanishing cycle of indefinite fold singularities of $f$.

Observe that the isotopy class of the attaching map $\varphi:[0,1] \times \partial D^{2} \times D^{1} / \sim \rightarrow$ $\partial M_{h}$ is uniquely determined by a vanishing cycle of an indefinite fold of $f$ if the genus of $f$ is no less than 2 . In particular, if the genus of $f$ is no less than 3 , then the total space of $f$ is uniquely determined by the vanishing cycle of an indefinite fold of $f$ and those of Lefschetz singularities of $f$. However, there exist infinitely many SBLFs with genus $g \leq 2$ such that they have the same vanishing cycles despite each one's total space being mutually distinct (see [5] or [11]).

Round 2-handle attachment is given by 2-handle attachment followed by 3handle attachment (cf. [3]). Thus, we obtain a handle decomposition of $M_{h} \cup M_{r}$ by the previous theorems. Since $M_{l}$ contains no singularities of $f$, it follows that the map res $f: M_{l} \rightarrow D^{2}$ is the trivial $\Sigma_{g-1}$-bundle. In particular, $M_{l}$ is diffeomorphic to $D^{2} \times \Sigma_{g-1}$ and we obtain a handle decomposition of $M=M_{h} \cup M_{r} \cup M_{l}$. Moreover, we can draw a Kirby diagram of $M$ by the decomposition (see [3] for more details).

By the same argument we can also obtain a handle decomposition of the total space of a directed BLF $f: M \rightarrow S^{2}$. Indeed, we can decompose $M$ into $D^{2} \times$ $\left(\Sigma_{g_{1}} \amalg \cdots \amalg \Sigma_{g_{m}}\right), n_{1}$ 2-handles, $n_{2}$ round 2-handles, and $D^{2} \times\left(\Sigma_{h_{1}} \amalg \cdots \amalg \Sigma_{h_{m}}\right)$; here $n_{1}$ is the number of the Lefschetz singularities of $f$, and $n_{2}$ is the number of the components of the set of indefinite fold singularities of $f$.

## 3. A Subgroup $\mathcal{H}_{g}(\boldsymbol{c})$ of the Hyperelliptic Mapping Class Group That Preserves a Curve $\boldsymbol{c}$

Let $c$ be an essential simple closed curve in the surface $\Sigma_{g}$ that is preserved by the involution $\iota \in \operatorname{Diff}_{+} \Sigma_{g}$ as a set. Let $\mathcal{H}_{g}(c)$ denote the subgroup of the hyperelliptic mapping class group defined by $\mathcal{H}_{g}(c):=\mathcal{H}_{g} \cap \mathcal{M}_{g}(c)$. As introduced in Theorem 2.7, the hyperelliptic mapping class group $\mathcal{H}_{g}$ is isomorphic to the group consisting of the path-connected components of $C(\iota)$. Hence the group $\mathcal{H}_{g}(c)$ consists of the mapping classes that can be represented not only by elements in the centralizer $C(\iota)$ but also by elements in $\operatorname{Diff}_{+}\left(\Sigma_{g}, c\right)$. Let $\mathcal{H}_{g}^{s}(c)$ denote the subgroup of $\pi_{0} C(\iota)$ defined by $\mathcal{H}_{g}^{s}(c):=\left\{[T] \in \pi_{0} C(\iota) \mid T(c)=c\right\}$. In this section we prove the following lemma.

Lemma 3.1. Let $g \geq 2$. The natural isomorphism $\pi_{0} C(\iota) \rightarrow \mathcal{H}_{g}$ in Theorem 2.7 restricts to an isomorphism between the groups $\mathcal{H}_{g}^{s}(c)$ and $\mathcal{H}_{g}(c)$.

To prove the lemma, it is enough to show that the homomorphism maps $\mathcal{H}_{g}^{s}(c)$ onto $\mathcal{H}_{g}(c)$. Let [ $T$ ] be a mapping class in $\mathcal{H}_{g}(c)$. We can choose a representative $T: \Sigma_{g} \rightarrow \Sigma_{g}$ in the centralizer $C(\iota)$. Because this $T$ is isotopic to some diffeomorphism on $\Sigma_{g}$ that preserves the curve $c$, the curve $T(c)$ is isotopic to $c$.

We call an isotopy $L_{0}: \Sigma_{g} \times[0,1] \rightarrow \Sigma_{g}$ symmetric if and only if $L_{0}(*, t) \in$ $C(\imath)$ for any $t \in[0,1]$. We shall construct a symmetric isotopy $L: \Sigma_{g} \times[0,1] \rightarrow$ $\Sigma_{g}$ satisfying

$$
L(*, 0)=T \quad \text { and } \quad L(c, 1)=c \subset \Sigma_{g}
$$

where $L(*, 1)$ represents an element in $\mathcal{H}_{g}^{s}(c)$ and $[L(*, 1)]=[T] \in \pi_{0} C(\iota)$. Thus we see that the homomorphism $\mathcal{H}_{g}^{s}(c) \rightarrow \mathcal{H}_{g}(c)$ is surjective.

To construct the symmetric isotopy $L: \Sigma_{g} \times[0,1] \rightarrow \Sigma_{g}$, we need the following proposition, which gives the so-called bigon criterion.

Proposition 3.2 (Farb and Margalit [7, Prop. 1.7]). Let $S$ be a compact surface. The geometric intersection number of two transverse simple closed curves in $S$ is minimal if and only if they do not form a bigon.

We may assume that the curves $c$ and $T(c)$ are transverse by changing the diffeomorphism $T$ in terms of some symmetric isotopy. Since $c$ and $T(c)$ are isotopic, their minimal intersection number is 0 . Hence there exist bigons each of whose boundaries is the union of an arc of $c$ and an arc of $T(c)$. Choose an innermost bigon $\Delta$ among them.

Let $\alpha$ be the $\operatorname{arc} c \cap \partial \Delta$ and $\beta$ the $\operatorname{arc} T(c) \cap \partial \Delta$. Since $\Delta$ is a bigon, the endpoints of $\alpha$ and $\beta$ coincide; denote these endpoints by $\left\{x_{1}, x_{2}\right\} \subset \partial \Delta$.

Lemma 3.3.

$$
\text { Int } \Delta \cap(T(c) \cup c)=\emptyset
$$

Proof. If the set Int $\Delta \cap c$ is nonempty, then there exists an $\operatorname{arc}$ of $c$ in $\Delta$ that forms a bigon with the arc $\beta$. Yet this is a contradiction because the bigon $\Delta$ is innermost. In the same way, we can show that Int $\Delta \cap T(c)=\emptyset$.

Note that the bigon $\iota(\Delta)$ is also innermost. By Lemma 3.3, we have $\Delta \cap \iota(\Delta)=$ $\partial \Delta \cap \partial \iota(\Delta)$.

Lemma 3.4.

$$
\partial \Delta \cap \partial \iota(\Delta) \subset\left\{x_{1}, x_{2}\right\}
$$

Proof. Since $\partial \alpha=\partial \beta=\alpha \cap \beta=\left\{x_{1}, x_{2}\right\}$, it suffices to show that $\operatorname{Int} \alpha \cap \partial \iota(\Delta)=$ Int $\beta \cap \partial \iota(\Delta)=\emptyset$. Since $\alpha \cap T(c)=\left\{x_{1}, x_{2}\right\}$, we have $\operatorname{Int} \alpha \cap \iota(\beta)=\emptyset$. Next we show that $\operatorname{Int} \alpha \cap \operatorname{Int} \iota(\alpha)=\emptyset$. So assume by way of contradiction that Int $\alpha \cap \operatorname{Int} \iota(\alpha) \neq \emptyset$. Since $c$ is simple and contains $\alpha$ and $\iota(\alpha)$, it follows that $\alpha$ and $\iota(\alpha)$ must coincide. In particular, we have $\partial \alpha=\partial \iota(\alpha)$. Hence $\beta \cup \iota(\beta)$ forms a simple closed curve, and this curve is null-homotopic because both of the $\operatorname{arcs} \beta$ and $\iota(\beta)$ are homotopic to $\alpha=\iota(\alpha)$ relative to their boundaries. Since $T(c)$ is simple and contains both $\beta$ and $\iota(\beta), T(c)$ and $\beta \cup \iota(\beta)$ must coincide-contradicting the essentialness of $T(c)$. We can likewise show that $\operatorname{Int} \beta \cap \partial \iota(\Delta)=\emptyset$.

Let $\Sigma_{g}^{\iota}$ denote the fixed point set of the involution $\iota$ on $\Sigma_{g}$.
Lemma 3.5. If $c$ is nonseparating, then the set $c \cap \Sigma_{g}^{\iota}$ consists of two points and

$$
c \cap \Sigma_{g}^{\iota}=T(c) \cap \Sigma_{g}^{\iota}
$$

if $c$ is separating, then

$$
c \cap \Sigma_{g}^{\iota}=T(c) \cap \Sigma_{g}^{\iota}=\emptyset
$$

Proof. Endow the curves $c$ and $T(c)$ with arbitrary orientations.
First we consider the case where $c$ is a nonseparating simple closed curve. In this case the curve $T(c)$ is also nonseparating; $c$ and $T(c)$ represent nontrivial homology classes in $H_{1}\left(\Sigma_{g} ; \mathbf{Z}\right)$. Because the involution $\iota$ acts on $H_{1}\left(\Sigma_{g} ; \mathbf{Z}\right)$ by -1 , it changes the orientations of $c$ and $T(c)$. Therefore, each of the sets $c \cap \Sigma_{g}^{\iota}$ and $T(c) \cap \Sigma_{g}^{\iota}$ consists of two points.

We will show that $T(c) \cap \Sigma_{g}^{\iota}=c \cap \Sigma_{g}^{\iota}$. Since $c$ and $T(c)$ are isotopic, the Dehn twists $t_{c}$ and $t_{T(c)}$ represent the same element in $\mathcal{H}_{g}$. The mapping classes $\Psi\left(\left[t_{c}\right]\right)$ and $\Psi\left(\left[t_{T(c)}\right]\right)$ in $\mathcal{M}_{0}^{2 g+2}$ permute the branched points $p\left(c \cap \Sigma_{g}^{\iota}\right)$ and $p\left(T(c) \cap \Sigma_{g}^{\iota}\right)$, respectively; hence the sets $p\left(c \cap \Sigma_{g}^{\iota}\right)$ and $p\left(T(c) \cap \Sigma_{g}^{l}\right)$ coincide. This establishes that $c \cap \Sigma_{g}^{\iota}=T(c) \cap \Sigma_{g}^{\iota}$.

Next, let $c$ be a separating simple closed curve. Since $\iota$ preserves the orientations of the subsurfaces bounded by $c$ or $T(c)$, it also preserves the orientation of $c$ and $T(c)$. In general, an involution that acts on a circle while preserving its orientation does not have a fixed point. Hence we have $c \cap \Sigma_{g}^{\iota}=T(c) \cap \Sigma_{g}^{\iota}=\emptyset$.

