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Characteristic Polynomials, η-Complexes,
and Freeness of Tame Arrangements

Takuro Abe

1. Introduction

We use notation from Section 2 to state the main result of this paper. Let A be a
central �-arrangement over an arbitrary field K. Fix H0 ∈ A , and let (A′′,m) be
the Ziegler restriction of A onto H0. Let dA be the deconing of A with respect to
H0. Let

χ0(A , t) = χ(dA , t) =
�−1∑
i=0

(−1)�−1−ib�−1−i t i

be a reduced characteristic polynomial of A , and let

χ(A′′,m, t) =
�−1∑
i=0

(−1)�−1−iσ�−1−i t i

be a characteristic polynomial of (A′′,m). Note that χ0(A , t) is defined combina-
torially and χ(A′′,m) algebraically. It is well known that b0 = σ0 = 1 and b1 =
σ1 = |A| − 1 = |m| (use Theorem 2.3, for example). The inequality b2 ≥ σ2 has
recently been proved, and the equality b2 = σ2 is closely related to the freeness
of A [2, Thm. 5.1]. This is a generalization of Yoshinaga’s freeness criterion for
3-arrangements [13,Thm. 3.2]. Also, it is known that bi = σi for i = 0,1, . . . , �−1
when A is a free arrangement (see the proof of Corollary 1.2). Hence it is natural
to ask whether bi ≥ σi holds for i ≥ 3 and whether or not the equality is related
to freeness. In fact, we do not know whether σi is nonnegative for i ≥ 3. In this
paper, we assume tameness and give the following answer.

Theorem 1.1. Let A be a central �-arrangement. FixH0 ∈ A and let (A′′,m) be
the Ziegler restriction of A with respect to H0. If A and (A′′,m) are both tame,
then bi ≥ σi ≥ 0 (i = 0,1, . . . , �− 1).

Theorem 1.1 gives a lower bound of |χ0(A , −1)| in terms of χ(A′′,m, −1); in par-
ticular, |χ0(A , −1)| ≥ |χ(A′′,m, −1)|. Note that |χ0(A , −1)| is the number of
chambers when K = R. In the category of tame arrangements, then, we say that
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A is a minimal chamber arrangement (MCA for short) if (−1)�−1χ0(A , −1) =
(−1)�−1χ(A′′,m, −1).When � = 3, we can always define an MCA byYoshinaga’s
criterion. Also, by that criterion, a 3-arrangement A is a free arrangement if and
only if it is an MCA. As a corollary of Theorem 1.1, we can generalize these char-
acterizations in terms of an MCA as follows.

Corollary 1.2. With the same assumptions and notation as in Theorem 1.1,

(−1)�−1χ0(A , −1) ≥ (−1)�−1χ(A′′,m, −1) ≥ 0.

Moreover, A is free if and only if A is an MCA and (A′′,m) is free.

By Corollary 1.2, if we fix a free multiarrangement (A′′,m) and consider

Ft(A′′,m)
:= {A : a tame �-arrangement | the Ziegler restriction of A is (A′′,m)},

then A ∈Ft(A′′,m) is free if and only if A is an MCA.Also, for A ∈Ft(A′′,m), the
inequalities (−1)�−1χ0(A , −1) ≥ (−1)�−1χ(A′′,m, −1) ≥ 0 give the lower bound
on the number of chambers when K = R as well as on the total Betti number of
K� \ ⋃

H∈dAH when K = C.

For the proof of Theorem 1.1 and Corollary 1.2, we study the multiversion of
the η-complex. The η-complex was originally introduced in [10] and then devel-
oped in [7] and [12] for simple arrangements. In the proofs, we also study the
properties of several η-complexes.

The rest of the paper proceeds as follows. In Section 2 we introduce several
definitions and results used in the sequel. In Section 3 we develop several results
for the proof, mainly studying properties of η-complexes. Finally, in Section 4 we
prove Theorem 1.1 and Corollary 1.2.

Acknowledgments. We thank Masahiko Yoshinaga for several comments on
the draft of this article. We are grateful to the referee for a careful reading of the
manuscript and for many helpful suggestions and comments.

2. Preliminaries

In this section we introduce several definitions and results that will be needed in
the rest of the paper. We use [6] as a general reference.

