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Compact Subvarieties with
Ample Normal Bundles,

Algebraicity, and Cones of Cycles

Thomas Peternell

1. Introduction

In this paper we study two features of submanifolds (or possibly singular sub-
varieties) Z with ample normal bundle in a compact Kähler manifold X.

First we ask whether Z influences the algebraic dimension a(X)—that is, the
maximal number of algebraically independent meromorphic functions. One ex-
pects the following conjecture to hold (for simplicity we shall assume Z smooth).

1.1. Conjecture. Let X be a compact Kähler manifold containing a compact
submanifold Z of dimension d ≥ 1 with ample normal bundle. Then a(X) ≥
d + 1.

For d = dim X − 1 it is classically known that X is projective, but in higher codi-
mensions there are only a few results [BaM; OP]. These results will be explicity
discussed in Section 3. Here we remark that, for threefolds containing a curve
with ample normal bundle, the conjecture holds up to a mysterious phenomenon
concerning threefolds without meromorphic functions. Our results can be sum-
marized as follows.

1.2. Theorem. Conjecture 1.1 has a positive answer in any one of the following
cases:

(1) Z moves in a family covering X;
(2) X is hyper-Kähler with a(X) ≥ 1;
(3) Z is uniruled.

In all cases, X is automatically projective.

Up to the standard conjecture that compact Kähler manifolds with non–pseudo-
effective canonical bundles must be uniruled, assertion (3) holds even if Z is not
of general type. These results suggest that Conjecture 1.1 may have a stronger ver-
sion claiming that X must be projective, but this is very unlikely. We do exhibit
(following [OP]) a candidate for a Kähler threefold X with a(X) = 2 containing
a curve with ample normal bundle. However, a construction is still missing.
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The second part of the paper is concerned with projective manifolds X and
curves C ⊂ X with ample normal bundles. In the “dual” situation of a hyper-
surface Y with ample normal bundle, the line bundle OX(Y ) is big and is therefore
in the interior of the pseudo-effective cone. We thus expect that the class [C] is in
the interior of the Mori cone NE(X) of curves, as follows.

1.3. Conjecture. Let X be a projective manifold, and let C ⊂ X be a curve
with ample normal bundle. Then [C] is in the interior of NE(X).

Equivalently, if L is any nef line bundle such that L · C = 0, then L ≡ 0. We
prove the following theorem.

1.4. Theorem. Let X be a projective manifold, C ⊂ X a smooth curve with
ample normal bundle, and L a nef line bundle on X. If H 0(X, mL) 	= 0 for some
m > 0 and if L · C = 0, then L ≡ 0.

The key is the fact (due to [S]) that the complement X \C is (n−1)-convex in the
sense of Andreotti–Grauert, where n = dim X. Hence we can prove the following
more general result.

1.5. Theorem. Let Z be an (n−1)-convex manifold of dimension n. Let Y ⊂ Z

be a compact hypersurface ( possibly reducible and nonreduced ). Then the nor-
mal bundle NY/Z cannot be nef.

It is tempting to seek generalizations for q-convex manifolds and subvarieties of
higher codimension; we discuss this in Section 4. We also prove some further re-
sults in the spirit of Theorem 1.4.

Finally, I would like to thank the referee for several valuable comments.

2. Preliminaries

We start by fixing some notation.
(1) Given a complex manifold X and a complex subspace Y ⊂ X with defining

ideal sheaf I, the normal sheaf NY/X of Y is given by

NY/X = Hom(I/I 2, OY ) = (I/I 2)∗.

(2) A coherent sheaf S on a compact complex space X is ample if the tauto-
logical line bundle O(1) on P(S ) is ample. Here the projectivization is taken in
Grothendieck’s sense (cf. e.g. [H2, II.7]). For details on ample sheaves we refer
to [AT].

(3) The algebraic dimension of a compact manifold X (i.e., its transcendence
degree over C in the field of meromorphic functions) will be denoted by a(X).

