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Quermaßintegrals and Asymptotic Shape of
Random Polytopes in an Isotropic Convex Body

N. Dafnis , A. Giannopoulos , & A. Tsolomitis

1. Introduction

The aim of this work is to provide new information on the asymptotic shape of the
random polytope

KN = conv{±x1, . . . ,±xN} (1.1)

spanned by N independent random points x1, . . . , xN that are uniformly distrib-
uted in an isotropic convex body K in R

n. We fix N > n and further exploit the
idea of [9] to compare KN with the Lq-centroid body Zq(K) of K for q � logN.
Recall that the Lq-centroid body Zq(K) of K has support function

hZq(K)(x) = ‖〈·, x〉‖q :=
(∫

K

|〈y, x〉|q dy
)1/q

; (1.2)

background information on isotropic convex bodies and their Lq-centroid bodies
is given in Section 2.

This idea has its roots in previous work [11; 19; 22] on the behavior of sym-
metric random ±1-polytopes, the absolute convex hulls of random subsets of the
discrete cube Dn

2 = {−1,1}n. These articles demonstrated that the absolute con-
vex hullDN = conv({±x1, . . . ,±xN}) ofN independent random points x1, . . . , xN
uniformly distributed overDn

2 has extremal behavior—with respect to several geo-
metric parameters—among all ±1-polytopes with N vertices at every scale of n,
where n < N ≤ 2n. The main source of this information is the following esti-
mate from [19] (which improves on an analogous result from [11]): for all N ≥
(1 + δ)n (where δ > 0 can be as small as 1/log n) and for every 0 < β < 1,

DN ⊇ c
(√
β log(N/n)Bn

2 ∩Qn

)
(1.3)

with probability greater than 1− exp(−c1n
βN1−β)− exp(−c2N). Here Bn

2 is the
Euclidean unit ball and Qn = [−1/2,1/2]n is the unit cube in R

n.

In a sense, the model of DN corresponds to the study of the geometry of a ran-
dom polytope spanned by random points that are uniformly distributed in Qn.

Starting from the observation that Zq(Qn) � √
qBn

2 ∩Qn, whence (1.3) can be
equivalently written in the form

DN ⊇ cZβ log(N/n)(Qn), (1.4)

Received September 27, 2011. Revision received October 7, 2012.

59



60 N. Dafnis , A. Giannopoulos , & A. Tsolomitis

we proved in [9] that, in full generality, a precise analogue of (1.4) holds for the
random polytope KN spanned by N independent random points x1, . . . , xN uni-
formly distributed in an isotropic convex body K. In particular, for every N ≥ cn

(where c > 0 is an absolute constant) and every isotropic convex body K in R
n,

KN ⊇ c1Zq(K) for all q ≤ c2 log(N/n) (1.5)

with probability tending exponentially fast to 1 as n,N → ∞.

The precise statement is given in Section 3, and it will play a leading role in this
paper. The inclusion is sharp; it is proved in [9] that KN is “weakly sandwiched”
between Zqi(K) (i = 1, 2), where qi � logN, in the following sense. It can be
easily checked that for every α > 1 one has

E[σ({θ : hKN (θ) ≥ αhZq(K)(θ)})] ≤ Nα−q, (1.6)

and this implies that if q ≥ c3 log(N/n) then, for most θ ∈ S n−1, one has hKN (θ) ≤
c4hZq(K)(θ). It follows that several geometric parameters of KN are controlled by
the corresponding parameters ofZ[log(N/n)](K). For example, in [9] the volume ra-
dius of a random KN was determined for the full range of values of N as follows.
For every cn ≤ N ≤ exp(n),

c5

√
log(N/n)√
n

≤ |KN |1/n ≤ c6LK
√

log(N/n)√
n

(1.7)

with probability greater than 1−1/N, where c5, c6 > 0 are absolute constants. Ac-
tually, combining this argument with a result of Klartag and Milman [15] shows
that, in the range N ∈ [cn, exp(

√
n )], the isotropic constant LK of K may be

inserted in the lower bound; this leads to the asymptotic formula

|KN |1/n � LK
√

log(N/n)√
n

. (1.8)

Our first result gives an extension of this formula to the full family of quer-
maßintegrals Wn−k(KN) of KN. These are defined through Steiner’s formula,

|K + tBn
2 | =

n∑
k=0

(
n

k

)
Wn−k(K)t n−k, (1.9)

whereWn−k(K) is the mixed volumeV(K, k;Bn
2 , n− k). We work with a normal-

ized variant of Wn−k(K): for every 1 ≤ k ≤ n, we set

Qk(K) =
(
Wn−k(K)

ωn

)1/k

=
(

1

ωk

∫
Gn,k

|PF (K)| dνn,k(F )
)1/k

; (1.10)

here the last equality follows from Kubota’s integral formula (see Section 2 for
background information on mixed volumes). In Section 3 we determine the ex-
pectation of Qk(KN) for all values of k by proving the following theorem.

Theorem 1.1. Let K be an isotropic convex body in R
n. If n2 ≤ N ≤ exp(cn)

then, for every 1 ≤ k ≤ n,√
logN � E[Qk(KN)] � w(ZlogN(K)). (1.11)
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In the range n2 ≤ N ≤ exp(
√
n ) we have the following asymptotic formula: for

every 1 ≤ k ≤ n,
E[Qk(KN)] � LK

√
logN. (1.12)

We remark that all our estimates remain valid for n1+δ ≤ N ≤ n2, where δ ∈ (0, 1)
is fixed, if we allow the constants to depend on δ. Working in the range N � n

would require more delicate arguments. We chose to simplify the exposition; in
fact, Proposition 3.1 is proved for the range cn ≤ N ≤ exp(cn), and it is quite
natural that similar extensions can be provided for most statements in this paper
(the interested reader may also consult [29] and [3]). We note also that in saying a
randomKN satisfies a certain asymptotic formula (F) we mean that this holds true
with probability greater than 1−N−1, where all the constants appearing in (F) are
absolute positive constants.