Let K be a field and letV = K�. Let A be an arrangement of affine hyperplanes
inV (i.e., a finite set of affine hyperplanes in V ).An �-arrangement is the arrange-
ment in an �-dimensional vector space. The intersection lattice L(A) is a set of
affine subspaces consisting of

⋂
H∈BH for B ⊂ A. Let L(A) be a poset with

the reverse inclusion order and the unique minimum element V. Define Li(A) =
{X ∈L(A) | codimV X = i}. The Möbius function µ : L(A) → Z is defined by

µ(X) =
{

1 if X = V,

−∑
V⊃Y�X µ(Y ) if X �= V.
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Then a characteristic polynomial χ(A , t) is defined by

χ(A , t) =
∑

X∈L(A)
µ(X)t dimX.

The arrangement A is central if every H ∈ A contains the origin 0 ∈ V. Let
αH ∈ V ∗ be the defining linear form of H ∈ A. If A is central, then the defini-
tion of the Möbius function µ implies that χ(A , t) is divisible by t − 1. Define a
reduced characteristic polynomial χ0(A , t) by

χ0(A , t) := χ(A , t)/(t − 1).

A central �-arrangement A is essential if
⋂
H∈AH = {0}. When A is a direct

product of an essential arrangement B and an empty arrangement � (i.e., A �
B×�), we say that B is an essentialization of A. For the fixed hyperplaneH0 ∈ A ,
the deconing dA of A with respect toH0 is defined as A ∩ {αH0 = 1}, which is an
(�−1)-affine arrangement inH0. It is well known and easy to check thatχ0(A , t) =
χ(dA , t). When V = R�, the set of connected components of V \ ⋃

H∈A H is
denoted by C(A) and called the set of chambers.

Remark 2.1. It is well known that π(A , t) := (−t)�χ(A , −t−1) is equal
to the topological Poincaré polynomial of V \ ⋃

H∈AH when V = C�. Also,
(−1)�χ(A , −1) = |C(A)| and |C(dA)| = (−1)�−1χ0(A , −1) when V = R�.

From now on we assume that A is a central �-arrangement. Let S := Sym∗(V ∗) =
K[x1, . . . , x�] be a coordinate ring of V. For the module of S-derivations Der S :=⊕�

i=1 S · ∂xi , a module of logarithmic vector fields of A is defined by

D(A) := {θ ∈ Der S | θ(αH )∈ SαH ∀H ∈ A}.
In general, D(A) is a reflexive module. When D(A) is a free S-module with
homogeneous basis θ1, . . . , θ� of degrees d1, . . . , d�, we say that A is free with
exponents exp(A) = (d1, . . . , d�).

A multiplicity is a map m : A → Z≥0, and we call a pair (A ,m) a multi-
arrangement. When m ≡ 1, the multiarrangement (A ,1) is equal to the arrange-
ment A , which is said to be a simple arrangement. A module of logarithmic vector
fields of (A ,m) is defined by

D(A ,m) := {θ ∈ Der S | θ(αH )∈ S · αm(H )H ∀H ∈ A}.
The freeness and exponents of a multiarrangement can be defined in the same man-
ner as for a simple arrangement. For X ∈L(A), define the localization (AX,mX)
of (A ,m) at X by

AX := {H ∈ A | X ⊂ H },
mX := m|AX

.

Multiarrangements appear naturally when we restrict a central arrangement onto
some hyperplane H0 ∈ A. For a central arrangement A and H0 ∈ A , the Ziegler
restriction (A′′,m) with respect to H0 is defined by
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A′′ := {H ∩H0 | H ∈ A \ {H0}},
m(H ∩H0) := |{K ∈ A \ {H0} | K ∩H0 = H ∩H0}|.

For the set of Kähler differential p-forms

 
p

S :=
⊕

1≤i1<···<ip≤�
S dxi1 ∧ · · · ∧ dxip ,

a module of logarithmic differential p-forms of (A ,m) is defined by

 p(A ,m) :=
{
ω ∈ 1

Q(A ,m)
 
p

S

∣∣∣∣ Q(A ,m)

α
m(H )
H

dαH ∧ ω ∈ p+1
S ∀H ∈ A

}
,

where Q(A ,m) := ∏
H∈A α

m(H )
H . In [1], a characteristic polynomial of a multi-

arrangement is defined algebraically by

χ(A ,m, t) := lim
x→1

�∑
p=0

Poin( p(A ,m), x)(t(1 − x)− 1)p,

where Poin(N, x) := ∑
k∈Z dimKNkx

k is the Poincaré series of an S-graded mod-
ule N = ⊕

k∈ZNk.