(4) A compact Kähler manifold (or a manifold in class C; i.e., bimeromorphic
to a Kähler manifold) is called simple if there is no proper compact subvariety
through a very general point of X. Equivalently, there is no family of proper sub-
varieties of X that cover X. In particular, a(X) = 0.
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The only known examples of simple manifolds are (up to bimeromorphic equiv-
alence) general complex tori and “general” hyper-Kähler manifolds. In dimen-
sion 3, Brunella [Br] proved that the canonical bundle of a simple manifold X

must be pseudo-effective. It is also known [DP] that, if a simple threefold X has
a minimal model X ′ (i.e., X ′ is a normal Kähler space with only, say, terminal sin-
gularities and KX ′ is nef ), then κ(X) = 0; yet it is very much an open question
whether KX ′ ≡ 0. Once this is known, it follows that X is bimeromorphic to a
quotient of a torus by a finite group.

The following proposition will be used to establish projectivity in Section 3.

2.1. Proposition. Let X be a compact Kähler manifold, and let (Zs)s∈S be a
covering family of subvarieties (with S irreducible). Assume that the general Zs is
irreducible and reduced and that some irreducible reduced member Z0 has ample
normal sheaf. Then the general member Zs is Moishezon.

Proof. Let q : U → S be the graph of the family with projection p : U → X. We
obtain an inclusion p∗(�1

X) → �1
U and, in combination with the canonical sur-

jection �1
U → �1

U/S , a map

α : p∗(�1
X) → �1

U/S.

Let S = Ker(α), a torsion-free sheaf of rank r, say. Take s ∈ S such that Zs is irre-
ducible and reduced and consider the complex-analytic fiber Z̃s := q−1(s). Then
Z̃s is generically reduced and set-theoretically we have Z̃s = Zs; in other words,
Zs is the reduction of Z̃s . It follows immediately that

(S|Zs)/tor = p∗(N ∗
Zs/X

)/tor.

We essentially need this equation for s = 0. In particular, let T = (∧r S)∗;
then T is a torsion-free sheaf of rank 1 and, by our assumption, (T |Z0)/tor is
ample. Now we take normalizations Ũ → U and S̃ → S followed by a desingu-
larization Û → Ũ, thus inducing a projection q̂ : Û → S̃. Let s0 ∈ S̃ be a point
over 0 and let Ẑs0 be the set-theoretic fiber over s0, which might be reducible. Let
A0 be the irreducible component of Ẑs0 mapping onto Zs0 . Then we have a bira-
tional map A0 → Z0. We may choose π such that

π∗(T )/tor =: T̂
is locally free. Since T |Z0 is ample, it follows that T̂ |A0 is big and nef. Because
Û → U is a projective morphism, we find a line bundle M on Û such that L =
(T̂ )⊗N ⊗ M is ample on every component of Ẑs0 . Hence L|Ẑs0 is ample and so
L|Ẑs is ample for general s. Therefore, the general Zs is Moishezon.

For the reader’s benefit we recall some definitions from convexity theory. First, a
C∞-function ϕ on a complex manifold X of dimension n is strongly q-convex if
i∂∂̄ϕ has at least n− q +1 positive eigenvalues. Also, a function ϕ on an arbitrary
complex space X is strongly q-convex if every point x ∈ X admits an open neigh-
borhood U that can be embedded as a closed subspace into an open set V in Cn

such that there is a strongly q-convex function ψ on V satisfying ψ |U = ϕ|U.
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2.2. Definition. Let X be a complex space.

(1) X is q-convex if there exist a continous function ϕ : X → R and a compact
set K ⊂ X such that ϕ|(X \ K) is strongly pseudo-convex and such that, for
all real numbers c, the sublevel sets {ϕ < c} are relatively compact in X.

(2) A 1-convex space is called strongly pseudo-convex.

Note that some authors use a shift by 1 in the definition of q-convexity; however,
we follow the classical notion.

The theorem of Andreotti and Grauert [AnG] states that, given a coherent sheaf
F on a q-convex space X, the cohomology groups Hj(X, F ) are finite-dimen-
sional for k ≥ q.

3. The Algebraic Dimension

In this section we study the following conjecture.