Proof of Lemma 3.1. Let $c$ be a nonseparating curve. By Lemma 3.5, the geometric intersection number of $c$ and $T(c)$ is at least 2 . Hence, there is an innermost bigon $\Delta$. By Lemma 3.4, the cardinality $\sharp(\Delta \cap \iota(\Delta))$ is equal to 0,1 , or 2 ; see Figure 3.


Figure 3 Cardinality of $\Delta \cap \iota(\Delta): 0$ (left), 1 (center), 2 (right); the bold curves describe the curves $T(c)$

First assume that $\sharp(\Delta \cap \iota(\Delta))=0$. In this case, there is a symmetric isotopy $L_{1}: \Sigma_{g} \times[0,1] \rightarrow \Sigma_{g}$ such that $L_{1}(*, 0)$ is the identity and $L_{1}(*, 1)$ collapses the bigon $\Delta$ as in Figure 4. Therefore, the geometric intersection number of $c$ and $T(c)$ is decreased by 4 when we replace the diffeomorphism $T$ by $L_{1}(*, 1) T$.


Figure 4

Now assume that $\sharp(\Delta \cap \iota(\Delta))=1$, in which case we also have a symmetric isotopy $L_{2}: \Sigma_{g} \times[0,1] \rightarrow \Sigma_{g}$; this isotopy decreases the geometric intersection number by 2 (see Figure 5). Note that $\Delta \cap \iota(\Delta)$ is a branched point and that $L_{2}(*, t)$ fixes it for any $t \in[0,1]$.


Figure 5

After replacing the diffeomorphism $T$ in these two cases, the branch points $\left\{x_{1}, x_{2}\right\}$ remain in $c \cap T(c)$. So if we repeat the replacement of $T$, the case $\sharp(\Delta \cap \iota(\Delta))=2$ will definitely occur. Then there is a symmetric isotopy $L_{3}$ : $\Sigma_{g} \times[0,1] \rightarrow \Sigma_{g}$ such that

- $L_{3}(*, 0)$ is the identity map,
- $L_{3}(\beta, 1)=\alpha$, and
- $L_{3}(\iota(\beta), 1)=\iota(\alpha)$;


Figure 6
see Figure 6. This isotopy indicates that $L_{3}(*, 1) T$ preserves the curve $c$. Combining all three isotopies now yields the desired symmetric isotopy.

Next, let $c$ be a separating curve. If the geometric intersection number of $c$ and $T(c)$ is 0 , then the curves $c$ and $T(c)$ bound an annulus $A$. Since $\iota$ acts on $A$ without fixed points, $A /\langle\iota\rangle$ is also an annulus. We can therefore make a symmetric isotopy that moves $T(c)$ to $c$.

Suppose the geometric intersection number is not 0 . Since $c \cap \Sigma_{g}^{\iota}=T(c) \cap \Sigma_{g}^{\iota}=$ $\emptyset$, it follows that the cardinality $\sharp(\Delta \cap \iota(\Delta)) \neq 1$. By Lemma 3.4, $\sharp(\Delta \cap \iota(\Delta))=$ 0 or 2 . So by the same argument as for the case of nonseparating $c$, we can collapse the bigons $\Delta$ and $\iota(\Delta)$.

## 4. An Involution on HSBLF

In this section, we prove Theorem 1.1.
Proof of Theorem 1.1(i). Let $f: M \rightarrow S^{2}$ be an HSBLF of genus $g \geq 3$, let $c_{1}, \ldots, c_{n} \subset \Sigma_{g}$ be vanishing cycles of Lefschetz singularities of $f$, and let $c \subset$ $\Sigma_{g}$ be a vanishing cycle of indefinite fold singularities of $f$. We assume that $c_{1}, \ldots, c_{n}$ and $c$ are preserved by the involution $\iota: \Sigma_{g} \rightarrow \Sigma_{g}$. By the argument in Section 2.4, we can decompose $M$ as follows:

$$
M=D^{2} \times \Sigma_{g} \cup\left(h_{1}^{2} \amalg \cdots \amalg h_{n}^{2}\right) \cup R^{2} \cup D^{2} \times \Sigma_{g-1}
$$

where $h_{i}^{2}=D^{2} \times D^{2}$ is the 2-handle attached along the simple closed curve $\left\{p_{i}\right\} \times c_{i} \in \partial D^{2} \times \Sigma_{g}$ and $R^{2}$ is a round 2-handle. We first use this decomposition to prove the existence of an involution $\omega$.

Step 1. We define an involution $\omega_{1}$ on $D^{2} \times \Sigma_{g}$ as follows:

$$
\omega_{1}=\mathrm{id} \times \iota: D^{2} \times \Sigma_{g} \longrightarrow D^{2} \times \Sigma_{g}
$$

$$
\begin{gathered}
\psi^{U} \\
(z, x) \longmapsto(z, l(x)) .
\end{gathered}
$$

In the subsequent steps, we will define an involution on each component in the preceding decomposition of $M$ that is compatible with the involution $\omega_{1}$.

Step 2. We next define an involution $\omega_{2, i}$ on the 2-handle $h_{i}^{2}$ attached along $\left\{q_{i}\right\} \times c_{i} \subset \partial D^{2} \times \Sigma_{g}$. We will abuse notation by denoting the attaching circle $\left\{q_{i}\right\} \times c_{i}$ simply by $c_{i}$.

We take a tubular neighborhood $\nu c_{i}$ in $\left\{q_{i}\right\} \times \Sigma_{g}$ and an identification

$$
v c_{i} \cong S^{1} \times[-1,1]
$$

such that $c_{i}$ corresponds to the circle $S^{1} \times\{0\}$ under the identification. We assume that the standard orientation of $S^{1} \times[-1,1]$ coincides with that of $\left\{q_{i}\right\} \times \Sigma_{g}$. We take a sufficiently small neighborhood $I_{q_{i}}$ of $q_{i}$ in $\partial D^{2}$ as follows:

$$
I_{q_{i}}=\left\{q_{i} \cdot \exp (\sqrt{-1} \theta) \in \partial D^{2} \mid \theta \in\left[-\varepsilon_{1}, \varepsilon_{1}\right]\right\}
$$

where $\varepsilon_{1}>0$ is a sufficiently small number. We further identify the neighborhood $I_{q_{i}}$ with the unit interval $[-1,1]$ by using the following map:


We regard $I_{q_{i}} \times[-1,1]$ as the subset of $\mathbb{C}$ via the embedding

$$
\begin{gathered}
I_{q_{i}} \times[-1,1] \longleftrightarrow\{z \in \mathbb{C}| | \operatorname{Re} z|\leq 1,|\operatorname{Im} z| \leq 1\} \\
w \\
(s, t) \longmapsto s+t \sqrt{-1}
\end{gathered}
$$

We put $J=\left\{z \in \mathbb{C}| | \operatorname{Re} z|\leq 1,|\operatorname{Im} z| \leq 1\}\right.$. The orientation of $\partial D^{2} \times \Sigma_{g}$ is opposite to the natural orientation of $J \times S^{1}$. Thus, the attaching map of the 2-handle $h_{i}^{2}$ is described as

$$
\begin{aligned}
\varphi_{i}: \partial D^{2} \times D^{2} & \longrightarrow J \times S^{1} \subset \partial D^{2} \times \Sigma_{g} \\
ש & \\
\left(w_{1}, w_{2}\right) & \longmapsto\left(\varepsilon_{2} w_{2} w_{1}, w_{1}\right),
\end{aligned}
$$

where $\varepsilon_{2}>0$ is a sufficiently small number. Note that the map $\varphi_{i}$ is orientation preserving if we give the natural orientation of $\partial D^{2} \times D^{2}$.

Case 2.1. If $c_{i}$ is nonseparating, then we can take a tubular neighborhood $\nu c_{i} \cong$ $S^{1} \times[-1,1]$ such that the involution $\omega_{1}$ acts on $v c_{i}$ as follows:

$$
\begin{aligned}
\left.\omega_{1}\right|_{v c_{i}}: S^{1} \times[-1,1] & S^{1} \times[-1,1] \\
w & \\
(z, t) & \longmapsto(\bar{z},-t)
\end{aligned}
$$

Since the involution $\omega_{1}: D^{2} \times \Sigma_{g} \rightarrow D^{2} \times \Sigma_{g}$ preserves the first component, $\omega_{1}$ acts on $I_{q_{i}} \times v c_{i} \cong J \times S^{1}$ as follows:

$$
\left.\omega_{1}\right|_{J \times S^{1}}: J \times S^{1} \longrightarrow J \times S^{1}
$$



$$
\left(z_{1}, z_{2}\right) \longmapsto\left(\bar{z}_{1}, \bar{z}_{2}\right) .
$$

We define an involution $\omega_{2, i}$ on the 2-handle $h_{i}^{2}$ as

$$
\begin{array}{rc}
\omega_{2, i}: D^{2} \times D^{2} & \longrightarrow D^{2} \times D^{2} \\
u & \psi \\
\left(w_{1}, w_{2}\right) & \longmapsto\left(\bar{w}_{1}, \bar{w}_{2}\right)
\end{array}
$$

Then the following diagram commutes:


Thus, we can define an involution $\omega_{1} \cup \omega_{2, i}$ on the manifold $D^{2} \times \Sigma_{g} \cup_{\varphi_{i}} h_{i}^{2}$.
Case 2.2. If $c_{i}$ is separating, we take a tubular neighborhood $v c_{i} \cong S^{1} \times[-1,1]$ such that the involution $\omega_{1}$ acts on $v c_{i}$ as follows:

$$
\begin{aligned}
\left.\omega_{1}\right|_{v c_{i}}: S^{1} \times[-1,1] & \longrightarrow S^{1} \times[-1,1] \\
u & \\
(z, t) & \longmapsto(-z, t)
\end{aligned}
$$

Then $\omega_{1}$ acts on $I_{q_{i}} \times v c_{i} \cong J \times S^{1}$ as follows:

$$
\begin{array}{rl}
\left.\omega_{1}\right|_{J \times S^{1}}: J \times S^{1} & \longrightarrow J \times S^{1} \\
ש & ש \\
\left(z_{1}, z_{2}\right) & \longmapsto\left(z_{1},-z_{2}\right)
\end{array}
$$

We define an involution $\omega_{2, i}$ on the 2-handle $h_{i}^{2}$ as

$$
\begin{aligned}
\omega_{2, i}: D^{2} \times D^{2} & \longrightarrow D^{2} \times D^{2} \\
\psi & \psi \\
\left(w_{1}, w_{2}\right) & \longmapsto\left(-w_{1},-w_{2}\right)
\end{aligned}
$$

Then the following diagram commutes:


Thus, we can define an involution $\omega_{1} \cup \omega_{2, i}$ on the manifold $D^{2} \times \Sigma_{g} \cup_{\varphi_{i}} h_{i}^{2}$.
Combining Case 2.1 and Case 2.2, we can define the involution $\tilde{\omega}_{2}=$ $\omega_{1} \cup\left(\omega_{2,1} \cup \cdots \cup \omega_{2, n}\right)$ on the four-manifold $M_{h}=M \cup\left(h_{1}^{2} \amalg \cdots \amalg h_{n}^{2}\right)$. Before giving an involution on the round 2-handle, we look at the $\Sigma_{g}$-bundle structure of $\partial M_{h}$. The projection $\pi_{h}: \partial M_{h} \rightarrow \partial D^{2}$ of this bundle is described as follows:

$$
\begin{aligned}
& \pi_{h}(z, x)=z\left((z, x) \in \partial D^{2} \times \Sigma_{g} \backslash\left(\mathrm{~L} \operatorname{Int} \varphi_{i}\left(\partial D^{2} \times D^{2}\right)\right),\right. \\
& \pi_{h}\left(w_{1}, w_{2}\right)=q_{i} \cdot \exp \left(\sqrt{-1} \varepsilon_{1} \varepsilon_{2}\left(\operatorname{Re} w_{1} \operatorname{Re} w_{2}-\operatorname{Im} w_{1} \operatorname{Im} w_{2}\right)\right) \\
&\left(\left(w_{1}, w_{2}\right) \in D^{2} \times \partial D^{2} \subset \partial h_{i}^{2}\right) .
\end{aligned}
$$

Indeed, the map $\pi_{h}$ is well-defined. To see this, we need only verify that

$$
q_{i} \cdot \exp \left(\sqrt{-1} \varepsilon_{1} \varepsilon_{2}\left(\operatorname{Re} w_{1} \operatorname{Re} w_{2}-\operatorname{Im} w_{1} \operatorname{Im} w_{2}\right)\right)=p_{1} \circ \varphi_{i}\left(w_{1}, w_{2}\right)
$$

where $\left(w_{1}, w_{2}\right) \in D^{2} \times \partial D^{2} \subset \partial h_{i}^{2}$ and $p_{1}: J \times S^{1} \rightarrow I_{q_{i}}$ is the projection. Now $p_{1} \circ \varphi_{i}\left(w_{1}, w_{2}\right)$ is calculated as

$$
\begin{aligned}
p_{1} \circ \varphi_{i}\left(w_{1}, w_{2}\right) & =p_{1}\left(\varepsilon_{2} w_{2} w_{1}, w_{1}\right) \\
& =q_{i} \cdot \exp \left(\sqrt{-1} \varepsilon_{1} \operatorname{Re}\left(\varepsilon_{2} w_{2} w_{1}\right)\right) \\
& =q_{i} \cdot \exp \left(\sqrt{-1} \varepsilon_{1} \varepsilon_{2}\left(\operatorname{Re} w_{1} \operatorname{Re} w_{2}-\operatorname{Im} w_{1} \operatorname{Im} w_{2}\right)\right)
\end{aligned}
$$

This implies that our foregoing definition of $\pi_{k}$ makes sense.
Lemma 4.1. The involution $\tilde{\omega}_{2}$ preserves the fibers of $\pi_{h}$. Moreover, there exists a lift $X$ of the vector field $\frac{d}{d \theta} \exp (\sqrt{-1} \theta)$ by the map $\pi_{h}$, which is compatible with the involution $\tilde{\omega}_{2}$; that is,

$$
\tilde{\omega}_{2 *}(X)=X
$$

Proof. It is easy to verify by direct calculation that $\tilde{\omega}_{2}$ preserves the fibers of $\pi_{h}$. The details are left to the reader.

To prove the existence of a lift $X$, we construct $X$ explicitly. We define a vector field $X_{1}$ on $\partial D^{2} \times \Sigma_{g} \backslash\left(\amalg \varphi_{i}\left(\partial D^{2} \times D^{2}\right)\right.$ as follows:

$$
X_{1}\left(\exp \left(\sqrt{-1} \theta_{0}\right), x\right)=\left.\frac{d}{d \theta} \exp (\sqrt{-1} \theta)\right|_{\theta=\theta_{0}} \in T_{\left(\exp \left(\sqrt{-1} \theta_{0}\right), x\right)}\left(\partial D^{2} \times \Sigma_{g}\right)
$$

for a point $\left(\exp \left(\sqrt{-1} \theta_{0}\right), x\right) \in \partial D^{2} \times \Sigma_{g} \backslash\left(\amalg \operatorname{Int} \varphi_{i}\left(\partial D^{2} \times D^{2}\right)\right)$. The vector field $X_{1}$ is described in $J \times S^{1}$ as

$$
X_{1}(s+t \sqrt{-1}, z)=\left.\frac{1}{\varepsilon_{1}} \frac{\partial}{\partial s}\right|_{s} \in T_{(s+t \sqrt{-1}, z)}\left(J \times S^{1}\right)
$$

We also define a vector field $X_{2}$ on $D^{2} \times \partial D^{2} \subset \partial h_{i}^{2}$ as

$$
X_{2}\left(w_{1}, w_{2}\right)=\frac{\varrho\left(\left|w_{1}\right|^{2}\right)}{\varepsilon_{1} \varepsilon_{2}\left|w_{1}\right|^{2}}\left(x_{1} \frac{\partial}{\partial x_{2}}-y_{1} \frac{\partial}{\partial y_{2}}\right)+\frac{1-\varrho\left(\left|w_{1}\right|^{2}\right)}{\varepsilon_{1} \varepsilon_{2}}\left(x_{2} \frac{\partial}{\partial x_{1}}-y_{2} \frac{\partial}{\partial y_{1}}\right)
$$

where $w_{i}=x_{i}+y_{i} \sqrt{-1}$ and $\varrho:[0,1] \rightarrow[0,1]$ is a monotone increasing smooth function that satisfies the following conditions:

- $\varrho(t)=0$ for $t \in\left[0, \frac{1}{3}\right]$;
- $\varrho(t)=1$ for $t \in\left[\frac{2}{3}, 1\right]$.

For $\left(w_{1}, w_{2}\right) \in \partial D^{2} \times \partial D^{2}$, we calculate $d \varphi_{i}\left(X_{2}\left(w_{1}, w_{2}\right)\right)$ as follows:

$$
\begin{aligned}
d \varphi_{i} & \left(X_{2}\left(w_{1}, w_{2}\right)\right) \\
& =d \varphi_{i}\left(\frac{1}{\varepsilon_{1} \varepsilon_{2}}\left(x_{1} \frac{\partial}{\partial x_{2}}-y_{1} \frac{\partial}{\partial y_{2}}\right)\right) \quad\left(\because\left|w_{1}\right|=1\right) \\
& =\frac{1}{\varepsilon_{1} \varepsilon_{2}} x_{1} d \varphi_{i}\left(\frac{\partial}{\partial x_{2}}\right)-\frac{1}{\varepsilon_{1} \varepsilon_{2}} y_{1} d \varphi_{i}\left(\frac{\partial}{\partial y_{2}}\right) \\
& =\frac{1}{\varepsilon_{1}} x_{1}\left(x_{1} \frac{\partial}{\partial s}+y_{1} \frac{\partial}{\partial t}\right)-\frac{1}{\varepsilon_{1}} y_{1}\left(-y_{1} \frac{\partial}{\partial s}+x_{1} \frac{\partial}{\partial t}\right) \\
& =\frac{1}{\varepsilon_{1}}\left(x_{1}^{2}+y_{1}^{2}\right) \frac{\partial}{\partial s} \\
& =X_{1}\left(\varphi_{i}\left(w_{1}, w_{2}\right)\right) .
\end{aligned}
$$

Hence we can define a vector field $X=X_{1} \cup X_{2}$ on the manifold $\partial M_{h}$. Moreover, it can be shown that each of $X_{1}$ and $X_{2}$ is a lift of the vector field $\frac{d}{d \theta} \exp (\sqrt{-1} \theta)$ by the map $\pi_{h}$. Thus, the vector field $X$ is a lift of $\frac{d}{d \theta} \exp (\sqrt{-1} \theta)$. We can show that the vector field $X$ is compatible with the involution $\tilde{\omega}_{2}$ by direct calculation. This completes the proof of Lemma 4.1.

We choose a base point $q_{0} \in \partial D^{2} \backslash\left(\amalg I_{q_{i}}\right)$ and define a map $\Theta_{X}: f^{-1}\left(q_{0}\right) \rightarrow$ $f^{-1}\left(q_{0}\right)$ as follows:

$$
\Theta_{X}(x)=c_{X, x}(2 \pi)
$$

where $c_{X, x}$ is the integral curve of the vector field $X$ constructed in Lemma 4.1 that satisfies $c_{X, x}(0)=x$. We identify $f^{-1}\left(q_{0}\right)$ with the surface $\Sigma_{g}$ via the projection onto the second component. Then the map $\Theta_{X}$ is contained in the centralizer $C(\imath) \subset \operatorname{Diff}_{+} \Sigma_{g}$ because the vector field $X$ is compatible with $\tilde{\omega}_{2}$. The isotopy class represented by $\Theta_{X}$ is the monodromy of the boundary of $M_{h}$. In particular, this class is contained in the group $\mathcal{H}_{g}(c)$. By Lemma 3.1, there exists an isotopy $H_{t}: \Sigma_{g} \rightarrow \Sigma_{g}$ that satisfies the following conditions:

- $H_{0}=\Theta_{X}$;
- $H_{1}$ preserves the curve $c$ as a set;
- for each level $t, H_{t}$ is in the centralizer $C(t)$.

We obtain the following isomorphism of $\Sigma_{g}$-bundles:

$$
\partial M_{h} \cong[0,1] \times \Sigma_{g} /\left((1, x) \sim\left(0, H_{1}(x)\right)\right)
$$

We identify these $\Sigma_{g}$-bundles via the isomorphism. Under this identification, the involution $\tilde{\omega}_{2}$ acts on $\partial M_{h}$ as

$$
\tilde{\omega}_{2}(t, x)=(t, \iota(x)),
$$

where $(t, x)$ is an element in $[0,1] \times \Sigma_{g} /\left((1, x) \sim\left(0, H_{1}(x)\right)\right) \cong \partial M_{h}$.
Step 3. In this step, we define an involution $\omega_{3}$ on the round 2-handle $R^{2}$. Since $c$ is nonseparating and since $c$ is preserved by $\iota$, it follows that $c$ contains two fixed points of the involution $\iota$; we denote these points by $v_{1}$ and $v_{2}$. We can take a tubular neighborhood $v c \cong S^{1} \times[-1,1]$ in $\Sigma_{g}$ such that the involution $\iota$ acts on $v c$ as follows:

$$
\iota(z, t)=(\bar{z},-t)
$$

By perturbing the map $H_{1}$, we can assume that $H_{1}$ preserves the neighborhood $v c$. Since the genus of the fibration $f$ is not equal to 1 , the attaching region of the round 2-handle $R^{2}$ must be $[0,1] \times v c /\left((1, x) \sim\left(0, H_{1}(x)\right)\right)$.