Remark 2.2. The definition of χ(A ,m, t) just given is different from the origi-
nal one in [1]. The original definition was

χ(A ,m, t) := (−1)� lim
x→1

�∑
p=0

Poin(Dp(A ,m), x)(t(x − 1)− 1)p,

whereDp(A ,m) is an S-dual module of p(A ,m). The equivalence of these two
definitions was proved in Remark 2.3 of [2]. So we use the definition by differen-
tial forms in this article.

Related to these characteristic polynomials, the following local-to-global formula
is useful for computing each coefficient.

Theorem 2.3 [1, Thm. 3.3]. Put

χ(A ,m, t) =
�∑
i=0

(−1)�−iσ�−i t i,

χ(AX,mX, t) = t �−k
k∑
i=0

(−1)k−iσXk−i t
i (X ∈Lk(A)).

Then σk = ∑
X∈Lk(A) σ

X
k .

A multiarrangement (A ,m) is tame if

pdS  
p(A ,m) ≤ p (p = 0,1, . . . , �),

where pdS  p(A ,m) is the projective dimension of the S-module  p(A ,m). For
example, free arrangements are tame because  p(A ,m) � ∧p

 1(A ,m) is free
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when A is free. Also, the tameness of generic arrangements was proved in [8].
Tame arrangements were introduced in [7] and named in [12]; they now play an
important role in several research areas of arrangements (see, e.g., [3; 4; 9]).

For a central (� − 1)-arrangement A′′ and a multiplicity m on A′′, assume that
(A′′,m) is tame. Let Ft(A′′,m) be the set of central tame �-arrangements whose
Ziegler restrictions are equal to (A′′,m). Assume that

(−1)�−1χ0(A , −1) ≥ (−1)�−1χ(A′′,m, −1) ≥ 0

for all A ∈ Ft(A′′,m). Then we say that A ∈ Ft(A′′,m) is a minimal chamber
arrangement (MCA) if

(−1)�−1χ0(A , −1) = min
B∈Ft(A′′,m)

(−1)�−1χ0(B, −1) = (−1)�−1χ(A′′,m, −1).

For D(A ,m) � θ and  p(A ,m) � ω = ∑
gi1,...,ip dxi1 ∧ · · · ∧ dxip , define a

contraction

〈θ,ω〉 :=
∑
(−1)j−1θ(xij )gi1,...,ip dxi1 ∧ · · · ∧ dxij−1 ∧ dxij+1 ∧ · · · ∧ dxip .

If η is a homogeneous p-form, then clearly

〈θ, η ∧ ω〉 = 〈θ, η〉 ∧ ω + (−1)pη ∧ 〈θ,ω〉.
The following result is a generalized Yoshinaga’s freeness criterion.

Theorem 2.4 [2, Thm. 5.1]. Let A be an arrangement and (A′′,m) the Ziegler
restriction. Then (a) b2 ≥ σ2 ≥ 0 and (b) A is free if and only if (A′′,m) is free
and b2 = σ2 (with notation as in Section 1).

The combinatorial restriction map (introduced in [2, Sec. 4]) is crucial for the
proof of Theorem 1.1.

Proposition 2.5. Let A be a central �-arrangement, let H0 ∈ A , and let
(A′′,m) be the Ziegler restriction. Then there is a well-defined map ρ : L(dA) →
L(A′′) that keeps inclusion orders and codimensions of each flat, so ρ induces
ρi : Li(dA) → Li(A′′). Also, ρ is compatible with a localization.

3. Several Complexes and Their Properties

Let α := αH0 ∈ S = K[x1, . . . , x�] and S ′ = S/αH0S. By an appropriate change of
coordinates, we may assume that α = x� and S ′ = K[x1, . . . , x�−1]. In this section
we introduce several results needed to prove Theorem 1.1.

Remark 3.1. In this section we do not use the tameness assumption.