3.1. Conjecture. Let X be a compact Kähler manifold, and let Z ⊂ X be
an irreducible compact subvariety of dimension d. Assume that the normal sheaf
NZ/X is ample. Then a(X) ≥ d + 1.

If Z is a divisor then the line bundle OX(Z) is big (and nef ); hence X is Moishezon
and thus projective. In higher codimensions, there are two main results confirm-
ing the conjecture.

3.2. Theorem [OP]. Let X be a smooth compact Kähler threefold, and let
C ⊂ X be an irreducible curve with ample normal sheaf. Then a(X) ≥ 2 except
possibly where X is a simple threefold that is not bimeromorphic to a quotient of
a torus by a finite group.

3.3. Theorem [BaM]. Let X be a compact Kähler manifold of dimension n,
and let Y ⊂ X be a locally complete intersection of dimension p with ample nor-
mal bundle. Assume there is a covering family (Zs)s∈S of q-cycles with p+q+1 =
n. Then either a(X) ≥ p +1 or the following statement holds: The compact irre-
ducible parameter space S is simple with dim S = p + 1, the set

) = {s ∈ S | Zs ∩ Y 	= ∅}
has pure codimension 1 in S, and S \ ) is strongly pseudo-convex.

For the case p = 1, we can use Theorem 3.3 to obtain our next result.

3.4. Corollary. Let X be a compact Kähler manifold of dimension n, and let
Y ⊂ X be a smooth curve (or 1-dimensional local complete intersection) with
ample normal bundle. Suppose that X is covered by subvarieties of codimen-
sion 2. Then a(X) ≥ 2.

Proof. By our assumption, there is a covering family (Zs)s∈S of (n − 2)-cycles.
We apply the theorem of Barlet and Magnusson but must exclude the second alter-
native in Theorem 3.3. So assume that dim S = 2, that S is simple, and that set )
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has dimension 1 with strongly pseudo-convex complement S \ ). Now normal-
ize S and apply the following lemma to produce a contradiction.

3.5. Lemma. Let S be a normal compact surface whose desingularization is
Kähler, and assume there is an effective curve ) ⊂ S such that S \ ) is strongly
pseudo-convex. Then a(S) ≥ 1.

Proof. Since S has only finitely many singularities, we may blow up and assume
from the beginning that S is smooth. Let τ : S → S0 be a minimal model. Then,
arguing by way of contradiction, S is either a torus or a K3 surface with a(S0) =
0. In the K3 case, we contract all (−2)-curves and call the result again S0. So in
both cases S0 is a (normal) surface without any curves. By our assumption, we
can find a nonconstant holomorphic function f ∈ O(S \ )). This function yields
a nonconstant holomorphic function on S0 outside a finite set, which extends to
S—a contradiction.

3.6. Remark. Corollary 3.4 should hold for all p = dimY —that is, for any
local complete intersection Y of any codimension p. For this to be true we must
prove the following claim.

Let X be a normal compact Kähler space and ) ⊂ X purely 1-codimen-
sional such that X\) is strongly pseudo-convex. Then X cannot be simple.

Assume that X is simple and dim X = 3. As explained in Section 2, X should
be bimeromorphic to T/G, where T is a simple torus and G a finite group. We ver-
ify the claim in this case. So let ) ⊂ X be purely 1-codimensional such that X \)

is strongly pseudo-convex. Let π : X̂ → X be bimeromorphic such that X̂ admits
a holomorphic bimeromorphic map f : X̂ → T/G. Let )̂ be the preimage of ).

Then X̂ \ )̂ carries nonconstant holomorphic functions. But since dim f()̂) = 0,
we have a contradiction.

Of course, this argument holds in all dimensions. That is to say, it works for
any Kähler space X (of any dimension) that is bimeromorphic to a torus modulo
a finite group.

Next we use ideas from [OP] to address the question of whether, in Theorem 3.2,
the case a(X) = 2 can actually occur.

3.7. Pseudo-Example. Let X be a smooth compact Kähler threefold with
a(X) = 2. Assume that we have a holomorphic algebraic reduction

f : X → S

to a smooth projective surface S with the following properties:

(1) there is an irreducible curve B ⊂ S with B2 > 0 whose preimage XB =
f −1(B) is irreducible;

(2) the general fiber of f |XB is a singular rational curve (with a simple cusp
or node);

(3) XB is projective.