Case 3.1. If $H_{1}$ preserves the orientation of $c$ and of the two points $v_{1}$ and $v_{2}$, then the round handle $R^{2}$ is untwisted and the restriction $\left.H_{1}\right|_{v c}$ is described as

$$
H_{1}(z, t)=(z, t),
$$

where $(z, t) \in S^{1} \times[-1,1] \cong v c$. Moreover, the attaching map of the round handle is described as

$$
\begin{gathered}
\varphi:[0,1] \times \partial D^{2} \times D^{1} / \sim \longrightarrow[0,1] \times S^{1} \times[-1,1] / \sim \\
\psi \\
(s, z, t) \longmapsto(s, z, t),
\end{gathered}
$$

where $[0,1] \times \partial D^{2} \times D^{1}$ is the attaching region of $R^{2}$ and $[0,1] \times S^{1} \times[-1,1] \cong$ $[0,1] \times \nu c$ is the subset of $\partial M_{h}$. We define an involution $\omega_{3}$ on the round handle as follows:

$$
\begin{gathered}
\omega_{3}:[0,1] \times D^{2} \times D^{1} / \sim \longrightarrow[0,1] \times D^{2} \times D^{1} / \sim \\
\psi \\
(s, z, t) \longmapsto(s, \bar{z},-t) .
\end{gathered}
$$

Then the following diagram commutes:


Therefore, we obtain an involution $\tilde{\omega}_{3}=\tilde{\omega}_{2} \cup \omega_{3}$ on $M_{h} \cup M_{r}=M_{h} \cup R^{2}$.
Case 3.2. If $H_{1}$ preserves the orientation of $c$ but does not preserve the points $v_{1}$ and $v_{2}$, then the round handle $R^{2}$ is untwisted and the restriction $\left.H_{1}\right|_{v c}$ is described as

$$
H_{1}(z, t)=(-z, t) .
$$

The attaching map of the round handle is described as

$$
\begin{aligned}
& \varphi:[0,1] \times \partial D^{2} \times D^{1} / \sim \longrightarrow[0,1] \times S^{1} \times[-1,1] / \sim \\
& \psi \\
&(s, z, t) \longmapsto(s, \exp (\pi \sqrt{-1} s) z, t) .
\end{aligned}
$$

We define an involution $\omega_{3}$ on the round handle as follows:

$$
\begin{aligned}
& \omega_{3}:[0,1] \times D^{2} \times D^{1} / \sim \longrightarrow[0,1] \times D^{2} \times D^{1} / \sim \\
& u \\
&(s, z, t) \longmapsto(s, \exp (-2 \pi \sqrt{-1} s) \bar{z},-t)
\end{aligned}
$$

Then we can define an involution $\tilde{\omega}_{3}=\tilde{\omega}_{2} \cup \omega_{3}$ on $M_{h} \cup M_{r}=M_{h} \cup R^{2}$ by the same reason as in Case 3.1.

Case 3.3. If $H_{1}$ does not preserve the orientation of $c$ but preserves two points $v_{1}$ and $v_{2}$, then the round handle $R^{2}$ is twisted and the restriction $\left.H_{1}\right|_{v c}$ is described as

$$
H_{1}(z, t)=(\bar{z},-t),
$$

where $(z, t) \in S^{1} \times[-1,1] \cong v c$. Moreover, the attaching map of the round handle is described as

$$
\begin{gathered}
\varphi:[0,1] \times \partial D^{2} \times D^{1} / \sim \longrightarrow[0,1] \times S^{1} \times[-1,1] / \sim \\
\omega \\
(s, z, t) \longmapsto(s, z, t)
\end{gathered}
$$

We define an involution $\omega_{3}$ on the round handle as follows:

$$
\begin{gathered}
\omega_{3}:[0,1] \times D^{2} \times D^{1} / \sim \longrightarrow[0,1] \times D^{2} \times D^{1} / \sim \\
\psi \\
(s, z, t) \longmapsto(s, \bar{z},-t)
\end{gathered}
$$

Then we can define an involution $\tilde{\omega}_{3}=\tilde{\omega}_{2} \cup \omega_{3}$ on $M_{h} \cup M_{r}=M_{h} \cup R^{2}$.
Case 3.4. If $H_{1}$ preserves neither the orientation of $c$ nor the points $v_{1}$ and $v_{2}$, then the round handle $R^{2}$ is twisted and the restriction $\left.H_{1}\right|_{v c}$ is described as

$$
H_{1}(z, t)=(-\bar{z},-t),
$$

where $(z, t) \in S^{1} \times[-1,1] \cong v c$. Moreover, the attaching map of the round handle is described as

$$
\begin{aligned}
& \varphi:[0,1] \times \partial D^{2} \times D^{1} / \sim \longrightarrow[0,1] \times S^{1} \times[-1,1] / \sim \\
& u \uplus \\
&(s, z, t) \longmapsto(s, \exp (\pi \sqrt{-1} s) z, t) .
\end{aligned}
$$

We define an involution $\omega_{3}$ on the round handle as follows:

$$
\begin{aligned}
& \omega_{3}:[0,1] \times D^{2} \times D^{1} / \sim \longrightarrow[0,1] \times D^{2} \times D^{1} / \sim
\end{aligned}
$$

$$
\begin{aligned}
& (s, z, t) \longmapsto(s, \exp (-2 \pi \sqrt{-1} s) \bar{z},-t) .
\end{aligned}
$$

Then we can define an involution $\tilde{\omega}_{3}=\tilde{\omega}_{2} \cup \omega_{3}$ on $M_{h} \cup M_{r}=M_{h} \cup R^{2}$.
Eventually, we obtain the involution $\tilde{\omega}_{3}$ on $M_{h} \cup M_{r}$ in any case. We next look at $\Sigma_{g-1}$-bundle structure of $\partial\left(M_{h} \cup M_{r}\right)$. The projection $\pi_{r}: \partial\left(M_{h} \cup M_{r}\right) \rightarrow$ $[0,1] /\{0,1\}$ of this bundle is described as

$$
\begin{aligned}
\pi_{r}(s, x)=s & \left((s, x) \in\left([0,1] \times \Sigma_{g} /(1, x) \sim\left(0, H_{1}(x)\right)\right) \backslash([0,1] \times \nu c / \sim)\right) ; \\
\pi_{r}(s, z, t)=s & \left((s, z, t) \in[0,1] \times D^{2} \times \partial D^{1}\right) .
\end{aligned}
$$

Indeed, it is easy to show that $\pi_{r}$ is well-defined.
Lemma 4.2. The involution $\tilde{\omega}_{3}$ preserves the fibers of $\pi_{r}$. Moreover, there exists a lift $\tilde{X}$ of the vector field $\frac{d}{d s}$ on $[0,1] /\{0,1\}$ by the map $\pi_{r}$ that is compatible with the involution $\tilde{\omega}_{3}$.

Proof. It is obvious that the involution $\tilde{\omega}_{3}$ preserves the fibers of $\pi_{r}$. We construct $\tilde{X}$ as in Lemma 4.1. Define a vector field $\tilde{X}_{1}$ on $\left([0,1] \times \Sigma_{g} / \sim\right) \backslash([0,1] \times v c / \sim)$ as follows:

$$
\tilde{X}_{1}(s, x)=\frac{d}{d s} .
$$

We first consider the case where $H_{1}$ preserves the points $v_{1}$ and $v_{2}$. In this case, we define a vector field $\tilde{X}_{2}$ on the round handle $R^{2}$ as

$$
\tilde{X}_{2}(s, z, t)=\frac{d}{d s},
$$

where $(s, z, t) \in[0,1] \times D^{2} \times \partial D^{1} \subset \partial R^{2}$. It is easy to verify the equality $d \varphi\left(\frac{d}{d s}\right)=$ $\frac{d}{d s}$, so we can define a vector field $\tilde{X}=\tilde{X}_{1} \cup \tilde{X}_{2}$ on $\partial M_{h} \cup M_{r}$. It is obvious that $\tilde{X}$ is a lift of the vector field $\frac{d}{d s}$ on $[0,1] /\{0,1\}$ by $\pi_{r}$ and is compatible with the involution $\tilde{\omega}_{3}$.

We next consider the case where $H_{1}$ does not preserve the points $v_{1}$ and $v_{2}$. In this case, we define a vector field $\tilde{X}_{2}$ on $R^{2}$ as

$$
\tilde{X}_{2}(s, x+y \sqrt{-1}, t)=\frac{d}{d s}+\pi y \frac{\partial}{\partial x}-\pi x \frac{\partial}{\partial y},
$$

where

$$
(s, x+y \sqrt{-1}, t) \in[0,1] \times D^{2} \times \partial D^{1} \subset \partial R^{2}
$$

The differential $d \varphi\left(\tilde{X}_{2}(s, x+\sqrt{-1} y, t)\right)$ is then calculated as follows:

$$
\begin{aligned}
& d \varphi\left(\tilde{X}_{2}(s, x+\sqrt{-1} y, t)\right) \\
&= d \varphi\left(\frac{d}{d s}+\pi y \frac{\partial}{\partial x}-\pi x \frac{\partial}{\partial y}\right) \\
&=\left(\frac{d}{d s}+\pi(-x \sin \pi s-y \cos \pi s) \frac{d}{d x}+\pi(x \cos \pi s-y \sin \pi s) \frac{d}{d y}\right) \\
&+\pi y\left(\cos \pi s \frac{d}{d x}+\sin \pi s \frac{d}{d y}\right)-\pi x\left(-\sin \pi s \frac{d}{d x}+\cos \pi s \frac{d}{d y}\right) \\
&= \frac{d}{d s} \\
&= \tilde{X}_{1}(\varphi(s, x+\sqrt{-1} y, t)) .
\end{aligned}
$$

We can therefore define a vector field $\tilde{X}=\tilde{X}_{1} \cup \tilde{X}_{2}$ on $\partial\left(M_{h} \cup M_{r}\right)$. It is obvious that $\tilde{X}$ is a lift of the vector field $\frac{d}{d s}$ on $[0,1] /\{0,1\}$ by $\pi_{r}$. To verify that $\tilde{X}$ is compatible with the involution $\tilde{\omega}_{3}$, we need to prove that

$$
d \tilde{\omega}_{3}(\tilde{X}(x))=\tilde{X}\left(\tilde{\omega}_{3}(x)\right) \quad \text { for any } x \in \partial\left(M_{h} \cup M_{r}\right)
$$

If $x$ is contained in $[0,1] \times \Sigma_{g} / \sim \backslash([0,1] \times v c / \sim)$, then this equation can be proved easily. If $x=(s, x+\sqrt{-1} y, t) \in[0,1] \times D^{2} \times \partial D^{1} \subset \partial R^{2}$, then $d \tilde{\omega}_{3}(\tilde{X}(x))$ is calculated as follows:

$$
\begin{aligned}
& d \tilde{\omega}_{3}(\tilde{X}(x)) \\
&= d \tilde{\omega}_{3}\left(\frac{d}{d s}+\pi y \frac{\partial}{\partial x}-\pi x \frac{\partial}{\partial y}\right) \\
&=\left(\frac{d}{d s}+2 \pi(-x \sin 2 \pi s-y \cos 2 \pi s) \frac{\partial}{\partial x}+2 \pi(-x \cos 2 \pi s+y \sin 2 \pi s) \frac{\partial}{\partial y}\right) \\
&+\pi y\left(\cos 2 \pi s \frac{\partial}{\partial x}-\sin 2 \pi s \frac{\partial}{\partial y}\right)-\pi x\left(-\sin 2 \pi s \frac{\partial}{\partial x}-\cos 2 \pi s \frac{\partial}{\partial y}\right) \\
&= \frac{d}{d s}+\pi(-x \sin 2 \pi s-y \cos 2 \pi s) \frac{\partial}{\partial x}+\pi(-x \cos 2 \pi s+y \sin 2 \pi s) \frac{\partial}{\partial y} \\
&= \tilde{X}\left(\tilde{\omega}_{3}(x)\right)
\end{aligned}
$$

Thus, $\tilde{X}$ is compatible with the involution $\tilde{\omega}_{3}$. This completes the proof of Lemma 4.2.