A more careful analysis is carried out in Section 4, where we obtain the equiva-
lenceQk(KN) � LK

√
logN with high probability (for a randomKN) in the range

n2 ≤ N ≤ exp(
√
n ).

Theorem 1.2. Let K be an isotropic convex body in R
n. If n2 ≤ N ≤ exp(

√
n )

then, with probability greater than 1−N−1,

Qk(KN) � LK
√

logN (1.13)

for all 1 ≤ k ≤ n.

From Theorem 1.2 one can derive several geometric properties of a random KN.

In Section 4 we describe two such properties that concern the regularity of the
covering numbers N(KN , εBn

2 ) and the size of random k-dimensional projections
of KN.

Theorem 1.3. Let K be an isotropic convex body in R
n and let n2 ≤ N ≤

exp(
√
n ).

(i) With probability greater than 1 − N−1, a random KN satisfies the entropy
estimate

logN
(
KN , c1εLK

√
logNBn

2

) ≤ c2nmin

{
log

(
1+ c3

ε

)
,

1

ε2

}
(1.14)

for every ε > 0, where c1, c2, c3 > 0 are absolute constants.
(ii) Moreover, with probability greater than 1−N−1 a randomKN satisfies the

following: for every 1 ≤ k ≤ n,( |PF (KN)|
ωk

)1/k

� LK
√

logN (1.15)

with probability greater than 1 − e−ck with respect to the Haar measure νn,k
on Gn,k.

Given 1 ≤ k ≤ n, we can also establish upper bounds for the volume of the projec-
tion of a random KN onto a fixed F ∈Gn,k and onto the k-dimensional coordinate
subspaces of R

n. These are valid provided thatN is not too large, depending on k.
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Theorem 1.4. Let K be an isotropic convex body in R
n and let 1 ≤ k ≤ n.

(i) For all k < N ≤ ek and for every F ∈Gn,k ,( |PF (KN)|
ωk

)1/k

≤ cLK
√

logN (1.16)

with probability greater than 1−N−1.

(ii) For all k < N ≤ exp
(
c1

√
k/log k

)
, with probability greater than

1 − exp
(−c2

√
k/log k

)
a random KN satisfies the following: for every σ ⊆

{1, . . . , n} with |σ| = k,( |Pσ(KN)|
ωk

)1/k

≤ c3LK log(en/k)
√

logN , (1.17)

where the ci > 0 are absolute constants.

In Section 5 we generalize a result of Mendelson, Pajor, and Rudelson [22] on
the combinatorial dimension of the random polytope DN. This is defined as fol-
lows. For a fixed orthonormal basis {e1, . . . , en} of R

n and for every ε > 0, the
Vapnik–Chervonenkis combinatorial dimension VC(K, ε) of a symmetric convex
body K in R

n is the largest cardinality of a subset σ of {1, . . . , n} for which

εQσ ⊆ Pσ(K), (1.18)

whereQσ is the unit cube in R
σ = span{ei : i ∈ σ} and Pσ denotes the orthogonal

projection onto R
σ. It is proved in [22] that a random DN satisfies

VC(DN , ε) � min

{
c log(cNε2)

ε2
, n

}
. (1.19)

We extend this estimate to the more general class of random polytopesKN in which
K is an isotropic convex body in R

n that is unconditional with respect to the basis
{e1, . . . , en}.
Theorem 1.5. Let K be an unconditional isotropic convex body in R

n. If c1n ≤
N ≤ exp(c2n), then a random KN satisfies

VC(KN , ε) ≥ min

{
c3 log(N/n)

ε2
, n

}
(1.20)

for every ε ∈ (0, 1).

2. Notation and Background Material

We work in R
n, which is equipped with a Euclidean structure 〈·, ·〉. We denote by

‖·‖2 the corresponding Euclidean norm, and we write Bn
2 for the Euclidean unit

ball and S n−1 for the unit sphere. Volume is denoted by |·|. We write ωn for the
volume of Bn

2 and σ for the rotationally invariant probability measure on S n−1.

The Grassmann manifoldGn,k of k-dimensional subspaces of R
n is equipped with

the Haar probability measure νn,k. Let 1 ≤ k ≤ n and F ∈Gn,k. We will use PF to
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denote the orthogonal projection from R
n onto F. We also define BF := Bn

2 ∩ F
and SF := S n−1 ∩ F.

The letters c, c ′, c1, c2, . . . denote absolute positive constants whose value may
change from line to line. Whenever we write a � b, we mean that there exist ab-
solute constants c1, c2 > 0 such that c1a ≤ b ≤ c2a. Similarly, if K,L ⊆ R

n

then we will write K � L provided there exist absolute constants c1, c2 > 0 such
that c1K ⊆ L ⊆ c2K. We also write Ā for the homothetic image of volume 1 of a
convex body A ⊆ R

n; thus, Ā := A/|A|1/n.
A convex body is a compact convex subset C of R

n with nonempty interior. We
denote the class of convex bodies in R

n by Kn. We say that C is symmetric if
−x ∈ C whenever x ∈ C. We say that C is centered if it has center of mass at
the origin—that is, if

∫
C
〈x, θ〉 dx = 0 for every θ ∈ S n−1. The support function

hC : R
n → R of C is defined by hC(x) = max{〈x, y〉 : y ∈ C}. For each −∞ <

q < ∞ (q �= 0), we define the q-mean width of C by

wq(C) :=
(∫

S n−1
h
q

C(θ)σ(dθ)

)1/q

. (2.1)

The mean width of C is the quantity w(C) = w1(C). The radius of C is defined
as R(C) = max{‖x‖2 : x ∈C}, and if the origin is an interior point of C then the
polar body of C is defined as

C ◦ := {y ∈R
n : 〈x, y〉 ≤ 1 for all x ∈C}. (2.2)

A centered convex body K in R
n is called isotropic if it has volume |K| = 1

and there exists a constant LK > 0 such that∫
K

〈x, θ〉2 dx = L2
K (2.3)

for every θ in the Euclidean unit sphere S n−1. For every convex body K in R
n

there exists an affine transformation T of R
n such that T(K) is isotropic. More-

over, if we ignore orthogonal transformations, then this isotropic image is unique
and so the isotropic constant LK is an invariant of the affine class ofK. The reader
is referred to [23] and [10] for more information on isotropic convex bodies.