Notice that XB is always Moishezon but that the projectivity is not automatic.
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Given these data, we choose a general hyperplane section C ⊂ XB; hence C

is a local complete intersection in X. Furthermore we have an exact sequence of
vector bundles:

0 → NC/XB
→ NC/X → NXB/X|C → 0.

Since NXB/X|C = f ∗(NB/S)|C is ample, the bundle NC/X is ample, too. If B is
smooth, then so is C.

Certainly a Kähler threefold X satisfying the first two conditions must exist, al-
though an explicit construction seems difficult. It is also plausible that the third
condition holds in certain cases.

It is easy to fulfill all three conditions by allowing B2 = 0. Here are the details.
We start with a Kähler surface S1 of algebraic dimension 1 and with algebraic re-
duction f1 : S1 → T = P1. We may choose S1 so that there is a point x0 ∈ T

such that the fiber f −1
1 (x0) is an irreducible rational curve with a simple cusp or

node. Let S2 be P2 blown up in nine points so that there is an elliptic fibration
f2 : S2 → T. Set

X = S1 ×T S2.

Here we have managed for X to be smooth by arranging f2 to be smooth over the
singular set of f1. The projection h : X → S2 is the algebraic reduction; in par-
ticular, a(X) = 2. Let B = f −1

2 (x0), an elliptic curve, and observe that XB �
f −1

1 (x0) × B (which is projective).

If Z is a subvariety with ample normal sheaf moving in a covering family, then
matters become much easier.

3.8. Theorem. Let X be a compact Kähler manifold, and let Z ⊂ X be an
irreducible reduced subspace with ample normal sheaf. Assume that Z moves in
a generically irreducible and reduced family (Zs)s∈S that covers X. Then X is
projective.

Proof. By Proposition 2.1, the general Zs is Moishezon. We may assume that the
family (Zs) is not connecting. That is, two general points cannot be connected
by a chain of curves Zs , for otherwise X is already projective by Campana [C1]
since then X is algebraically connected. Hence we may consider the quotient of
the family, which yields an almost holomorphic map f : X ��� W that contracts
two general points to the same point in W if and only if they can be joined by a
chain of members Zs (cf. [C1; C2]). Because the family is not connecting, we
have dimW > 0. Now the general Zs is contained in a compact fiber Xw. Thus
we obtain a generically surjective map

NZs/X → NXw/X|Zs � O⊕k
Zs

,

which contradicts the ampleness of NZs/X.

Notice that the ampleness of the normal sheaf of Z need not mean that some mul-
tiple of Z moves; see [FL] for a counterexample.

Finally, we address the interesting case where X is a hyper-Kähler manifold.
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3.9. Theorem. Let X be a compact hyper-Kähler manifold, and let C ⊂ X be
an irreducible curve with ample normal sheaf. If a(X) ≥ 1, then X is projective.

Proof. Suppose X is not projective. Following arguments used in [COP, (3.4)],
let g : X ��� B be an algebraic reduction and let π : X̂ → X be a bimeromorphic
map from a compact Kähler manifold X̂ such that the induced map f : X̂ → B is
holomorphic. Now fix an ample line bundle A on B and set

L = (π∗f ∗(A))∗∗.

Then, by [COP, (3.4)], the line bundle L is nef with L · C = 0. Since L is effec-
tive, this contradicts Corollary 4.4 (to follow).

3.10. Remark. Theorem 3.9 should hold without the assumption that a(X) ≥ 1.
In other words, a hyper-Kähler manifold X of dimension 2n containing an irre-
ducible curve C with ample normal sheaf should be projective. Let qX be the
Beauville form. Then we have an isomorphism,

ι : H1,1(X, Q) → H 2n−1,2n−1(X, Q)

(see [COP, p. 411] for details). In particular, there exists a u ∈ H1,1(X, Q) such
that ι(u) = [C]; that is,

a · C = qX(a, u)

for all a ∈ H1,1(X, Q). Since u is a rational class, there must exist a positive ratio-
nal number λ and a line bundle L such that u = λc1(L). The hope now is that the
positivity of the normal sheaf of C implies that L is nef (and that L is semi-ample).