We now define the map $\Theta_{\tilde{X}}: \pi_{r}^{-1}(0) \rightarrow \pi_{r}^{-1}(0)$ as follows:

$$
\begin{aligned}
\Theta_{\tilde{X}}: \pi_{r}^{-1}(0) & \longrightarrow \pi_{r}^{-1}(0) \\
\omega & ש \\
x & \longmapsto c_{\tilde{X}, x}(1)
\end{aligned}
$$

here $c_{\tilde{X}, x}$ is the integral curve of $\tilde{X}$ starting at $x$. We identify the fiber $\pi_{r}^{-1}(0)$ with the surface $\Sigma_{g-1}$. The map $\Theta_{\tilde{X}}$ is contained in the centralizer $C(\iota)$ because $\tilde{X}$ is compatible with $\tilde{\omega}_{3}$. Furthermore, $\Theta_{\tilde{X}}$ is isotopic to the identity map. By Theorem 2.7, we can take an isotopy $\tilde{H}_{t}: \Sigma_{g-1} \rightarrow \Sigma_{g-1}$ that satisfies the following conditions:

- $\tilde{H}_{0}=\Theta_{\tilde{X}}$;
- $\tilde{H}_{1}$ is the identity map;
- $\tilde{H}_{t}$ is contained in the centralizer $C(\iota)$.

Observe that such an isotopy may not be taken if the condition $g \geq 3$ is dropped. Indeed, the map $\pi_{0} C(\iota) \rightarrow \mathcal{M}_{1}$ induced by the inclusion is not injective.

By using the isotopy $\tilde{H}_{t}$, we obtain the following isomorphism of a $\Sigma_{g-1}$-bundle:

$$
\partial\left(M_{h} \cup M_{r}\right) \cong[0,1] \times \Sigma_{g-1} /(1, x) \sim(0, x)
$$

The involution $\tilde{\omega}_{3}$ acts on $[0,1] \times \Sigma_{g-1} /(1, x) \sim(0, x)$ via that isomorphism as follows:

$$
\tilde{\omega}_{3}(s, x)=(s, \iota(x)) .
$$

Step 4. We define an involution $\omega_{4}$ on $D^{2} \times \Sigma_{g-1}$ as

$$
\omega_{4}(z, x)=(z, \iota(x))
$$

where $(z, x) \in D^{2} \times \Sigma_{g-1}$. Let $\Phi:[0,1] \times \Sigma_{g-1} / \sim \rightarrow \partial D^{2} \times \Sigma_{g-1}$ be the attaching map of the lower side. Since the genus of the fibration $f$ is greater than 2, we can assume that $\Phi$ is given by $\Phi(s, x)=(\exp (2 \pi \sqrt{-1} s), x)$. In particular, the following diagram commutes:


Hence, we obtain an involution $\omega=\tilde{\omega}_{3} \cup \omega_{4}$ on $M$.
We next look at the fixed point set of $\omega$. The involution $\omega$ is equal to id $\times \iota$ on $D^{2} \times \Sigma_{g}$. Thus we obtain

$$
M^{\omega} \cup D^{2} \times \Sigma_{g}=D^{2} \times\left\{v_{1}, \ldots, v_{2 g+2}\right\}
$$

where $v_{1}, \ldots, v_{2 g+2} \in \Sigma_{g}$ are the fixed points of $\iota$. Note that $M^{\omega} \cup D^{2} \times \Sigma_{g}$ has the natural orientation derived from the orientation of $D^{2}$.

The involution $\omega$ acts on the 2-handle $h_{i}^{2}=D^{2} \times D^{2}$ as follows:

$$
\omega\left(w_{1}, w_{2}\right)= \begin{cases}\left(\bar{w}_{1}, \bar{w}_{2}\right) & \left(c_{i} \text { nonseparating }\right) \\ \left(-w_{1},-w_{2}\right) & \left(c_{i} \text { separating }\right)\end{cases}
$$

here $\left(w_{1}, w_{2}\right) \in D^{2} \times D^{2}$. Thus, the fixed point set $h_{i}^{2^{\omega}}$ is equal to $\left(D^{2} \cap \mathbb{R}\right) \times$ ( $D^{2} \cap \mathbb{R}$ ) if $c_{i}$ is nonseparating and is equal to $\{(0,0)\}$ if $c_{i}$ is separating. Furthermore, if $c_{i}$ is nonseparating then we can give an orientation to $\left(D^{2} \cap \mathbb{R}\right) \times\left(D^{2} \cap \mathbb{R}\right)$
that is compatible with the orientation of $D^{2} \times\left\{v_{1}, \ldots, v_{2 g+2}\right\}$. Hence, the fixed point set $M_{h}{ }^{\omega}$ is the union of the oriented surfaces and the $s$ points, where $s$ is the number of Lefschetz singularities of $f$ whose vanishing cycle is separating.

The involution $\omega$ acts on the round 2-handle $R^{2}$ as follows:

$$
\begin{aligned}
& \omega(s, z, t) \\
& \quad= \begin{cases}(s, \bar{z},-t) & \text { if } H_{1} \text { preserves the points } v_{1} \text { and } v_{2} \\
(s, \exp (-2 \pi \sqrt{-1} s) \bar{z},-t) & \text { otherwise }\end{cases}
\end{aligned}
$$

where $(s, z, t) \in R^{2}=[0,1] \times D^{2} \times D^{1} / \sim$. Thus we obtain
$R^{2 \omega}$

$$
= \begin{cases}{[0,1] \times\left(D^{2} \cap \mathbb{R}\right) \times\{0\} / \sim} & \text { if } H_{1} \text { preserves the points } v_{1} \text { and } v_{2} \\ \left\{(s, z, 0) \in R^{2} \mid\right. & \\ z=r \exp (-\pi \sqrt{-1} s), r \in[-1,1]\} & \text { otherwise. }\end{cases}
$$

Therefore, the fixed point set $R^{2 \omega}$ is equal to the annulus or the Möbius band. As explained in the previous paragraph, we can give an orientation of the 2-dimensional part of $M_{h}{ }^{\omega}$ in the canonical way. It is easy to see that any orientation of $R^{2 \omega}$ is not compatible with this canonical orientation of $M_{h}{ }^{\omega}$. In particular, even if $R^{2 \omega}$ is the annulus, the 2 -dimensional part of the fixed point set $\left(M_{h} \cup M_{r}\right)^{\omega}$ may not be orientable. Indeed, this part is orientable if and only if $R^{2 \omega}$ is the annulus and there is a connected component in $M_{h}{ }^{\omega}$ whose boundary contains only one component of $\partial R^{2 \omega}$.

The involution $\omega$ is equal to id $\times \iota$ on $D^{2} \times \Sigma_{g-1}$. Thus, the fixed point set $\left(D^{2} \times \Sigma_{g-1}\right)^{\omega}$ is equal to $D^{2} \times\left\{\tilde{v}_{1}, \ldots, \tilde{v}_{2 g}\right\}$, where $\left\{\tilde{v}_{1}, \ldots, \tilde{v}_{2 g}\right\}$ is the set of the fixed points of $\iota$. Eventually, $M^{\omega}$ is the union of the closed surfaces and the $s$ points. The 2-dimensional part of $M^{\omega}$ is orientable if and only if that part of $\left(M_{h} \cup M_{r}\right)^{\omega}$ is orientable. This completes the proof of Theorem 1.1's statement on the fixed point set of $\omega$.

We next extend the involution $\omega$ to the manifold $M \# s \overline{\mathbb{C P}^{2}}$. We assume that the curves $c_{k_{1}}, \ldots, c_{k_{s}}$ are separating. We construct the manifold $M \# s \overline{\mathbb{C P}^{2}}$ by blowing up $M s$ times at $(0,0) \in h_{k_{i}}^{2}(i=1, \ldots, s)$. We can obtain a natural decomposition of $M \# s \overline{\mathbb{C P}^{2}}$ as follows:
$M \# s \overline{\mathbb{C P}^{2}}=D^{2} \times \Sigma_{g} \cup\left(h_{1}^{2} \sqcup^{\hat{k}_{1}}, \ldots, \hat{k}_{s} \amalg h_{n}^{2}\right) \cup\left(\tilde{h}_{k_{1}} \amalg \cdots \amalg \tilde{h}_{k_{s}}\right) \cup R^{2} \cup D^{2} \times \Sigma_{g-1}$, where $\tilde{h}_{k_{i}}=\left\{\left(\left(w_{1}, w_{2}\right),\left[l_{1}: l_{2}\right]\right) \in D^{2} \times D^{2} \times \mathbb{C P}^{1} \mid w_{1} l_{2}-w_{2} l_{1}=0\right\} \cong$ $h_{k_{i}} \# \overline{\mathbb{C P}^{2}}$. We define an involution $\bar{\omega}$ on $M \# s \overline{\mathbb{C P}^{2}}$ as follows:

$$
\begin{aligned}
\bar{\omega}(x) & =\omega(x) \quad\left(x \in M \# s \overline{\mathbb{P P}^{2}} \backslash\left(\tilde{h}_{k_{1}} \amalg \cdots \amalg \tilde{h}_{k_{s}}\right)\right), \\
\bar{\omega}\left(\left(w_{1}, w_{2}\right),\left[l_{1}: l_{2}\right]\right) & =\left(\left(-w_{1},-w_{2}\right),\left[l_{1}: l_{2}\right]\right) \quad\left(\left(\left(w_{1}, w_{2}\right),\left[l_{1}: l_{2}\right]\right) \in \tilde{h}_{k_{i}}\right) .
\end{aligned}
$$

It is obvious that $\bar{\omega}$ is an extension of $\omega$. The fixed point set of $\bar{\omega}$ is the union of the 2-dimensional part of $M^{\omega}$ and $s$ 2-spheres.