2.1. Quermaßintegrals

The relation between volume and the operations of addition and multiplication
of convex bodies by nonnegative reals is described by Minkowski’s fundamental
theorem, which may be stated as follows. If K1, . . . ,Km ∈ Kn (m ∈ N) then the
volume of t1K1 + · · · + tmKm is a homogeneous polynomial of degree n in ti ≥ 0,

|t1K1 + · · · + tmKm| =
∑

1≤i1,...,in≤m
V(Ki1, . . . ,Kin)ti1 · · · tin , (2.4)

where the coefficients V(Ki1, . . . ,Kin) can be chosen to be invariant under per-
mutations of their arguments. The coefficient V(Ki1, . . . ,Kin) is called the mixed
volume of the n-tuple (Ki1, . . . ,Kin).
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Steiner’s formula is a special case of Minkowski’s theorem; the volume of
K + tBn

2 (t > 0) can be expanded as a polynomial in t :

|K + tBn
2 | =

n∑
k=0

(
n

k

)
Wn−k(K)t n−k, (2.5)

where Wn−k(K) := V(K, k;Bn
2 , n− k) is the (n− k)th quermaßintegral of K. It

will be convenient for us to work with a normalized variant of Wn−k(K), so for
every 1 ≤ k ≤ n we set

Qk(K) =
(

1

ωk

∫
Gn,k

|PF (K)| dνn,k(F )
)1/k

. (2.6)

Note that Q1(K) = w(K). Kubota’s integral formula

Wn−k(K) = ωn

ωk

∫
Gn,k

|PF (K)| dνn,k(F ) (2.7)

shows that

Qk(K) =
(
Wn−k(K)

ωn

)1/k

. (2.8)

The Aleksandrov–Fenchel inequality states that if K,L,K3, . . . ,Kn ∈Kn then

V(K,L,K3, . . . ,Kn)
2 ≥ V(K,K,K3, . . . ,Kn)V(L,L,K3, . . . ,Kn). (2.9)

This implies that the sequence (W0(K), . . . ,Wn(K)) is log-concave: we have

W k−i
j ≥ W k−j

i W
j−i
k (2.10)

if 0 ≤ i < j < k ≤ n. Taking into account (2.8), we conclude that Qk(K) is a
decreasing function of k. For the theory of mixed volumes, see [30].

2.2. Lq-Centroid Bodies

Let K be a convex body of volume 1 in R
n. For every q ≥ 1 and every y ∈ R

n,
we set

hZq(K)(y) :=
(∫

K

|〈x, y〉|q dx
)1/q

. (2.11)

The Lq-centroid body Zq(K) of K is the centrally symmetric convex body with
support function hZq(K). Note that K is isotropic if and only if it is centered and
Z2(K) = LKB

n
2 . Also, if T ∈ SL(n) then Zq(T (K)) = T(Zq(K)) for all q ≥ 1.

From Hölder’s inequality it follows that Z1(K) ⊆ Zp(K) ⊆ Zq(K) ⊆ Z∞(K)
for all 1 ≤ p ≤ q ≤ ∞, where Z∞(K) = conv(K,−K). Using Borell’s lemma
(see [24, [Apx. III]), one can check that

Zq(K) ⊆ c1
q

p
Zp(K) (2.12)

for all 1 ≤ p < q. In particular, if K is isotropic then R(Zq(K)) ≤ c2qLK. One
can also check that if K is centered then Zq(K) ⊇ c3K for all q ≥ n (see [25] for
a proof ). We will also use that if K is isotropic then
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K ⊆ (n+ 1)LKB
n
2 (2.13)

and hence

LKB
n
2 = Z2(K) ⊆ Zq(K) ⊆ Z∞(K) ⊆ (n+ 1)LKB

n
2 (2.14)

for all q ≥ 2. A proof of the first assertion is given in [14]; the second assertion is
clear from Hölder’s inequality.

Let C be a symmetric convex body in R
n, and let ‖·‖C denote the norm induced

on R
n by C. The parameter k∗(C) is defined by

k∗(C) = n
w(C)2

R(C)2
. (2.15)

It is known that, up to an absolute constant, k∗(C) is the largest positive integer
k ≤ n with the property that 1

2w(C)BF ⊆ PF (C) ⊆ 2w(C)BF for most F ∈Gn,k

(to be precise, with probability greater than n/(n+ k)). The q-mean width wq(C)
is equivalent to w(C) provided q ≤ k∗(C): it is proved in [18] that, for every
symmetric convex body C in R

n, the following statements hold.

(i) If 1 ≤ q ≤ k∗(C), then w(C) ≤ wq(C) ≤ c4w(C).

(ii) If k∗(C) ≤ q ≤ n, then c5

√
q/nR(C) ≤ wq(C) ≤ c6

√
q/nR(C).

Let K be a centered convex body of volume 1 in R
n. For every q ∈ (−n,∞),

q �= 0, we define

Iq(K) :=
(∫

K

‖x‖q2 dx
)1/q

. (2.16)

In [26] and [27] it is proved that, for every 1 ≤ q ≤ n/2,

Iq(K) �
√
n/qwq(Zq(K)) and I−q(K) �

√
n/qw−q(Zq(K)). (2.17)

Paouris [26] introduced the parameter

q∗(K) := max{q ≤ n : k∗(Zq(K)) ≥ q}. (2.18)

Then the main result of [27] states that, for every centered convex body K of vol-
ume 1 in R

n, one has I−q(K) � Iq(K) for every 1 ≤ q ≤ q∗(K); in particular, for
all q ≤ q∗(K) one has Iq(K) ≤ c7I2(K). If K is isotropic then one can check
that q∗(K) ≥ c8

√
n, where c8 > 0 is an absolute constant (for a proof, see [26]).