Suppose C ⊂ X is a smooth curve with small genus and ample normal bundle.
Then we have the following algebraicity result (cf. [OP]).

3.11. Proposition. Let X be a compact Kähler manifold, and let C ⊂ X be a
smooth curve with ample normal bundle. If g(C) ≤ 1, then the manifold X is
projective.

In fact, much more can be shown. If g(C) = 0, then X is rationally connected,
and if g(C) = 1, then either X is rationally connected or the rational quotient has
1-dimensional image. In the latter case we have a holomorphic map f : X → W

with rationally connected fiber to an elliptic curve W, and B is an étale multi-
section.

This result can be generalized to higher dimensions as follows.

3.12. Theorem. Let X be a compact Kähler manifold, and let Z ⊂ X be a com-
pact submanifold with ample normal bundle. If Z is uniruled, then X is uniruled
and projective.

Proof. Since Z is uniruled and since the normal bundle NZ/X is ample, it follows
that X must be uniruled. In fact, since Z is uniruled, there exists a morphism
f : P1 → Z such that f ∗(TZ) is nef. The ampleness of NZ/X now implies that
f ∗(TX) is also nef. Therefore, X is uniruled.
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Now let f : X ��� W be “the” rational quotient or MRC fibration. Then we
apply [P2, Thm. 3.7] to conclude that Z dominates W. (We may apply that theo-
rem because its essential ingredient—Lemma 3.6 in [P2]—works also in the
Kähler case.) We know that W is projective (since it is dominated by Z). More-
over, the fibers of f are projective, so we may conclude that any two points of X

can be joined by a chain of compact curves, whence X is projective (by [C1]). In
other words, any two general points of X can be joined by a chain of algebraic
subvarieties.

3.13. Remark. Theorem 3.12 should hold if we assume κ(Z) < dim Z instead
of the uniruledness of Z. In fact, the Kähler version of [P2, Thm. 3.2] proves that
at least KX is not pseudo-effective. It is thus conjectured (although completely
open in dimension ≥ 4) that X is uniruled. Once we know the uniruledness, we
conclude as before.

We remark that one can also prove versions of Theorem 3.12 by weakening the
ampleness condition.

4. Curves with Ample Normal Bundles
and the Cone of Curves

If X is a projective manifold containing a hypersurface Y with ample normal bun-
dle, then it follows (as we have already mentioned) that the line bundle OX(Y ) is
big and hence that the class [Y ] is in the interior of the effective cone of X. We
have the following dual expectation.

4.1. Conjecture. Let X be a projective manifold and C ⊂ X an irreducible
curve. If the normal sheaf NC/X is ample, then [C] is in the interior of the Mori
cone NE(X).

This conjecture can be restated as follows.

4.2. Conjecture. Let X be a projective manifold, let L be a nef R-line bun-
dle, and let C ⊂ X be an irreducible curve with ample normal bundle. If L · C =
0, then L ≡ 0.

It is noteworthy that, in codimensions other than 1 and n − 1, the corresponding
statement is false; this fact is demonstrated by an example of Voisin [V]. We con-
sider first the case when C is smooth and L is an honest line bundle with section
having smooth zero locusY. In Theorem 4.5 we show that the smoothness assump-
tion is not necessary, but it does make the argument a little easier. We will also
see that Theorem 4.3 encodes a statement on convex manifolds, which we treat
separately (Corollary 4.8) for the benefit of readers who are interested in only pro-
jective geometry.

4.3. Theorem. Let X be a projective manifold, and let Y ⊂ X be a smooth
hypersurface with nef normal bundle. Let C ⊂ X be a smooth curve with ample
normal bundle. Then Y ∩ C 	= ∅.
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Proof. Let n = dim X. Suppose to the contrary that Y ∩C = ∅ and set Z = X\C.