We next prove that $M \# s \overline{\mathbb{C P}^{2}} / \bar{\omega}$ is diffeomorphic to $S \# 2 s \overline{\mathbb{C P}^{2}}$, where $S$ is an $S^{2}$ bundle over $S^{2}$. Since $\Sigma_{g} / \iota$ is diffeomorphic to $S^{2}$, it is easy to see that $D^{2} \times \Sigma_{g} / \bar{\omega}$
is diffeomorphic to $D^{2} \times S^{2}$. Thus, the manifold $M \# s \overline{\mathbb{C P}^{2}}$ is obtained by attaching $h_{j} / \bar{\omega}\left(j \neq k_{1}, \ldots, k_{s}\right), \tilde{h}_{k_{i}} / \bar{\omega}, R^{2} / \bar{\omega}$, and $D^{2} \times \Sigma_{g-1} / \bar{\omega} \cong D^{2} \times S^{2}$ to $D^{2} \times S^{2}$.

Lemma 4.3. Suppose that $c_{i}$ is nonseparating. Then

$$
\left(D^{2} \times \Sigma_{g} \cup_{\varphi_{i}} h_{i}^{2}\right) / \bar{\omega} \cong D^{2} \times S^{2}
$$

Proof. If we identify $h_{i}^{2}=D^{2} \times D^{2}$ with $D^{4}$, then $\bar{\omega}$ is equal to the covering transformation of the double covering $D^{4} \rightarrow D^{4}$ branched at the unknotted 2-disk in $D^{4}$. In particular, we obtain that $h_{i}^{2} / \bar{\omega}$ is diffeomorphic to $D^{4}$. Moreover, the attaching region of $h_{i}^{2}$ corresponds to the 3-disk in $\partial D^{4}$ under the diffeomorphism. Denote by $\bar{\varphi}_{i}: h_{i}^{2} / \bar{\omega} \rightarrow \partial D^{2} \times \Sigma_{g} / \bar{\omega}$ the embedding induced by $\varphi_{i}$. Then

$$
\begin{aligned}
\left(D^{2} \times \Sigma_{g} \cup_{\varphi_{i}} h_{i}^{2}\right) / \bar{\omega} & \cong\left(D^{2} \times \Sigma_{g} / \bar{\omega}\right) \cup_{\bar{\varphi}_{i}} h_{i}^{2} / \bar{\omega} \\
& \cong D^{2} \times S^{2} \sqsubset D^{4} \\
& \cong D^{2} \times S^{2} .
\end{aligned}
$$

This completes the proof of Lemma 4.3.
Lemma 4.4. For each $i \in\{1, \ldots, s\},\left(D^{2} \times \Sigma_{g} \cup_{\varphi_{i}} \tilde{h}_{k_{i}}^{2}\right) / \bar{\omega} \cong D^{2} \times S^{2} \# 2 \overline{\mathbb{C P}^{2}}$.
Proof. By eliminating the corner of $D^{2} \times D^{2}$, we identify $\tilde{h}_{k_{i}}^{2}$ with the manifold

$$
H=\left\{\left(\left(w_{1}, w_{2}\right),\left[l_{1}: l_{2}\right]\right) \in D^{4} \times \mathbb{C P}^{1} \mid w_{1} l_{2}-w_{2} l_{1}=0\right\}
$$

Under this identification, the attaching region of $\tilde{h}_{k_{i}}^{2}$ corresponds to the tubular neighborhood of the circle $\left\{\left(\left(w_{1}, 0\right),[1: 0]\right) \in \partial H\left|\left|w_{1}\right|=1\right\}\right.$ in $\partial H$. Let $p_{2}: H \rightarrow \mathbb{C P}^{1}$ be the projection onto the second component. The map $p_{2}$ is the $D^{2}$-bundle over the 2 -sphere with Euler number -1 . We define $D_{1}, D_{2} \subset \mathbb{C P}^{1}$ and also the local trivializations $\psi_{1}$ and $\psi_{2}$ of $p_{2}$ as follows:

$$
\begin{gathered}
D_{1}=\left\{\left[l_{1}: l_{2}\right] \in \mathbb{C P}^{1}| | l_{1}\left|\geq\left|l_{2}\right|\right\},\right. \\
D_{2}=\left\{\left[l_{1}: l_{2}\right] \in \mathbb{C P}^{1}| | l_{2}\left|\geq\left|l_{1}\right|\right\} ;\right. \\
\psi_{1}: D^{2} \times D^{2} \longrightarrow\left(D_{1}\right) \\
\psi \\
\left(w_{1}, w_{2}\right) \longmapsto\left(\frac{w_{2}}{\sqrt{1+\left|w_{1}\right|^{2}}}\left(1, w_{1}\right),\left[1, w_{1}\right]\right), \\
\psi_{2}: D^{2} \times D^{2} \longrightarrow p_{2}^{-1}\left(D_{2}\right) \\
\psi \\
\left(w_{1}, w_{2}\right) \longmapsto\left(\frac{w_{2}}{\sqrt{1+\left|w_{1}\right|^{2}}}\left(w_{1}, 1\right),\left[w_{1}, 1\right]\right) .
\end{gathered}
$$

Denote $p_{2}^{-1}\left(D_{1}\right)$ and $p_{2}^{-1}\left(D_{2}\right)$ by $H_{1}$ and $H_{2}$, respectively. We identify $H_{1}$ and $H_{2}$ with $D^{2} \times D^{2}$ by the preceding trivializations. The manifold $H$ can be
identified with $D^{2} \times D^{2} \cup_{\Psi} D^{2} \times D^{2}$, where $\Psi=\psi_{1}^{-1} \circ \psi_{2}:\left(w_{1}, w_{2}\right) \longmapsto$ $\left(1 / w_{1}, w_{1} w_{2}\right)$. Under the identification, the attaching region of $H$ corresponds to $\partial D^{2} \times D^{2} \subset \partial H_{1}$.

We define $\tilde{H}=\tilde{H}_{1} \cup_{\tilde{\Psi}} \tilde{H}_{2}$, where $\tilde{H}_{i}=D^{2} \times D^{2}(i=1,2)$ and $\tilde{\Psi}: \partial D^{2} \times D^{2} \rightarrow$ $\partial D^{2} \times D^{2}$ is a diffeomorphism defined as

$$
\tilde{\Psi}\left(w_{1}, w_{2}\right)=\left(1 / w_{1}, w_{1}^{2} w_{2}\right)
$$

We can define $\mathcal{P}: H \rightarrow \tilde{H}$ as follows:

$$
\mathcal{P}\left(w_{1}, w_{2}\right)= \begin{cases}\left(w_{1}, w_{2}^{2}\right) \in \tilde{H}_{1} & \left(\left(w_{1}, w_{2}\right) \in H_{1}\right) \\ \left(w_{1}, w_{2}^{2}\right) \in \tilde{H}_{2} & \left(\left(w_{1}, w_{2}\right) \in H_{2}\right)\end{cases}
$$

The map $\mathcal{P}$ is a double branched covering branched at the 0 -section of $\tilde{H}$ as a $D^{2}$-bundle. Moreover, $\tilde{\omega}$ is the nontrivial covering transformation of $\mathcal{P}$. Thus we obtain that $H / \tilde{\omega}$ is diffeomorphic to $\tilde{H}$.

Since the attaching region of $H$ is mapped by $\mathcal{P}$ to $D^{2} \times \partial D^{2} \subset \partial \tilde{H}_{1}$, we can regard $\tilde{H}_{1}$ and $\tilde{H}_{2}$ as 2-handles. Thus, $\left(D^{2} \times \Sigma_{g} \cup_{\varphi_{i}} \tilde{h}_{k_{i}}^{2}\right) / \bar{\omega}$ is obtained by attaching the 2-handles $\tilde{H}_{1}$ and $\tilde{H}_{2}$ to $D^{2} \times S^{2}$. To prove the statement, we look at the attaching maps of $\tilde{H}_{1}$ and $\tilde{H}_{2}$.

Take an identification $v c_{k_{i}} \cong J \times S^{1}$ as in Step 2 of the construction of $\omega$. The attaching map $\varphi_{k_{i}}$ of the 2-handle $h_{k_{i}}^{2}$ satisfies $\varphi_{k_{i}}\left(w_{1}, w_{2}\right)=\left(\varepsilon_{2} w_{2} w_{1}, w_{1}\right)$. Since the manifold $H$ is obtained by eliminating the corner of $\tilde{h}_{k_{i}}^{2}$, the attaching map of $H_{1}$ is described as

$$
\begin{aligned}
\Phi: \partial H_{1} \supset D^{2} \times \partial D^{2} & \longrightarrow J \times S^{1} \\
\psi & ש \\
\left(w_{1}, w_{2}\right) & \longmapsto\left(\varepsilon_{2} w_{2}^{2} w_{1}, w_{2}\right)
\end{aligned}
$$

For an element $\left(z_{1}, z_{2}\right) \in J \times S^{1}$, the image $\bar{\omega}\left(z_{1}, z_{2}\right)$ is equal to $\left(z_{1},-z_{2}\right)$. Thus, the manifold $J \times S^{1} / \bar{\omega}$ is diffeomorphic to $J \times S^{1}$ and the quotient map $/ \bar{\omega}: J \times S^{1} \rightarrow J \times S^{1} / \bar{\omega} \cong J \times S^{1}$ satisfies the equality $/ \bar{\omega}\left(z_{1}, z_{2}\right)=\left(z_{1}, z_{2}^{2}\right)$. The attaching map $\tilde{\Phi}: D^{2} \times \partial D^{2} \rightarrow J \times S^{1}$ of $\tilde{H}_{1}$ satisfies the equality $\tilde{\Phi}\left(w_{1}, w_{2}\right)=$ $\left(\varepsilon_{2} w_{2} w_{1}, w_{2}\right)$. It is easy to see that the attaching circle of $\tilde{H}_{1}$ is equal to the circle $c_{k_{i}} / \bar{\omega}$. Moreover, the framing of $\tilde{\Phi}$ is -1 relative to the framing along $\{*\} \times S^{2} \subset$ $\partial D^{2} \times S^{2}$.

By the definition of $\tilde{\Psi}$, the attaching circle of $\tilde{H}_{2}$ is equal to the belt circle of $\tilde{H}_{1}$, which is isotopic to the meridian of the attaching circle of $\tilde{H}_{1}$. In particular, there exists the natural framing of the attaching circle of $\tilde{H}_{2}$ that is represented by the meridian of the attaching circle of $\tilde{H}_{1}$ parallel to the attaching circle of $\tilde{H}_{2}$. Since the Euler number of $\tilde{H}$ as a $D^{2}$-bundle is equal to -2 , the framing of the attaching map $\tilde{\Psi}$ is equal to -2 relative to the natural framing. Therefore, we can draw a Kirby diagram of $\left(D^{2} \times \Sigma_{g} \cup_{\varphi_{i}} \tilde{h}_{k_{i}}^{2}\right) / \bar{\omega}$ as shown in Figure 7. It is obvious that this manifold is diffeomorphic to $D^{2} \times S^{2} \# 2 \overline{\mathbb{C P}^{2}}$, and this completes the proof of Lemma 4.4.