Therefore,
Iq(K) ≤ c9

√
nLK for q ≤ √

n. (2.19)

When q � q∗(K), the result of [18] shows that w(Zq(K)) � wq(Zq(K)). Then
the following useful estimate is a direct consequence of (2.19) and (2.17).

Fact 2.1. Let K be an isotropic convex body in R
n. If 1 ≤ q ≤ q∗(K), then

w(Zq(K)) � wq(Zq(K)) � √
qLK. (2.20)

In particular, this holds for all q ≤ √
n.

Associated with any centered convex body K ⊂ R
n is a family of bodies that was

introduced by Ball in [4] (see also [23]); to define these bodies, let us consider a
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k-dimensional subspace F of R
n and its orthogonal subspace E. For every φ ∈

F \{0} we setE+(φ) = {x ∈ span{E,φ} : 〈x,φ〉 ≥ 0}. Ball proved that, for every
q ≥ 0, the function

φ �→ ‖φ‖1+q/(q+1)
2

(∫
K∩E+(φ)

〈x,φ〉q dx
)−1/(q+1)

(2.21)

is the gauge function of a convex body Bq(K,F ) on F. We shall need some facts
about the relation of the bodies Bq(K,F ) to the Lq-centroid bodies Zq(K) and
their projections. IfK is a centered convex body of volume 1 in R

n and if 1 ≤ k ≤
n− 1 then, for every F ∈Gn,k and every q ≥ 1, we have

PF (Zq(K)) = (k + q)1/q |Bk+q−1(K,F )|1/k+1/qZq(B̄k+q−1(K,F )) (2.22)

and

|Bk+q−1(K,F )|1/k+1/q ≤ e(k + q)

k

(
1

k + q

)1/q 1

|K ∩ F⊥|1/k . (2.23)

Also, for every F ∈Gn,k and every q ≥ 1,

k

e2(k + q)
Zq(B̄k+1(K,F )) ⊆ Zq(B̄k+q−1(K,F ))

⊆ e2 k + q

k
Zq(B̄k+1(K,F )). (2.24)

If K is isotropic, then

LB̄k+1(K,F ) � |K ∩ F⊥|1/kLK. (2.25)

For the proofs of these assertions we refer to [26] and [27].

3. Expectation of the Quermaßintegrals

In this section we give the proof of Theorem 1.1, which is a consequence of the
following proposition.

Proposition 3.1. LetK be an isotropic convex body in R
n. If cn ≤ N ≤ exp(cn)

then, for every 1 ≤ k ≤ n,

c1
√
n|Zlog(N/n)(K)|1/n ≤ E[Qk(KN)] ≤ c2w(ZlogN(K)), (3.1)

where c1, c2 > 0 are absolute constants.

Proof. We first recall the precise statements of the main results from [9] on the
asymptotic shape of a random polytope withN vertices chosen independently and
uniformly from an isotropic convex body.

Fact 3.2. Let β ∈ (0,1/2] and γ > 1. If N ≥ N(γ, n) = cγ n, where c > 0 is
an absolute constant, then for every isotropic convex body K in R

n we have

KN ⊇ c1Zq(K) for all q ≤ c2β log(N/n) (3.2)
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with probability greater than 1−f(β,N, n), where f(β,N, n) → 0 exponentially
fast as n and N increase.

The upper bound obtained in [9] for f(β,N, n) is

f(β,N, n) ≤ exp(−c3N
1−βnβ)+ P

(‖6 : 7n2 → 7N2 ‖ ≥ γLK
√
N

)
, (3.3)

where 6 : 7n2 → 7N2 is the random operator 6(y) = (〈x1, y〉, . . . , 〈xN , y〉) defined
by the vertices x1, . . . , xN of KN. There are several known bounds for this last
probability (see e.g. [13; 21]). The best-known estimate can be extracted from [2,
Thm. 3.13]: one has P

(‖6 : 7n2 → 7N2 ‖ ≥ γLK
√
N

) ≤ exp
(−c0γ

√
N

)
for all

N ≥ cγ n. If we assume that β ≤ 1/2, then

f(β,N, n) ≤ exp(−c4
√
n ). (3.4)

Since Qk(·) is decreasing in k, we immediately obtain

E[Qk(KN)] ≥ E[Qn(KN)] = E

( |KN |
ωn

)1/n

. (3.5)

Then Fact 3.2 shows that

E

( |KN |
ωn

)1/n

≥ c5

( |Zlog(N/n)(K)|
ωn

)1/n

, (3.6)

where c5 > 0 is an absolute constant. Combining (3.5) and (3.6) yields the first
inequality in (3.1).

We now turn our attention to the opposite direction. Let N ≥ n. Observe that,
for every α > 0 and θ ∈ S n−1, by Markov’s inequality we have

P(α, θ) := P({x ∈K : |〈x, θ〉| ≥ α‖〈·, θ〉‖q}) ≤ α−q; (3.7)

therefore,

P(hKN (θ) ≥ αhZq(K)(θ)) = P

(
max
j≤N |〈xj , θ〉| ≥ α‖〈·, θ〉‖q

)

≤ NP(α, θ) ≤ Nα−q. (3.8)

Then a standard application of Fubini’s theorem shows that, for every α > 1,

E[σ(θ : hKN (θ) ≥ αhZq(K)(θ))] ≤ Nα−q. (3.9)

Using that hKN (θ) ≤ hZ∞(K)(θ) ≤ c6nLK , which follows from (2.14), we write

w(KN) ≤
∫
AN

hKN (θ) dσ(θ)+ c6σ(A
c
N)nLK , (3.10)

where AN = {θ : hKN (θ) ≤ αhZq(K)(θ)}. Then

w(KN) ≤ α

∫
AN

hZq(K)(θ) dσ(θ)+ c6σ(A
c
N)nLK (3.11)

and so, by (3.9),

E[w(KN)] ≤ αw(Zq(K))+ c6Nnα
−qLK. (3.12)
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Since w(Zq(K)) ≥ w(Z2(K)) = LK , we obtain

E[w(KN)] ≤ (α + c6Nnα
−q)w(Zq(K)). (3.13)

Choosing α = e and q = 2 logN, we see that

E[Q1(KN)] = E[w(KN)] ≤ c7w(Z2 logN(K)) ≤ c8w(ZlogN(K)); (3.14)

here we have taken into account that Z2 logN(K) ⊆ cZlogN(K), a consequence of
(2.12). Since Qk(K) is decreasing in k, it follows that

E[Qk(KN)] ≤ E[Q1(KN)] ≤ c9w(ZlogN(K)) (3.15)

for all 1 ≤ k ≤ n, where c9 > 0 is an absolute constant. This completes the proof
of the proposition.