By [U], the normal bundle NC/X is “Griffiths positive” and so, by Schneider [S],
Z is (n −1)-convex in the sense of Andreotti and Grauert. By their finiteness the-
orem [AnG],

dim H n−1(Z, F ) < ∞
for any coherent sheaf F on Z. Hereafter we shall use only line bundles F. Let
Yk be the k th infinitesimal neighborhood Y ; that is, Y is defined by the ideal I k

Y .

Consider the exact sequence

H n−1(Z, F ) → H n−1(Yk , F ) → H n(Z, I k
Y ⊗ F ).

Because the last group vanishes owing to the noncompactness of Z [Si], we con-
clude that dim H n−1(Yk , F ) is bounded from above: there is a constant M > 0
such that

dim H n−1(Yk , F ) ≤ M (1)

for all positive k.

Now choose F to be a negative line bundle on Y. Then, by Kodaira vanishing,

H1(Y, KY ⊗ N
µ

Y ⊗ F ∗) = 0 (2)

for all µ ≥ 0. Dually,
H n−2(Y, N ∗µ

Y ⊗ F ) = 0.

We thus obtain an exact sequence

0 −→ H n−2(Yk , F )
bk−→ H n−2(Yk−1, F ) −→ H n−1(Y, (N ∗

Y )k ⊗ F )

−→ H n−1(Yk , F )
ak−→ H n−1(Yk−1, F ) −→ 0.

Note that bk is an isomorphism for large k. By the boundedness statement (1),
ak is an isomorphism for k � 0. Therefore,

H n−1(Y, (N ∗
Y )k ⊗ F ) = 0

for k � 0. Dualizing now yields

H 0(Y, KY ⊗ N k
Y ⊗ F ∗) = 0

for all k ≥ k0(F )). Setting B = NY and A = F ∗ (for simplicity), we are in the
following situation:

B is a nef line bundle on Y such that, for all ample line bundles A, there
is a number k0(A) such that

H 0(Y, KY ⊗ kB ⊗ A) = 0

for k ≥ k0(A).

Equivalently, by Kodaira vanishing we have

χ(Y, KY ⊗ kB ⊗ A) = 0.

This is clearly impossible by Riemann–Roch—a contradiction. We actually do
not need to consider all ample A here; it suffices to take for A the powers of a fixed
ample line bundle.
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4.4. Corollary. Let L = OX(Y ) be a nef line bundle with Y smooth, and let
C ⊂ X be a smooth curve with ample normal bundle. Then L · C > 0.

Proof. Assume L · C = 0. Then, by Theorem 4.3, we have C ⊂ Y. Now the nor-
mal bundle sequence

0 → NC/Y → NC/X → NY/X|C = OC → 0

contradicts the ampleness of NC/X.

4.5. Theorem. Theorem 4.3 remains true for singular (and possibly nonre-
duced ) reducible hypersurfaces Y.

Proof. The proof in the smooth case basically goes over to this case with the fol-
lowing modifications. Of course, the use of Kodaira vanishing (2) is critical. We
fix a negative line bundle F, which we may choose as a restriction of a negative
line bundle F̃ on X. Then we can apply Kodaira vanishing on X to obtain the van-
ishing (2) and also for higher H qs. Namely,

H q(X, KX ⊗ F̃ ∗ ⊗ OX((µ + 1)Y )) = H q+1(X, KX ⊗ F̃ ∗ ⊗ OX(µY ))

implies (via the adjunction formula) that

H q(Y, KY ⊗ F ∗ ⊗ N
µ

Y ) = 0.

At the end we compute χ(KY ⊗ kB ⊗ A) via Riemann–Roch on X. In fact, we
obtain as before that

χ(Y, KY ⊗ N k
Y ⊗ A) = 0 (3)

for all extendable ample line bundles A on Y and for k ≥ k0(A). By “extend-
ability” we mean that there is an ample line bundle Ã on X such that Ã|Y = A.

Then, by (3), χ(X, KX ⊗ O(kY ) ⊗ Ã) is constant for large (and hence all) k. By
Riemann–Roch this immediately implies Y ≡ 0, which is absurd.