Lemma 3.2. The S-morphism∧ dα

α
:  p(A)→  p(A) ∧ dα

α
,

ω �→ ω ∧ dα
α

,

is a splitting surjection. In particular, pdS  p(A) ≥ pdS
(
 p(A) ∧ dα

α

)
.
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Proof. It suffices to show that the morphism
∧

dα
α

has a section. By [6, Prop. 4.86],

ω ∧ dα
α

�→ (−1)p
〈
θE ,ω ∧ dα

α

〉

is the section of
∧

dα
α

, where θE = ∑�
i=1 xi∂xi is the Euler derivation. Hence

 p(A)∧ dα
α

is a direct summand of p(A). From this the inequality pdS  p(A) ≥
pdS

(
 p(A) ∧ dα

α

)
follows immediately.

Remark 3.3. By [6, Prop. 4.79],

ω ∧ dα
α

∈ p+1(A)

for ω ∈ p(A). Also, it is known that the complex
(
 ∗(A), ∧

dα
α

)
is exact (see

e.g. [6, Prop. 4.86]). Hence p(A) splits, via the section described in Lemma 3.2,
into

 p(A) �
(
 p−1(A) ∧ dα

α

)
⊕

(
 p(A) ∧ dα

α

)
.

The isomorphism is given by(
 p−1(A)∧ dα

α

)
⊕

(
 p(A)∧ dα

α

)
� (ω,ω ′) �→ ω+ (−1)p〈θE ,ω〉 ∈ p(A).

Let resp :  p(A) →  p(A′′,m) be the residue map defined by

 p(A)� σ ∧ dα
α

+ δ �→ δ|H0 ∈ p(A′′,m),

where σ and δ are (respectively) the (p − 1)-forms and p-forms generated by
dx1, . . . , dx�−1 (see [14] or [13, Thm. 2.5]). Note that the residue map factors
through

 p(A)
∧
(dα/α)−−−−−→  p(A) ∧ dα

α

rp−→  p(A′′,m).

The second arrow, rp :  p(A) ∧ dα
α

→  p(A′′,m), is also denoted by resp. Let
Mp := Im(res)p ⊂  p(A′′,m) denote the image of the residue map and letCp :=
coker(res)p denote its cokernel; then

0 → Mp →  p(A′′,m) → Cp → 0.

We shall use res instead of resp when the index p is obvious.

Lemma 3.4. Let

 p(A) ∧ dα
α

·α−→  p(A) ∧ dα
α

denote the S-morphism defined by

 p(A) ∧ dα
α

�ω �→ αω ∈ p(A) ∧ dα
α
.

Then the sequence
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0 →  p(A) ∧ dα
α

·α−→  p(A) ∧ dα
α

resp−−→ Mp → 0

is exact. In particular, pdS ′ Mp ≤ pdS  p(A).
Proof. Let ω = δ ∧ dα

α
+ σ ∈  p(A) such that σ and δ are generated by

dx1, . . . , dx�−1. If ω ∧ dα
α

= αω ′ ∧ dα
α

for ω ′ ∈  p(A), then it is clear that
res

(
ω ∧ dα

α

) = σ|H0 = 0. Assume that res
(
ω ∧ dα

α

) = σ|H0 = 0. Because σ
has no poles along α = 0, we can write σ ∧ dα

α
= ασ ′ ∧ dα

α
∈  p(A) ∧ dα

α

for some p-form σ ′ that is generated over dx1, . . . , dx�−1 and has no poles along
α = 0. Now apply the S-linear section in Lemma 3.2 to both sides and obtain
ω ′ := α〈θE , σ ′ 〉 ∧ dα

α
+ (−1)pασ ′ ∈ p(A). By our choice of σ ′, it follows that

ω ′
α

∈ p(A). So ω ′
α

∧ dα
α

∈ p(A) ∧ dα
α

and α
(
ω ′
α

∧ dα
α

) = (−1)pω ∧ dα
α

, which
shows the exactness. Let us now prove the inequality. Since the action of S to
Mp factors through S ′ = S/αS, it follows that depthS Mp = depthS ′ Mp. Hence
the Auslander–Buchsbaum formula shows that pdS ′ Mp + 1 = pdS Mp. Also, the
long exact sequence of Ext functions shows that pdS

(
 p(A)∧ dα

α

)+1 ≥ pdS Mp.