For the proof of Theorem1.1we combine Proposition 3.1with the following known
bounds for |Zq(K)|. The first bound, expressed by (3.16), follows from the results
of [26] and [15]; the second bound, expressed by (3.17), was obtained in [20].

Fact 3.3. Let K be an isotropic convex body in R
n. If 1 ≤ q ≤ √

n then

|Zq(K)|1/n � √
q/nLK , (3.16)

but if
√
n ≤ q ≤ n then

c9

√
q/n ≤ |Zq(K)|1/n ≤ c10

√
q/nLK. (3.17)

Proof of Theorem 1.1. We first assume that n2 ≤ N ≤ exp(
√
n ). From (3.16)

we have
|ZlogN(K)|1/n ≥ c11

√
logN/nLK , (3.18)

and from Fact 2.1 we have

w(ZlogN(K)) ≤ c12

√
logNLK. (3.19)

Therefore, (3.1) takes the form

E[Qk(KN)] �
√

logNLK (3.20)

as claimed. If exp(
√
n ) ≤ N ≤ exp(cn) then we use (3.1) and the first inequality

in (3.17). It follows that

c13

√
logN ≤ E[Qk(KN)] ≤ c2w(ZlogN(K)) (3.21)

for every 1 ≤ k ≤ n, and the proof is complete.

4. The Range n2 ≤ N ≤ exp(
√√√

)n

Next we prove Theorem 1.2 on the quermaßintegrals of a random KN in the range
n2 ≤ N ≤ exp(

√
n ). The precise statement is as follows.

Theorem 4.1. Let K be an isotropic convex body in R
n. If n2 ≤ N ≤ exp(

√
n )

then, with probability greater than 1−N−1, a random KN satisfies
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Qk(KN) ≤ c1LK
√

logN (4.1)

for all 1 ≤ k ≤ n and with probability greater than 1− exp(−√
n ) it satisfies

Qk(KN) ≥ c2LK
√

logN (4.2)

for all 1 ≤ k ≤ n, where c1, c2 > 0 are absolute constants.

Proof. Let n2 ≤ N ≤ exp(
√
n ). For the proof of (4.2) recall that, with probabil-

ity greater than 1− exp(−√
n ), a randomKN contains c3ZlogN(K). Then we can

use (3.5), (3.6), and the volume estimate from Fact 3.3 to show that any such KN
satisfies

Qk(KN) ≥ Qn(KN) ≥ c3
√
n|ZlogN(K)|1/n ≥ c4LK

√
logN (4.3)

for all 1 ≤ k ≤ n.

For the proof of (4.1) we need two lemmas.

Lemma 4.2. Let K be an isotropic convex body in R
n. For every n2 ≤ N ≤

exp(cn) and for every q ≥ logN and r ≥ 1, we have
∫
S n−1

h
q

KN
(θ)

h
q

Zq(K)
(θ)

dσ(θ) ≤ (c1r)
q (4.4)

with probability greater than 1− r−q, where c1 > 0 is an absolute constant.

Proof. We have assumed that K is isotropic and so, by (2.13) and (2.4), KN ⊆
conv(K,−K) ⊆ (n+ 1)LKBn

2 and Zq(K) ⊇ Z2(K) = LKB
n
2 . This implies that

hKN (θ) ≤ (n+ 1)hZq(K)(θ) for all θ ∈ S n−1. We write
∫
S n−1

hKN (θ)
q

hZq(K)(θ)
q
dσ(θ) =

∫ n+1

0
qt q−1σ(θ : hKN (θ) ≥ thZq(K)(θ)) dt. (4.5)

We fix α > 1 (to be chosen) and estimate the expectation over KN : using (3.9),
we obtain

E

(∫
S n−1

hKN (θ)
q

hZq(K)(θ)
q
dσ(θ)

)
≤ αq +

∫ n+1

α

qt q−1Nt−q dt

≤ αq + qN log

(
n+ 1

α

)
. (4.6)

We now choose α = e. If q ≥ logN, then

E

(∫
S n−1

hKN (θ)
q

hZq(K)(θ)
q
dσ(θ)

)
≤ c

q

1 (4.7)

for some absolute constant c1 > 0. Markov’s inequality shows that, for every
r ≥ 1, ∫

S n−1

hKN (θ)
q

hZq(K)(θ)
q
dσ(θ) ≤ (c1r)

q (4.8)

with probability greater than 1− r−q.
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Lemma 4.3. Let K be an isotropic convex body in R
n. For every n2 ≤ N ≤

exp(cn) and for every q ≥ logN and r ≥ 1, we have

w(KN) ≤ c1rwq(Zq(K)) (4.9)

with probability greater than 1− r−q.

Proof. Using Hölder’s inequality and the Cauchy–Schwarz inequality, we write

[w(KN)]
q ≤

(∫
S n−1

hKN (θ)
q/2 dσ(θ)

)2

≤ [wq(Zq(K))]
q

∫
S n−1

hKN (θ)
q

hZq(K)(θ)
q
dσ(θ). (4.10)

Lemma 4.2 shows that if q ≥ logN and r ≥ 1, then∫
S n−1

hKN (θ)
q

hZq(K)(θ)
q
dσ(θ) ≤ (c1r)

q (4.11)

and hence
w(KN) ≤ c1rwq(Zq(K)) (4.12)

with probability greater than 1− r−q.