4.6. Corollary. Conjecture 4.2 holds if L is effective and C is smooth (with
ample normal bundle).

The claim is a consequence of Theorem 4.5 and the following lemma due to Ful-
ton and Lazarsfeld.

4.7. Lemma. Let Y = ∑N
i=1 miYi be an effective nef divisor on the projective

manifold X, and let C ⊂ X be an irreducible curve with ample normal sheaf.
Suppose that suppY ∩ C 	= ∅. Then Y · C 	= 0.

Proof. We may assume that C ⊂ supp(Y ). Let Y1, . . . , Ys be the components Yj

such that C ⊂ Yj . We may also assume that Yj ·C ≤ 0 for some j, since otherwise
we are already done. After renumbering, we have j = 1. Consider the canoni-
cal map

κ : N ∗
Y1/X|C → N ∗

C/X.
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Since N ∗
Y1/X|C is nef, it follows that κ|C = 0; that is, C ⊂ Sing(Y1). Taking

power series expansions of the local equation of Y1, we obtain a number k ≥ 2 and
a nonzero map

N ∗
Y1/X|C → S kN ∗

C/X,

again contradicting the nefness of N ∗
Y1/X|C.

It is interesting to note that the proof of Theorem 4.5 actually shows more—in
particular, our next corollary.

4.8. Corollary. Let Z be an (n−1)-convex complex manifold of dimension n,
and let Y ⊂ X be a compact hypersurface. Then the normal bundle NY/Z cannot
be nef.

We are thus led to pose the following.

4.9. Question. Let X be a q-convex manifold, and let Y ⊂ X be a compact
subvariety with nef normal sheaf. Is then dimY ≤ q − 1?

Besides the case q = n − 1, this question has a positive answer also for q = 1
because then there exists a proper modification φ : X → W to a Stein space W.

Thus dim φ(C) = 0, which easily contradicts the nefness of the normal sheaf of
the curve Y.

Even if Y has ample normal sheaf, Question 4.9 remains open. In fact, a posi-
tive answer would imply a solution to this conjecture of Hartshorne [H1]:

Let Z be a projective manifold containing submanifolds X and Y with
ample normal bundles. If dim X + dim Y ≥ dim Z, then X ∩ Y 	= ∅.

See [P3] for further information on this conjecture. The connection to Question 4.9
is provided by the convexity of Z \ X (resp., of Z \ Y ).

4.10. Remark. If C is a singular curve, then Theorem 4.5 should essentially re-
main valid. The only point that needs to be shown is the (n − 1)-convexity of the
complement X \ C, which is rather subtle. The results of Fritzsche [Fr1, Fr2] in-
dicate that X \ C is (n − 1)-convex provided that the rank of the conormal sheaf
I/I 2 at every point is at most n − 1—which means, of course, that I/I 2 is lo-
cally free and of rank n−1. This is true in particular when C is locally a complete
intersection (see also [S] in this context).

Instead of making assumptions about the line bundle L, one might impose condi-
tions on C.

4.11. Theorem. Let X be a projective manifold, and let C ⊂ X be an irre-
ducible curve with ample normal bundle. Assume that C moves in a family (Cs)

covering X. Let L be a nef line bundle with L · C = 0. Then L ≡ 0.

Proof. Let f : X ��� W be the nef reduction of L [Bau+]. The map f is al-
most holomorphic and, owing to the existence of the family (Cs), the map f is
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not trivial: dimW < dim X. A general member Cs still has ample normal bundle;
in contrast, Cs is contained in a (compact) fiber of f. This is possible only when
dimW = 0. Hence, by [Bau+], we have L ≡ 0.

5. Curves with Ample Normal Bundles:
A Birational Point of View

A curve with ample normal bundle might not be in the interior of the movable cone
ME(X). Simply start with a projective manifold Y containing a curve C with
ample normal bundle and let π : X → Y be the blow-up of Y at a point Y /∈ C. If
E ⊂ X is the exceptional divisor then E · C = 0; hence [C] is in the boundary of
ME(X), since ME(X) is the dual cone of the pseudo-effective cone by [BDPaP].
However, there is a sense (albeit an imprecise one) in which this should be the
only obstruction.