Combining this with Lemma 3.2, we have pdS ′ Mp ≤ pdS  p(A).
Next consider the η-complex (for details, see [6, Def. 4.87]). It is the complex(
 ∗(A), ∧

η
)
, whereη ∈ 1

S is some generic1-form in the sense of Proposition 3.6
(to follow) and where the map  p(A) →  p+1(A) is given by ω �→ ω ∧ η. We
can define the cohomology group Hp( ∗(A)) of this complex. Let η̄ := η|H0 .

We have the following lemma.

Lemma 3.5. Let f̄ denote the image of f ∈ S by the canonical surjection S →
S ′. Then the following statements hold.

(i) Let η = ∑�
i=1 fi dxi ∈  1

S and ω = δ ∧ dx�/x� + σ ∈  p(A) such that σ
and δ are generated over dx1, . . . , dx�−1. Then

res(ω ∧ η) = res(ω) ∧ res(η);
that is, the wedge product with

∧
η and the residue map are commutative.

(ii) res(η) = η̄ ∈ 1
S ′ .

Proof. (i) Note that

res(η) =
�−1∑
i=1

f̄i dxi and res(ω) = σ̄.

Hence

res(ω ∧ η) = res

(
δ ∧ dx�

x�
∧

( �−1∑
i=1

fi dxi

)
+ σ ∧

( �∑
i=1

fi dxi

))

= σ̄ ∧
( �−1∑
i=1

f̄i dxi

)

= res(ω) ∧ res(η),

which completes the proof. Part (ii) is a direct consequence of part (i).
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Since η̄ ∈ 1
S ′ , it follows that

ω̄ ∧ η̄ ∈ p+1(A′′,m) (ω̄ ∈ p(A′′,m)).

In other words, for p = 0,1, . . . , �− 1, we have the maps∧
η̄ :  p(A′′,m)→  p+1(A′′,m),

ω̄ �→ ω̄ ∧ η̄.
Then, by Remark 3.3 and Lemma 3.4, we have the complexes(

M ∗,
∧
η̄
)

: 0 → M 0
∧
η̄−−→ M1

∧
η̄−−→ · · ·

∧
η̄−−→ M� → 0,(

 ∗(A′′,m),
∧
η̄
)

: 0 →  0(A′′,m)
∧
η̄−−→  1(A′′,m)

∧
η̄−−→ · · ·

∧
η̄−−→  �−1(A′′,m) → 0.

Moreover, for the inclusion ip : Mp →  p(A′′,m), we have ip(resp(ω)) ∧ η̄ =
ip+1(resp(ω) ∧ η̄) for ω ∈  p(A). Hence the complexes

(
M ∗,

∧
η̄
)

and(
 ∗(A′′,m),

∧
η̄
)

induce the complex(
C∗,

∧
η̄
)

: 0 → C 0
∧
η̄−−→ C1

∧
η̄−−→ · · ·

∧
η̄−−→ C�−1 → 0.

Let Hp(M ∗), Hp( ∗(A′′,m)), and Hp(C∗) denote the respective cohomology
groups of these complexes.

Proposition 3.6. For an integer d ≥ 0, there exists a generic 1-form η ∈  1
S

of homogeneous degree d such that all cohomology groups of both complexes,(
 ∗(A), ∧

η
)

and
(
 ∗(A′′,m),

∧
η̄
)
, are finite-dimensional over K.

Proof. Apply the same proof as that for [6, Prop. 4.91]. Observe that we may
assume K to be algebraically closed if necessary because L(A) and χ(A′′,m, t)
are stable under field extension (see [10, Sec. 2] and the proof of [1, Thm. 2.5]).

Definition 3.7. Let ηd ∈  1
S denote a generic 1-form with properties as in

Proposition 3.6 of homogeneous degree d. Also, the complexes
(
 ∗(A), ∧ ηd

)
,(

M ∗,
∧
η̄d

)
,
(
 ∗(A′′,m),

∧
η̄d

)
, and

(
C∗,

∧
η̄d

)
are said to be generic ηd - and

η̄d -complexes.