We can now prove (4.1). We have assumed that logN �
√
n, and we choose q =

logN and r = e. Hence, by Lemma 4.3 and Fact 2.1,

w(KN) ≤ cwlogN(ZlogN(K)) � w(ZlogN(K)) ≤ c1LK
√

logN (4.13)

with probability greater than 1 − N−1. Since Qk(KN) ≤ w(KN) for all 1 ≤ k ≤
n, the proof of the theorem is now complete.

Note. Theorem 1.2 and Fact 3.2 show that if n2 ≤ N ≤ exp(
√
n ) then, with

probability greater than 1−N−1, a random KN has the two properties

(P1) KN ⊇ c1ZlogN(K) and
(P2) Qk(KN) � LK

√
logN for all 1 ≤ k ≤ n.

In Sections 4.1and 4.2 we derive the two claims of Theorem1.3 from (P1) and (P2).

4.1. Regularity of the Covering Numbers

Recall that ifK andL are nonempty sets in R
n, then the covering numberN(K,L)

of K by L is defined to be the smallest number of translates of L whose union
covers K. If K is a convex body and L is a symmetric convex body in R

n, then a
standard volume argument shows that

2−n |K + L|
|L| ≤ N(K,L) ≤ 2n

|K + L|
|L| . (4.14)

The next proposition concerns the covering numbers of a randomKN by multiples
of the Euclidean unit ball; in particular, it provides a proof for Theorem 1.3(i).
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Proposition 4.4. Let K be an isotropic convex body in R
n, and let n2 ≤ N ≤

exp(
√
n ). Then a random KN satisfies the entropy estimate

logN
(
KN , c1εLK

√
logNBn

2

) ≤ c2nmin

{
log

(
1+ c3

ε

)
,

1

ε2

}
(4.15)

for every ε > 0, where c1, c2, c3 > 0 are absolute constants. Moreover, if 0 <
ε ≤ 1 then

c4n log
c5

ε
≤ logN

(
KN , c6εLK

√
logNBn

2

) ≤ c7n log
c8

ε
(4.16)

for suitable absolute constants ci, i = 4, . . . , 8.

Proof. We will give estimates for the covering numbers N(KN , εrn,NBn
2 ), where

KN satisfies (P1) and (P2) and where

rn,N :=
( |KN |
ωn

)1/n

� LK
√

logN (4.17)

is the volume radius of KN. Using the second inequality in (4.14), we write

N(KN , εrn,NB
n
2 ) ≤ 2n

∣∣ 1
εrn,N

KN + Bn
2

∣∣
ωn

. (4.18)

By Steiner’s formula,∣∣ 1
εrn,N

KN + Bn
2

∣∣
ωn

=
n∑
k=0

(
n

k

)
Qk
k(KN)

1

εkr kn,N
; (4.19)

now, since Qk(KN) � rn,N by (P2), we have∣∣ 1
εrn,N

KN + Bn
2

∣∣
ωn

≤
n∑
k=0

(
n

k

)(
c

ε

)k
=

(
1+ c

ε

)n
. (4.20)

Returning to (4.18), we see that

logN(KN , εrn,NB
n
2 ) ≤ c1n log

(
1+ c2

ε

)
(4.21)

for suitable absolute constants c1, c2 > 0. A second upper bound can be given
by Sudakov’s inequality logN(K, tBn

2 ) ≤ cnw2(K)/t 2 (see e.g. [28]). Since
w(KN) � rn,N , it follows immediately that

logN(KN , εrn,NB
n
2 ) ≤

cn

ε2
(4.22)

for all ε > 0. This proves (4.15).
A lower bound on the covering numbers can also be obtained for the case where

0 < ε ≤ 1. For this we can use the lower bound on the volume of KN from equa-
tion (1.7) or (1.8) depending on whether or not (respectively) logN ≤ √

n. For
example, if the inequality holds then
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N(KN , εrn,NB
n
2 )

1/n ≥
( |KN |
|εrn,NBn

2 |
)1/n

= 1

ε
. (4.23)

Hence logN(KN , εrn,NBn
2 ) ≥ n log(1/ε).

4.2. Random Projections of KN

Next we show that, if KN has properties (P1) and (P2), then the volume radius of
a random projection PF (KN) onto F ∈Gn,k is completely determined by n, k, and
N; this is the content of Theorem 1.3(ii).

Proposition 4.5. Let K be an isotropic convex body in R
n, and let n2 ≤ N ≤

exp(
√
n ). Then, with probability greater than 1−N−1, a randomKN satisfies the

following: for every 1 ≤ k ≤ n,( |PF (KN)|
ωk

)1/k

� LK
√

logN (4.24)

with probability greater than 1 − e−ck with respect to the Haar measure νn,k
on Gn,k.

Proof. The upper bound is a corollary of Theorem 1.2. We know that if logN ≤√
n then KN satisfies (P2) with probability greater than 1−N−1; in particular,

Qk(KN) =
(

1

ωk

∫
Gn,k

|PF (KN)| dνn,k(F )
)1/k

� LK
√

logN (4.25)

for all 1 ≤ k ≤ n. Applying Markov’s inequality then yields the following fact.

Fact 4.6. If n2 ≤ N ≤ exp(
√
n ) then, with probability greater than 1 − N−1,

KN satisfies the following: for every 1 ≤ k ≤ n and every t ≥ 1,( |PF (KN)|
ωk

)1/k

≤ c1t
√

logNLK (4.26)

with probability greater than 1− t−k with respect to νn,k.