Figure 7 The ( -1 )-framed knot describes $\tilde{H}_{1}$; the ( -2 )-framed knot describes $\tilde{H}_{2}$
By applying the arguments in Lemma 4.3 and 4.4 successively, we can prove that $M_{h} \# s \overline{\mathbb{C P}^{2}} / \bar{\omega}$ is diffeomorphic to $D^{2} \times S^{2} \# 2 s \overline{\mathbb{C P}^{2}}$.
Lemma 4.5. $\left(\left(M_{h} \cup M_{r}\right) \# s \overline{\mathbb{C P}^{2}}\right) / \bar{\omega} \cong D^{2} \times S^{2} \# 2 s \overline{\mathbb{C P}^{2}}$.
Proof. We can decompose $R^{2}$ into two components as follows:

$$
R^{2}=\left[0, \frac{1}{2}\right] \times D^{2} \times D^{1} \cup\left[\frac{1}{2}, 1\right] \times D^{2} \times D^{1}
$$

Denote $\left[0, \frac{1}{2}\right] \times D^{2} \times D^{1}$ and $\left[\frac{1}{2}, 1\right] \times D^{2} \times D^{1}$ by $R_{1}$ and $R_{2}$, respectively. It is easy to see that $R_{i} / \bar{\omega}$ is diffeomorphic to $D^{4}$ and that $R_{i}$ is the double covering of $D^{4} \cong R_{i} / \bar{\omega}$ branched at the unknotted 2-disk.

The attaching region of $R_{1}$ is equal to $\left[0, \frac{1}{2}\right] \times \partial D^{2} \times D^{1}$. The quotient $\left[0, \frac{1}{2}\right] \times$ $\partial D^{2} \times D^{1} / \bar{\omega}$ is a 3-ball in $\partial D^{4} \cong \partial R_{1}$. Thus we obtain

$$
\begin{aligned}
\left(M_{h} \cup R_{1}\right) / \bar{\omega} & \cong M_{h} / \bar{\omega} \cup R_{1} / \bar{\omega} \\
& \cong D^{2} \times S^{2} \# 2 s \overline{\mathbb{C P}^{2}} \natural D^{4} \\
& \cong D^{2} \times S^{2} \# 2 s \overline{\mathbb{C P}^{2}} .
\end{aligned}
$$

The attaching region of $R_{2}$ is equal to $\left[\frac{1}{2}, 1\right] \times \partial D^{2} \times D^{1} \cup\left\{\frac{1}{2}, 1\right\} \times D^{2} \times D^{1}$. The quotient $\left[\frac{1}{2}, 1\right] \times \partial D^{2} \times D^{1} / \bar{\omega}$ is a 3-ball $D_{0}$ in $\partial D^{4} \cong \partial R_{2}$, and $\left\{\frac{1}{2}, 1\right\} \times D^{2} \times D^{1} / \bar{\omega}$ is a disjoint union of two 3-balls $D_{1} \amalg D_{2}$ in $\partial D^{4}$. Both of the intersections $D_{0} \cap D_{1}$ and $D_{0} \cap D_{2}$ are 2-disks in $\partial D_{0}$. Eventually, the attaching region of $R_{2}$ is a 3ball in $\partial D^{4}$. Thus, we can prove that $\left(M_{h} \cup R_{1} \cup R_{2}\right) / \bar{\omega}$ is diffeomorphic to $D^{2} \times S^{2} \# 2 s \overline{\mathbb{C P}^{2}}$. This completes the proof of Lemma 4.5.

It is easy to see that $D^{2} \times \Sigma_{g-1} / \bar{\omega}$ is (a) diffeomorphic to $D^{2} \times S^{2}$ and (b) attached to $\left(M_{h} \cup M_{r}\right) / \bar{\omega}$ such that the following diagram commutes:

$$
\begin{gathered}
\left(M_{h} \cup M_{r}\right) / \bar{\omega} \supset S^{1} \times S^{2} \longrightarrow \partial D^{2} \times S^{2} \subset D^{2} \times \Sigma_{g-1} / \bar{\omega} \\
\downarrow \\
S^{1} \longrightarrow \downarrow \\
\end{gathered}
$$

here the upper horizontal arrow in the diagram represents the attaching map, the lower horizontal arrow represents the identity map, and vertical arrows represent the projection onto the first component (in other words, the attaching map is a bundle map as a $S^{2}$-bundle over $S^{1}$ ). In particular, we obtain

$$
M \# s \overline{\mathbb{C P}^{2}} / \bar{\omega} \cong S \# 2 s \overline{\mathbb{C P}^{2}}
$$

It is obvious that the quotient map $/ \bar{\omega}: M \# s \overline{\mathbb{C P}^{2}} \rightarrow S \# 2 s \overline{\mathbb{C P}^{2}}$ is a double branched covering. This completes the proof of Theorem 1.1(i).

Proof of Theorem 1.1(ii). Let $F_{h} \subset M$ be a regular fiber in the higher side of $f$. It is easy to see that $F_{h}$ represents the same rational homology class of $M$ as that represented by $F$. Let $\omega: M \rightarrow M$ be the involution constructed in the proof of Theorem 1.1(i). If $f$ has no indefinite fold singularities, then (a) the 2-dimensional part of the fixed point set $M^{\omega}$ of the involution $\omega$ is an orientable surface and (b) the algebraic intersection number between this part and $F_{h}$ is equal to $2 g+2$ and, especially, is nonzero. Then part (ii) of the theorem would hold.

So suppose that $f$ has indefinite fold singularities. We first prove that $F_{h}$ represents a nontrivial rational homology class of $M_{h} \cup M_{r}$. To prove this, we construct an element $\mathcal{S}$ in the group $H_{2}\left(M_{h} \cup M_{r}, \partial\left(M_{h} \cup M_{r}\right) ; \mathbb{Q}\right)$ such that $\left[F_{h}\right] \cdot \mathcal{S} \neq 0$. Let $\tilde{S}$ be the intersection between the 2-dimensional part of $M^{\omega}$ and $M_{h}$, which is the union of compact oriented surfaces. We use the notation $H_{1}, c, v_{1}, v_{2}$, and $R^{2}$ as in the proof of Theorem 1.1(i).

Case 1. If the map $H_{1}$ preserves the orientation of $c$ and the points $v_{1}$ and $v_{2}$, then $R^{2}$ is untwisted and $\tilde{S} \cap R^{2}=\left\{(s, \pm 1,0) \in R^{2} \mid s \in[0,1]\right\}$ is a disjoint union of two circles. We define four annuli $A_{1}, A_{2}, A_{3}$, and $A_{4}$ as follows:

$$
\begin{aligned}
& A_{1}=\left\{(s, t, 0) \in R^{2} \mid s \in[0,1], t \in[0,1]\right\}, \\
& A_{2}=\left\{(s, t, 0) \in R^{2} \mid s \in[0,1], t \in[-1,0]\right\}, \\
& A_{3}=\left\{(s, 0, t) \in R^{2} \mid s \in[0,1], t \in[0,1]\right\}, \\
& A_{4}=\left\{(s, 0, t) \in R^{2} \mid s \in[0,1], t \in[-1,0]\right\} .
\end{aligned}
$$

The union $S=\tilde{S} \cup A_{1} \cup A_{2} \cup A_{3} \cup A_{4}$ represents the homology class of the pair $\left(M_{h} \cup M_{r}, \partial\left(M_{h} \cup M_{r}\right)\right)$ after giving suitable orientations to the annuli $A_{1}, A_{2}, A_{3}$, and $A_{4}$. We denote this class by $\mathcal{S}$. It is easy to verify that the intersection number $\mathcal{S} \cdot\left[F_{h}\right]$ is nonzero and equal to $2 g+2$.

Case 2. If the map $H_{1}$ preserves the orientation of $c$ but does not preserve the points $v_{1}$ and $v_{2}$, then $R^{2}$ is untwisted and $\tilde{S} \cap R^{2}=\{(s, \pm \exp (-\pi \sqrt{-1} s), 0) \in$ $\left.R^{2} \mid s \in[0,1]\right\}$ is a circle. We define three annuli $A_{5}, A_{6}$, and $A_{7}$ as follows:

$$
\begin{aligned}
A_{5}= & \left\{(s, t \exp (-\pi \sqrt{-1} s), 0) \in R^{2} \mid s \in[0,1], t \in[0,1]\right\} \\
& \cup\left\{(s,-t \exp (-\pi \sqrt{-1} s), 0) \in R^{2} \mid s \in[0,1], t \in[0,1]\right\}, \\
A_{6}= & \left\{(s, 0, t) \in R^{2} \mid s \in[0,1], t \in[0,1]\right\}, \\
A_{7}= & \left\{(s, 0, t) \in R^{2} \mid s \in[0,1], t \in[-1,0]\right\} .
\end{aligned}
$$

The union $S=\tilde{S} \cup A_{5} \cup A_{6} \cup A_{7}$ represents the homology class of the pair $\left(M_{h} \cup M_{r}, \partial\left(M_{h} \cup M_{r}\right)\right)$ after giving suitable orientations to the annuli $A_{5}, A_{6}$, and $A_{7}$. We denote this class by $\mathcal{S}$. It is easy to verify that the intersection number $\mathcal{S} \cdot\left[F_{h}\right]$ is nonzero and equal to $2 g+2$.

Case 3. If the map $H_{1}$ does not preserve the orientation of $c$ but does preserve the points $v_{1}$ and $v_{2}$, then $R^{2}$ is twisted and $\tilde{S} \cap R^{2}=\left\{(s, \pm 1,0) \in R^{2} \mid\right.$ $s \in[0,1]\}$ is a disjoint union of two circles. We define three annuli $A_{8}, A_{9}$, and $A_{10}$ as follows:

$$
\begin{aligned}
A_{8}= & \left\{(s, t, 0) \in R^{2} \mid s \in[0,1], t \in[0,1]\right\}, \\
A_{9}= & \left\{(s, t, 0) \in R^{2} \mid s \in[0,1], t \in[-1,0]\right\}, \\
A_{10}= & \left\{(s, 0, t) \in R^{2} \mid s \in[0,1], t \in[0,1]\right\} \\
& \cup\left\{(s, 0, t) \in R^{2} \mid s \in[0,1], t \in[-1,0]\right\} .
\end{aligned}
$$

The union $S=\tilde{S} \cup A_{8} \cup A_{9} \cup A_{10}$ represents the homology class of the pair $\left(M_{h} \cup M_{r}, \partial\left(M_{h} \cup M_{r}\right)\right)$ after giving suitable orientations to the annuli $A_{8}, A_{9}$, and $A_{10}$. We denote this class by $\mathcal{S}$. It is easy to verify that the intersection number $\mathcal{S} \cdot\left[F_{h}\right]$ is nonzero and equal to $2 g+2$.