Corollary 3.8. With notation as before, the cohomology groupHp(M ∗) of the
complex

(
M ∗,

∧
η̄d

)
is also finite-dimensional over K.

Proof. By Proposition 3.6 and Remark 3.3, Hp
(
 ∗(A) ∧ dα

α

)
is of finite dimen-

sion. Therefore, the exact sequence in Lemma 3.4 shows that Hp(M ∗) is also of
finite dimension.

Corollary 3.9. The cohomology group Hp(C∗) of the complex
(
C∗,

∧
η̄d

)
is

also finite-dimensional over K.

Proof. Apply Lemma 3.5, Proposition 3.6, and Corollary 3.8 to the cohomology
long exact sequence of 0 → Mp →  p(A′′,m) → Cp → 0.



Characteristic Polynomials, η-Complexes, Freeness of Tame Arrangements 125

Before starting the next proposition, we recall thatC 0 = C�−1 = 0.We follow the
proof by Schulze in [9, Sec. 2]. Since 0(A) = S and 0(A′′,m) = S ′, it follows
that C 0 = 0. Also, since the complex

(
 ∗(A), ∧

dα
α

)
is exact, it follows that

 �−1(A) ∧ dα
α

=  �(A) = S

Q(A) dx1 ∧ · · · ∧ dx�.
Then

 �−1(A′′,m) = S ′

Q(A′′,m)
dx1 ∧ · · · ∧ dx�−1

implies that C�−1 = 0.

Proposition 3.10.
�−1∑
p=0

Poin(Cp, x)(t(1 − x)− 1)p ∈ Q[x, x−1, t],

�−1∑
p=0

Poin(Mp, x)(t(1 − x)− 1)p ∈ Q[x, x−1, t];

that is, there are no poles along x = 1.

Proof. Apply the same proof as that of [6, Prop. 4.133] combined with Proposi-
tion 3.6 and Corollaries 3.8 and 3.9.

The following result will be useful in proving Theorem 1.1.

Theorem 3.11 [7, Thm. 5.8]. Let S = K[x1, . . . , x�] and F ∗ = (0 → F 0 →
F 1 → · · · → F� → 0) be a complex of finite S-modules such that every morphism
is S-linear and every cohomology group is finite-dimensional. If a nonnegative
integer q satisfies

pdS F
p < �+ p − q

for all p, then Hq(F ∗) = 0.

4. Proofs of Theorem 1.1 and Corollary 1.2

In this section we prove Theorem 1.1 and Corollary 1.2. Recall that we have not
yet used the tameness assumption, although it is used in this section.

Proof of Theorem 1.1

The proof proceeds by induction on the dimensions � and i (in the setup of the
theorem). For i = �−1, we have b0 = σ0 = 1; for i = �− 2, we have b1 = σ1 =
|A| − 1 = |m|. Also, b2 ≥ σ2 follows from [2, Thm. 5.1]. Hence Theorem 1.1
holds when � ≤ 3 or when i = �− 3, �− 2, or �−1. Assume that � ≥ 4 and 0 ≤
i < � − 3. Put j = � − 1 − i; then 3 ≤ j ≤ � − 1. Recall the combinatorial re-
striction map ρ : L(dA) → L(A′′) from Proposition 2.5. First, by the definition
of a Möbius function we have
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bj =
∑

X∈Lj(A′′ )
bXj ,

where
bXj =

∑
Y∈Lj(dA),ρ(Y )=X

|µ(Y )|.

Let σXj := |χred(A′′
X,mX, 0)|, where χred(A′′

X,mX, t) := χ(A′′
X,mX, t)/t �−1−j

for X ∈Lj(A′′) (and “red” denotes “reduced”). Then Theorem 2.3 implies that

σj =
∑

X∈Lj(A′′ )
σXj =

∑
X∈Lj(A′′ )

|χred(A′′
X,mX, 0)|.

Now recall the tameness condition on A and (A′′,m). By the definition of tame-
ness and the localization’s exactness, AX and (A′′

X,mX) are also tame. However,
AX and (A′′

X,mX) are not essential. Hence to apply the induction hypothesis, we
need the following lemma.