For the lower bound we use (P1). Integrating in polar coordinates, we have∫
Gn,k

|P ◦
F (KN)|
ωk

dνn,k(F ) =
∫
Gn,k

∫
SF

1

hkPF (KN )(θ)
dσF (θ) dνn,k(F )

=
∫
Gn,k

∫
SF

1

hkKN(θ)
dσF (θ) dνn,k(F )

≤
(∫

Gn,k

∫
SF

1

hnKN (θ)
dσF (θ) dνn,k(F )

)k/n

=
(∫

S n−1

1

hnKN (θ)
dσ(θ)

)k/n

=
( |K◦

N |
ωn

)k/n
. (4.27)
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By the Blaschke–Santaló inequality and the inclusion KN ⊇ Zc2 logN(K), we get
( |K◦

N |
ωn

)k/n
≤

(
ωn

|KN |
)k/n

≤
(

ωn

|Zc2 logN(K)|
)k/n

. (4.28)

Recall that if q ≤ √
n then

( |Zq(K)|
ωn

)1/n ≥ c3
√
qLK , from which we conclude that

∫
Gn,k

|P ◦
F (KN)|
ωk

dνn,k(F ) ≤
(

c4√
logNLK

)k
. (4.29)

From Markov’s inequality we obtain an upper bound for the volume radius of a
random P ◦

F (KN), and the reverse Santaló inequality proves the following.

Fact 4.7. If n2 ≤ N ≤ exp(
√
n ) then, with probability greater than 1 − N−1,

KN satisfies the following: for every 1 ≤ k ≤ n and every t ≥ 1,
( |PF (KN)|

ωk

)1/k

≥ c5LK
√

logN

t
(4.30)

with probability greater than 1− t−k with respect to νn,k.

Together, Fact 4.6 and Fact 4.7 prove Proposition 4.5.

Remark 4.8. Using [16, Prop. 3.1], one can actually prove that if k ≤ n/4 (or,
more generally, if k ≤ λn for some λ ∈ (0, 1)) then most k-dimensional projec-
tions of KN contain a ball of radius LK

√
logN :

PF (KN) ⊇ c6

t
LK

√
logNBF (4.31)

with probability greater than 1− t−k with respect to νn,k. This, in turn, shows that
(4.30) is satisfied by PF (KN). We omit the details.

4.3. Coordinate Projections of KN

Here we prove Theorem 1.4. Part (i) is proved by our next proposition, which esti-
mates the size of the projection of a random KN onto a fixed subspace F in Gn,k.

Proposition 4.9. Let K be an isotropic convex body in R
n and let 1 ≤ k ≤ n.

For all k < N ≤ ek and for every F ∈Gn,k ,( |PF (KN)|
ωk

)1/k

≤ cLK
√

logN (4.32)

with probability greater than 1−N−1.

Proof. Fix F ∈ Gn,k. For all θ ∈ SF and all x ∈ K, we have hPF (Zq(K))(θ) =
hZq(K)(θ) and 〈PF (x), θ〉 = 〈x, θ〉. Hence we can argue as in Lemma 4.2 to show
that if q ≥ logN then a random KN satisfies



74 N. Dafnis , A. Giannopoulos , & A. Tsolomitis

∫
SF

h
q

PF (KN )
(θ)

h
q

PF (Zq(K))
(θ)

dσF (θ) ≤ c
q

1 . (4.33)

Applying the Cauchy–Schwarz inequality, we obtain

[
w−q/2

(
PF (Zq(K))

)]−q =
(∫

SF

1

h
q/2
PF (Zq(K))

(θ)
dσF (θ)

)2

≤
(∫

SF

1

h
q

PF (KN )
(θ)

dσF (θ)

)(∫
SF

h
q

PF (KN )
(θ)

h
q

PF (Zq(K))

dσF (θ)

)

≤ w−q(PF (KN))−qc
q

1 ;
therefore, if q ≥ logN then

w−q(PF (KN)) ≤ c1sw−q/2
(
PF (Zq(K))

)
(4.34)

with probability greater than 1− s−q.
Assume that q ≤ k. Using Hölder’s inequality and taking polars in the sub-

space F yields ( |(PF (KN)) |
|Bk

2|
)1/k

=
(∫

SF

1

hkPF (KN )(θ)
dσF (θ)

)1/k

≥
(∫

SF

1

h
q

PF (KN )
(θ)

dσF (θ)

)1/q

= w−q(PF (KN))−1. (4.35)

Applying the Blaschke–Santaló inequality on F, we see that

|PF (KN)|1/k ≤ c2√
k
w−q(PF (KN)) (4.36)

for a suitable absolute constant c2 > 0. Then (4.34) shows that

|PF (KN)|1/k ≤ c3s√
k
w−q/2

(
PF (Zq(K))

)
(4.37)

with probability greater than1−s−q for logN ≤ q ≤ k. From (2.22) we know that

PF (Zq(K)) = (k + q)1/q |Bk+q−1(K,F )|1/k+1/qZq(B̄k+q−1(K,F )), (4.38)

and from (2.24) we obtain Zq(B̄k+q−1(K,F )) ⊆ c4Zq/2(B̄k+1(K,F )) for a new
absolute constant c4 > 0. Hence, with probability greater than 1− s−q, if logN ≤
q ≤ k then

|PF (KN)|1/k

≤ c5s√
k
(k + q)1/q |Bk+q−1(K,F )|1/k+1/qw−q/2

(
Zq/2(B̄k+1(K,F ))

)
. (4.39)

But B̄k+1(K,F ) is easily checked to be isotropic, and from (2.17) and (2.19) it then
follows that
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w−q/2
(
Zq/2(B̄k+1(K,F ))

) ≤ c6

√
q√
k
I−q/2(B̄k+1(K,F ))

≤ c7
√
qLB̄k+1(K,F ). (4.40)

From (2.23) and (2.25) we have

LB̄k+1(K,F ) ≤ c8|K ∩ F⊥|1/kLK (4.41)

and

(k + q)1/q |Bk+q−1(K,F )|1/k+1/k|K ∩ F⊥| ≤ e
k + q

k
≤ 2e (4.42)

for q ≤ k. We can now use (4.39) to conclude that

|PF (KN)|1/k ≤ cLK

√
q√
k

(4.43)

with probability greater than 1 − s−q for all q satisfying logN ≤ q ≤ k. The
proposition follows if we choose q = logN for N ≤ ek.