Case 4. If the map $H_{1}$ preserves neither the orientation of $c$ nor the points $v_{1}$ and $v_{2}$, then $R^{2}$ is twisted and $\tilde{S} \cap R^{2}=\left\{(s, \pm \exp (-\pi \sqrt{-1} s), 0) \in R^{2} \mid\right.$ $s \in[0,1]\}$ is a circle. We define two annuli $A_{11}$ and $A_{12}$ as follows:

$$
\begin{aligned}
A_{11}= & \left\{(s, t \exp (-\pi \sqrt{-1} s), 0) \in R^{2} \mid s \in[0,1], t \in[0,1]\right\} \\
& \cup\left\{(s,-t \exp (-\pi \sqrt{-1} s), 0) \in R^{2} \mid s \in[0,1], t \in[0,1]\right\}, \\
A_{12}= & \left\{(s, 0, t) \in R^{2} \mid s \in[0,1], t \in[0,1]\right\} \\
& \cup\left\{(s, 0, t) \in R^{2} \mid s \in[0,1], t \in[-1,0]\right\} .
\end{aligned}
$$

The union $S=\tilde{S} \cup A_{11} \cup A_{12}$ represents the homology class of the pair $\left(M_{h} \cup M_{r}, \partial\left(M_{h} \cup M_{r}\right)\right)$ after giving suitable orientations to the annuli $A_{11}$ and $A_{12}$. We denote this class by $\mathcal{S}$. It is easy to verify that the intersection number $\mathcal{S} \cdot\left[F_{h}\right]$ is nonzero and equal to $2 g+2$.

Eventually, we can construct the element $\mathcal{S}$ satisfying the desired condition in any case. We have therefore established that $\left[F_{h}\right]$ is nontrivial in $H_{2}\left(M_{h} \cup M_{r} ; \mathbb{Q}\right)$.

We can now complete the proof of Theorem 1.1(ii). There exists the following exact sequence, which is the part of the Meyer-Vietoris exact sequence:
$H_{2}\left(S^{1} \times \Sigma_{g-1} ; \mathbb{Q}\right) \xrightarrow{i_{1} \oplus i_{2}} H_{2}\left(M_{h} \cup M_{r} ; \mathbb{Q}\right) \oplus H_{2}\left(D^{2} \times \Sigma_{g-1} ; \mathbb{Q}\right) \xrightarrow{j_{1}-j_{2}} H_{2}(M ; \mathbb{Q})$.
Suppose that $\left(j_{1}-j_{2}\right)\left(\left[F_{h}\right], 0\right)=\left[F_{h}\right]=0$. Then there exists an element $\mu \in$ $H_{2}\left(S^{1} \times \Sigma_{g-1} ; \mathbb{Q}\right)$ that satisfies the equality $\left(i_{1} \oplus i_{2}\right)(\mu)=\left(\left[F_{h}\right], 0\right)$. By a Künneth formula, we obtain the isomorphism

$$
H_{2}\left(S^{1} \times \Sigma_{g-1} ; \mathbb{Q}\right) \cong H_{2}\left(\Sigma_{g-1} ; \mathbb{Q}\right) \oplus\left(H_{1}\left(\Sigma_{g-1} ; \mathbb{Q}\right) \otimes H_{1}\left(S^{1} ; \mathbb{Q}\right)\right)
$$

Since the map $i_{2}: H_{2}\left(S^{1} \times \Sigma_{g-1} ; \mathbb{Q}\right) \rightarrow H_{2}\left(D^{2} \times \Sigma_{g-1} ; \mathbb{Q}\right) \cong H_{2}\left(\Sigma_{g-1} ; \mathbb{Q}\right)$ can be viewed as the projection onto the first component via the preceding isomorphism, it follows that the element $\mu$ is contained in $H_{1}\left(\Sigma_{g-1} ; \mathbb{Q}\right) \otimes H_{1}\left(S^{1} ; \mathbb{Q}\right)$. The involution $\omega$ acts on the component $H_{2}\left(\Sigma_{g-1} ; \mathbb{Q}\right)$ trivially and on the component $H_{1}\left(\Sigma_{g-1} ; \mathbb{Q}\right) \otimes H_{1}\left(S^{1} ; \mathbb{Q}\right)$ via multiplication by -1 . Thus we obtain

$$
\omega_{*}(\mu)=-\mu
$$

The composition $i_{1} \circ \omega_{*}$ is equal to $\omega_{*} \circ i_{1}$ because $i_{1}$ is induced by the inclusion map. Therefore,

$$
\begin{aligned}
{\left[F_{h}\right] } & =\omega_{*}\left(\left[F_{h}\right]\right) \\
& =\omega_{*} \circ i_{1}(\mu) \\
& =i_{1} \circ \omega_{*}(\mu) \\
& =i_{1} \circ(-\mu)=-\left[F_{h}\right] .
\end{aligned}
$$

This means that $2\left[F_{h}\right]=0$ in $H_{2}\left(M_{h} \cup M_{r} ; \mathbb{Q}\right)$, which contradicts $\left[F_{h}\right] \neq 0$. Thus we obtain $\left[F_{h}\right] \neq 0$ in $H_{2}(M ; \mathbb{Q})$, and this completes the proof of part (ii).

Remark 4.6. By an argument similar to the one used in the proof of Theorem 1.1, we can generalize that theorem to directed BLFs as follows.

Theorem 4.7. Let $f: M \rightarrow S^{2}$ be a hyperelliptic directed BLF. Suppose that the genus of every connected component of fiber of $f$ is greater than or equal to 2.
(i) Let $s_{1}$ be the number of Lefschetz singularities of $f$ whose vanishing cycles are separating. We define

$$
s_{2}=\max \left\{s \in \mathbb{N} \mid f^{-1}(x) \text { has } s \text { components, } x \in S^{2}\right\}
$$

Then there exists an involution

$$
\omega: M \rightarrow M
$$

such that the fixed point set of $\omega$ is the union of (possibly nonorientable) surfaces and $s_{1}$ isolated points. Moreover, the involution $\omega$ can be extended to an involution

$$
\bar{\omega}: M \# s_{1} \overline{\mathbb{C P}^{2}} \rightarrow M \# s_{1} \overline{\mathbb{C P}^{2}}
$$

such that $M \# s_{1} \overline{\mathbb{C P}^{2}} / \bar{\omega}$ is diffeomorphic to $\# s_{2} S \# 2 s_{1} \overline{\mathbb{C P}^{2}}$; here $S$ is an $S^{2}$ bundle over $S^{2}$, and the quotient map

$$
/ \bar{\omega}: M \# s_{1} \overline{\mathbb{C P}^{2}} \rightarrow M \# s_{1} \overline{\mathbb{C P}^{2}} / \bar{\omega} \cong \# s_{2} S \# 2 s_{1} \overline{\mathbb{C P}^{2}}
$$

is the double branched covering.
(ii) Let $F \in M$ be a regular fiber of $f$. Then $F$ represents a nontrivial rational homology class of $M$.

We leave the details of the proof of Theorem 4.7 to the reader.
Acknowledgments. The authors would like to express their gratitude to Hisaaki Endo for his continuous support during the course of this work and also to Nariya Kawazumi for his helpful comments on an earlier draft of the paper.

## References

[1] D. Auroux, S. K. Donaldson, and L. Katzarkov, Singular Lefschetz pencils, Geom. Topol. 9 (2005), 1043-1114.
[2] R. İ. Baykur, Existence of broken Lefschetz fibrations, Int. Math. Res. Not. IMRN, 2008.
[3] ——,Topology of broken Lefschetz fibrations and near-symplectic four-manifolds, Pacific J. Math. 240 (2009), 201-230.
[4] -, Broken Lefschetz fibrations and smooth structures on 4-manifolds, preprint, arXiv:math.GT/1205.5439.
[5] R. İ. Baykur and S. Kamada, Classification of broken Lefschetz fibrations with small fiber genera, preprint, arXiv:math.GT/1010.5814.
[6] J. S. Birman and H. M. Hilden, On the mapping class groups of closed surfaces as covering spaces, Advances in the theory of Riemann surfaces (Stony Brook, 1969), Ann. of Math. Stud., 66, pp. 85-115, Princeton Univ. Press, Princeton, NJ, 1971.
[7] B. Farb and D. Margalit, A primer on mapping class groups, Princeton Math. Ser., 49, Princeton Univ. Press, Princeton, NJ, 2012.
[8] T. Fuller, Hyperelliptic Lefschetz fibrations and branched covering spaces, Pacific J. Math. 196 (2000), 369-393.
[9] R. E. Gompf and A. I. Stipsicz, 4-Manifolds and Kirby calculus, Grad. Stud. Math., 20, Amer. Math. Soc., Providence, RI, 1999.
[10] Y. Z. Gurtas, On the slope of hyperelliptic Lefschetz fibrations and the number of separating vanishing cycles, preprint, arXiv:math.SG/0810.1088.
[11] K. Hayano, On genus-1 simplified broken Lefschetz fibrations, Algebr. Geom. Topol. 11 (2011), 1267-1322.
[12] K. Hayano, Modification rule of monodromies in $R_{2}$-move, preprint, arXiv:math.GT/1203.4299.
[13] K. Hayano and M. Sato, A signature formula for hyperelliptic broken Lefschetz fibrations, preprint, arXiv:math.GT/1110.5286.
[14] A. Kas, On the handlebody decomposition associated to a Lefschetz fibration, Pacific J. Math. 89 (1980), 89-104.
[15] Y. Lekili, Wrinkled fibrations on near-symplectic manifolds, Geom. Topol. 13 (2009), 277-318.
[16] Y. Matsumoto, Lefschetz fibrations of genus two-A topological approach, Topology and Teichmüller spaces (Katinkulta, 1995), pp. 123-148, World Science, River Edge, NJ, 1996.
[17] B. Siebert and G. Tian, On hyperelliptic $C^{\infty}$ Lefschetz fibrations of four-manifolds, Commun. Contemp. Math. 1 (1999), 255-280.
[18] J. D. Williams, The h-principle for broken Lefschetz fibrations, Geom. Topol. 14 (2010), 1015-1063.
K. Hayano

Department of Mathematics
Graduate School of Science
Osaka University
Toyonaka
Osaka 560-0043
Japan
k-hayano@cr.math.sci.osaka-u.ac.jp
M. Sato

Department of Mathematics Education Faculty of Education
Gifu University
1-1 Yanagido, Gifu
Gifu 501-1193
Japan
msato@gifu-u.ac.jp


[^0]:    Received January 5, 2012. Revision received November 1, 2012.
    The first author was supported by Yoshida Scholarship "Master21" while this work was being carried out. The first author was supported by JSPS Research Fellowships for Young Scientists (24-993). The second author was supported by JSPS Research Fellowships for Young Scientists (22-2364).