Lemma 4.1. Let V = V1 ⊕ V2 and A = A1 × A2 be a central �-arrangement in
V that decomposes into the product of a d-arrangement A1 in V1 and an (�− d)-
arrangement A2 in V2. For m : A → Z≥0, let mi (i = 1, 2) denote the restric-
tion of m onto A i . Let Si (i = 1, 2) denote the coordinate ring of Vi. Then
pdS  p(A ,m) ≥ pdSi  

p(A i,mi) for i = 1, 2.

Proof. It suffices to show the claim when i = 1. Note that S1 ⊗K S2 = S. Recall
the decomposition

 p(A ,m) =
⊕
q+r=p

 q(A1,m1)⊗K  
r(A2,m2),

which follows by dualizing [1, Lemma 1.4]. Then  p(A ,m) contains

 p(A1,m1)⊗K  
0(A2,m2) � S · p(A1,m1)

as a direct summand, so pdS  p(A ,m) ≥ pdS S · p(A1,m1). Let us prove

pdS S · p(A1,m1) ≥ pdS1 
p(A1,m1).

Observe that S · p(A1,m1) �  p(A1,m1)⊗K S2 and that S2 is flat over K. Thus
S is flat over S1 because

⊗
K S2 = ⊗

S1
(S1⊗KS2) = ⊗

S1
S.Also, it is known that

Ext iS1
(N, S1)⊗K S2 � Ext iS(S ·N, S)

for any finitely generated S1-module N (see e.g. [5, (3.E)]). Hence

ExtqS1
( p(A1,m1), S1)⊗K S2 � ExtqS(S · p(A1,m1), S).

Therefore, pdS S · p(A1,m1) ≥ pdS1 
p(A1,m1).

We continue with the proof of Theorem 1.1. Since the essentializations of AX and
(A′′

X,mX) are tame arrangements of dimension ≤ �− 2 (by Lemma 4.1), we can
apply the induction hypothesis on dimensions. Note that (−1)jbXj is the constant
term of the characteristic polynomial of the essentialization of AX forX ∈Lj(dA)
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as well as that χred(A′′
X,mX, t) is equal to the characteristic polynomial of the

essentialization of (A′′
X,mX). Hence the induction hypothesis shows that

bXj ≥ |χred(A′′
X,mX, 0)| = σXj (j = 0,1, . . . , �− 2).

Combining these observations yields

bj =
∑

X∈Lj(A′′ )
bXj ≥

∑
X∈Lj(A′′ )

σXj = σj (j = 0,1, . . . , �− 2).

Next we show that b�−1 ≥ σ�−1. By assumption and Lemma 3.4, pdS ′ Mp ≤
p (p = 0,1, . . . , � − 1). Hence Theorem 3.11 and Proposition 3.6 show that
Hp(M ∗) = 0 (p ≤ � − 2) for every generic ηd -complex. And for every generic
η̄d -complex, we have Hp( ∗(A′′,m)) = 0 (p ≤ �− 2) by Theorem 3.11, Propo-
sition 3.6, and the tameness of (A′′,m). Hence the long exact sequence of coho-
mology of

0 → Mp →  p(A′′,m) → Cp → 0

shows that Hp(C∗) = 0 (0 ≤ p ≤ � − 3) for every generic ηd -complex. By the
argument in the proof of [9, Prop. 4],

χ0(A , t) =
�−1∑
p=0

Poin(Mp, x)(t(1 − x)− 1)p
∣∣∣
x=1

,

χ(A′′,m, t) =
�−1∑
p=0

Poin( p(A′′,m), x)(t(1 − x)− 1)p
∣∣∣
x=1
.

Therefore,

χ0(A , t)− χ(A′′,m, t) = −
�−1∑
p=0

Poin(Cp, x)(t(1 − x)− 1)p
∣∣∣
x=1
.

Now apply the vanishing of cohomologies just described to a generic η0-complex.
Then

χ0(A , 0)− χ(A′′,m, 0) = −
�−1∑
p=0

Poin(Cp, x)(−1)p
∣∣∣
x=1

= −
�−2∑
p=1

PoinHp(Cp)(−1)p

= (−1)�−1 dimKH
�−2(C∗).

Hence

b�−1 − σ�−1 = (−1)�−1(χ0(A , 0)− χ(A′′,m, 0)) = dimKH
�−2(C∗) ≥ 0.