5.1. Conjecture. Let X be a projective manifold and C ⊂ X a curve with
ample normal sheaf. Let L be a pseudo-effective line bundle with L ·C = 0. Then
the numerical dimension ν(L) = 0.

This conjecture should be seen as a birational version of Conjecture 4.2. For the
notion of the numerical dimension of a pseudo-effective line bundle, we refer to
[B; BDPaP]. If L is nef then ν(L) = 0 simply means that L ≡ 0, so Conjecture 5.1
implies Conjecture 4.2. (This is clear from the viewpoint of cones: ME(X) ⊂
NE(X).)

Here is some evidence for Conjecture 5.1.

5.2. Proposition. Let L be a line bundle and C ⊂ X an irreducible curve with
ample normal sheaf. Assume that L · C = 0. Then κ(L) ≤ 0.

Proof. This is a direct consequence of [PSSo, Thm. 2.1].

5.3. Remark. According to Boucksom [B], a pseudo-effective line bundle L

admits a so-called divisorial Zariski decomposition:

L ≡ M + E,

where M is an R-divisor that is nef in codimension 1 and E is an effective R-
divisor. Suppose L · C = 0 for a curve C with ample normal sheaf. Since [C] ∈
ME(X), we have E · C ≥ 0 and M · C ≥ 0; hence

M · C = 0.

Observe that M ≡ 0 is equivalent to ν(L) = 0. As a result, Conjecture 5.1 is
equivalent to the following.

5.4. Conjecture. Let X be a projective manifold, let C ⊂ X be an irreducible
curve with ample normal sheaf, and let L be an R-divisor that is nef in codimen-
sion 1. If L · C = 0, then L ≡ 0.
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Showing that the class [C] of an irreducible curve C ⊂ X is in the interior of the
movable cone requires a more global assumption than just the ampleness of the
normal sheaf. We shall use the following notation introduced in [PSSo].

5.5. Definition. Let X be a projective manifold. A sequence

Yq ⊂ Yq+1 ⊂ · · · ⊂ Yn = X

of k-dimensional irreducible subvarieties Yk ⊂ X is an ample q-flag if, for every
q ≤ k ≤ n − 1, there is an ample Cartier divisor Dk on the normalization ηk+1:
Ỹk+1 → Yk+1 such that Yk = ηk+1(supp(Dk+1)).

5.6. Remark. The main result in [BDPaP] implies that the closed cone gener-
ated by the classes of curves appearing as the first member of an ample (n−1)-flag
is the movable cone.

Our next theorem can now be easily shown.

5.7. Theorem. Let X be a projective manifold, and let C ⊂ X be an irreducible
curve appearing in the ample flag

C = Y1 ⊂ · · · ⊂ Yq ⊂ · · · ⊂ Yn = X.

Then [C] is in the interior of ME(X).

Proof. We must prove the following statement:

If L is a pseudo-effective line bundle with L · C = 0, then L ≡ 0.

We prove inductively that L|Yi ≡ 0 for all i.

The claim for i = 1 is our assumption L · C = 0. So suppose the statement
holds for i; that is, let L|Yi ≡ 0. With notation as in Definition 5.5, we find an
ample divisor Di+1 on Ỹi+1 such that

η∗
i+1(L)|(supp Di+1) ≡ 0.

The proof is complete once we have shown the following proposition.

5.8. Proposition. Let X be a normal projective variety, let D = ∑
miDi be

an ample divisor, and let L be a pseudo-effective line bundle. If L|Di ≡ 0 for all
i, then L ≡ 0.

Proof. By assumption, L · Di = 0 for all i; hence L · D = 0. Let H1, . . . , Hn−2

be arbitrary very ample divisors. Then

L · H1 · · · Hn−2 ∈ NE(X)

because L is pseudo-effective. Hence the vanishing

L · H1 · · · Hn−2 · D = 0,

together with the ampleness of D, implies that

L · H1 · · · Hn−2 = 0.

This equality holds only when L ≡ 0.
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