In Proposition 4.9, F may be one of the k-dimensional coordinate subspaces of
R
n. Using a result from [1] gives us a uniform estimate of the same order on the

size of all projections of a random KN onto k-dimensional coordinate subspaces
of R

n. This is part (ii) of Theorem 1.4.

Proposition 4.10. Let K be an isotropic convex body in R
n and let 1 ≤

k ≤ n. For all k < N ≤ exp
(
c1

√
k/log k

)
, with probability greater than 1 −

exp
(−c2

√
k/log k

)
a random KN satisfies the following: for every σ ⊆ {1, . . . , n}

with |σ| = k, ( |Pσ(KN)|
ωk

)1/k

≤ c3LK log(en/k)
√

logN , (4.44)

where ci > 0 are absolute constants.

Proof. Let 1 ≤ k ≤ n. It is proved in [1, Thm. 1.1] that, for every t ≥ 1,

P

(
max|σ|=k‖Pσ(x)‖2 ≥ c1tLK

√
k log

(
en

k

))
≤ exp

(
− t

√
k log

(
en
k

)
√

log(ek)

)
. (4.45)

Assume that N ≤ exp
(
c2

√
k/log k

)
. Then, with probability greater than 1 −

exp
(−c3

√
k/log k

)
, we have that N random points x1, . . . , xN from K satisfy the

following: for every σ ⊆ {1, . . . , n} and for every 1 ≤ i ≤ N,

‖Pσ(xi)‖2 ≤ c4LK
√
k log

(
en

k

)
. (4.46)

Now we recall a well-known volume bound that was obtained independently in
[5], [8], and [12]: if z1, . . . , zN ∈R

k and max‖zi‖2 ≤ α, then
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|conv({z1, . . . , zN})|1/k ≤ c5α
√

logN

k
. (4.47)

In our case inequality this implies that, for every σ with |σ| = k,( |Pσ(KN)|
ωk

)1/k

≤ c6LK log(en/k)
√

logN , (4.48)

as claimed.

5. Combinatorial Dimension in the Unconditional Case

In this section we assume that K is an unconditional isotropic convex body in
R
n. Thus K is symmetric, and the standard orthonormal basis {e1, . . . , en} of R

n

is a 1-unconditional basis for ‖·‖K : for every choice of real numbers t1, . . . , tn and
every choice of signs εj = ±1,

‖ε1t1e1 + · · · + εntnen‖K = ‖t1e1 + · · · + tnen‖K. (5.1)

It is known that the isotropic constant of K satisfies LK � 1. Moreover, Bobkov
and Nazarov [7] have proved that K ⊇ c2Qn for Qn = [− 1

2 , 1
2

]n
.

We will use that, for this class of convex bodies, the family of Lq-centroid
bodies of the cube Qn is extremal (the argument is due to R. Łatała).

Lemma 5.1. Let K be an isotropic unconditional convex body in R
n. Then

Zq(K) ⊇ cZq(Qn) (5.2)

for all q ≥ 1, where c > 0 is an absolute constant.

Proof. Let ε1, ε2, . . . , εn be independent and identically distributed ±1 random
variables defined on some probability space (<, F, P) and with distribution
P(εi = 1) = P(εi = −1) = 1

2 . For every θ ∈ S n−1, the following expres-
sions are a consequence of the unconditionality of K, Jensen’s inequality, and the
contraction principle:

‖〈·, θ〉‖Lq(K) =
(∫

K

∣∣∣∣
n∑
i=1

θi xi

∣∣∣∣
q

dx

)1/q

=
(∫

<

∫
K

∣∣∣∣
n∑
i=1

θiεi |xi |
∣∣∣∣
q

dx dP(ε)

)1/q

≥
(∫

<

∣∣∣∣
n∑
i=1

θiεi

∫
K

|xi | dx
∣∣∣∣
q

dP(ε)

)1/q

≥
(∫

<

∣∣∣∣
n∑
i=1

tiθiεi

∣∣∣∣
q

dP(ε)

)1/q

≥
(∫

Qn

∣∣∣∣
n∑
i=1

tiθiyi

∣∣∣∣
q

dy

)1/q

= ‖〈·, (tθ)〉‖Lq(Qn); (5.3)
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here ti =
∫
K
|xi | dx � LK � 1 and tθ = (t1θ1, . . . , tnθn). Recall that

‖〈·, θ〉‖Lq(Qn) �
∑
j≤q

θ∗j +√
q

( ∑
q<j≤n

(θ∗j )
2

)1/2

(5.4)

(see [6]). Since ti � 1 for all i = 1, . . . , n, it follows that

‖〈·, θ〉‖Lq(K) ≥ ‖〈·, (tθ)〉‖Lq(Qn) ≥ c‖〈·, θ〉‖Lq(Qn), (5.5)

and this proves the lemma.

Since Zq(Qn) � √
qBn

2 ∩Qn, from Fact 3.1 we immediately get the following.

Proposition 5.2. Let K be an isotropic unconditional convex body in R
n. If

c1n ≤ N ≤ exp(c2n) and ifKN = conv{x1, . . . , xN} is a random polytope spanned
by N independent random points x1, . . . , xN uniformly distributed in K, then for
every σ ⊆ {1, . . . , n} we have

Pσ(KN) ⊇ c1
(√

log(N/n)Bσ ∩Qσ

)
(5.6)

with probability 1− on(1).

Proof of Theorem 1.5. Let ε ∈ (0, 1). For every σ ⊆ {1, . . . , n} with |σ| = k, we
have Qσ ⊆ √

kBσ and hence

Pσ(KN) ⊇ c1 min

{√
log(N/n)√

k
,1

}
Qσ ⊇ εQσ (5.7)

provided that

ε ≤ c2

√
log (N/n)√
k

. (5.8)

This shows that

VC(KN , ε) ≥ min

{
c3 log(N/n)

ε2
, n

}
, (5.9)

which is the lower bound in Theorem 1.5.
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