Therefore, Theorem 1.1 is proved (contingent on the following proposition).

Proposition 4.2. If (A′′,m) is tame, then σj ≥ 0 (j = 0,1, . . . , �− 1).
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Proof. We use induction on �. By the same argument as in the proof of Theorem1.1,
the statement is true when � ≤ 3. So assume that � ≥ 4. Since (by Lemma 4.1)
the essentialization of (A′′

X,mX) is also tame, we may apply the induction hypoth-
esis. Again the same argument as in the proof of Theorem 1.1 shows that σXj ≥ 0
for X ∈Lj(A′′) and 0 ≤ j ≤ �− 2. Hence the equality

σj =
∑

X∈Lj(A′′ )
σXj

from Theorem 2.3 establishes that σj ≥ 0 (j = 0,1, . . . , � − 2). It therefore suf-
fices to show that σ�−1 ≥ 0.

As we saw in the proof of Theorem 1.1,

χ(A′′,m, t) =
�−1∑
p=0

Poin( p(A′′,m), x)(t(1 − x)− 1)p
∣∣∣
x=1
.

Hence σ�−1 = (−1)�−1 ∑�−1
p=0(−1)p Poin( p(A′′,m), x)

∣∣
x=1. Let us show that

σ�−1 is not negative. By the tameness condition, we have

σ�−1 = (−1)�−1
�−1∑
p=0

(−1)p Poin( p(A′′,m), x)
∣∣∣
x=1

= (−1)�−1(−1)�−1H�−1( ∗(A′′,m)) ≥ 0;
this completes the proof of the proposition.

Corollary 4.3. In the notation of Theorem 1.1, (−1)�−1χ(A′′,m, −1) ≥ 0.

Proof. The statement follows from Proposition 4.2 and the equality

(−1)�−1χ0(A′′,m, −1) =
�−1∑
i=0

σi.

Proof of Corollary 1.2

The first statement follows immediately from Theorem 1.1 and Corollary 4.3. Let
us prove the second statement. Assume that A is free; then, by [14, Thm. 11],
its Ziegler restriction (A′′,m) is also free. Now Terao’s factorization theorem [11,
Main Theorem] and its multiversion [1,Thm. 4.1] show that the characteristic poly-
nomials split into the same form:

χ0(A , t) =
�−1∏
i=1

(t − di) = χ(A′′,m, t).

Hence χ0(A , −1) = χ(A′′,m, −1), which shows that A is a minimal chamber
arrangement. Assume that A is an MCA and that (A′′,m) is free. Then, by The-
orem 1.1, bi ≥ σi (i = 0,1, . . . , �− 1). Therefore, by the minimality of chambers
we have bi = σi (i = 0,1, . . . , �−1). Thus χ0(A , t) = χ(A′′,m, t), and an appli-
cation of Theorem 2.4 completes the proof of Corollary 1.2.
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Corollary 4.4. Assume that A is a 4-arrangement. Then Theorem 1.1 holds if
A is tame.

Proof. Since  p(A′′,m) is reflexive, the statement follows from the Auslander–
Buchsbaum formula combined with the inequality depthS ′  p(A′′,m) ≥ 2.

TheAuslander–Buchsbaum formula also shows that 2- and 3-(multi)arrangements
are tame. So as a corollary to Theorem 1.1 and Corollary 1.2, we can give another
proof of Yoshinaga’s criterion [13].

Corollary 4.5 [13, Thm. 3.2]. A 3-arrangement A is free if and only if it is
an MCA.

Proof. Since 2- and 3-multiarrangements are tame, we can use Theorem 1.1 and
Corollary 1.2. The “only if” part follows from Corollary 1.2. Assume that A is an
MCA. Since C 0 = C2 = 0, the complex of cokernels is 0 → C1 → 0. The min-
imality of chambers implies that |b1 − σ1| = H1(C∗) = 0. Hence C1 = 0, which
is equal to the freeness of A (see e.g. [13, Cor. 2.6]).

Theorem 1.1 and Corollary 1.2 give rise to the following problem, which involves
relating tameness to geometry and combinatorics of arrangements.

Problem 4.6. Do Theorem 1.1 and Corollary 1.2 hold true without the assump-
tion of tameness? Moreover, is a free arrangement an MCA in general?
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