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Surfaces with Parallel Mean Curvature
in S3 × R and H3 × R

Dorel Fetcu & Harold Rosenberg

1. Introduction

In 1968, J. Simons discovered a fundamental formula for the Laplacian of the sec-
ond fundamental form of a minimal submanifold in a Riemannian manifold. He
then used this formula to characterize certain minimal submanifolds of a sphere
and Euclidean space (see [17]). One year later, K. Nomizu and B. Smyth general-
ized Simons’s equation for hypersurfaces of constant mean curvature (cmc hyper-
surfaces) in a space form (see [15]). This was extended, in Smyth’s work [18], to
the more general case of a submanifold with parallel mean curvature vector (pmc
submanifold) in a space form. Over the years such equations, called Simons-type
equations, turned out to be very useful, and a great number of authors have used
them in the study of cmc and pmc submanifolds (see e.g. [3; 10; 16]).

Nowadays, the study of cmc surfaces in Euclidean space and, more generally, in
space forms is a classical subject in the field of differential geometry; well-known
papers by H. Hopf [13] and S.-S. Chern [9] are representative examples from the
literature on this topic. When the codimension is greater than 1, a natural gener-
alization of cmc surfaces are pmc surfaces. These have been intensively studied
in the last four decades, and among the first papers devoted to this subject are
those by D. Ferus [11], B.-Y. Chen and G. D. Ludden [8], D. A. Hoffman [12],
and S.-T.Yau [20]. All results in these papers were obtained in the case when the
ambient space is a space form.

The next natural step was taken by U.Abresch and H. Rosenberg, who studied in
[1; 2] cmc surfaces and obtained Hopf-type results in product spacesM 2(c)× R,
whereM 2(c) is a complete simply connected surface with constant curvature c, as
well as in the homogeneous 3-manifolds Nil(3), ˜PSL(2, R), and Berger spheres.
Some of their results in [1] were extended to pmc surfaces in product spaces
of Mn(c) × R, where Mn(c) is an n-dimensional space form, by H. Alencar,
M. do Carmo, and R. Tribuzy [4; 5].

In a recent paper, M. Batista [7] derived a Simons-type equation involving the
traceless part of the second fundamental form of a cmc surface inM 2(c)× R and
found several applications.
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In this paper we compute the Laplacian of the squared norm of the traceless
part φ of the second fundamental form σ of a pmc surface in a product space
M 3(c)× R; then, using this Simons-type formula, we characterize some of these
surfaces. The main results of our paper are the following.

Theorem 5.2. Let �2 be an immersed pmc 2-sphere inMn(c)× R such that :

(1) |T |2 = 0 or |T |2 ≥ 2
3 and |σ|2 ≤ c(2 − 3|T |2) if c < 0;

(2) |T |2 ≤ 2
3 and |σ|2 ≤ c(2 − 3|T |2) if c > 0.

Here T is the tangent part of the unit vector ξ tangent to R. Then �2 is either a
minimal surface in a totally umbilical hypersurface ofMn(c) or a standard sphere
inM 3(c).

Theorem 5.3. Let�2 be an immersed complete nonminimal pmc surface in M̄ =
M 3(c)× R, with c > 0 and mean curvature vector H. Assume

(i) |φ|2 ≤ 2|H |2 + 2c − 5c
2 |T |2 and

(ii) either
(a) |T | = 0 or
(b) |T |2 > 2

3 and |H |2 ≥ c|T |2(1 − |T |2)/(3|T |2 − 2).

Then either

(1) |φ|2 = 0 and �2 is a round sphere inM 3(c), or
(2) |φ|2 = 2|H |2 + 2c and �2 is a torus S1(r) × S1

(√
1/c − r 2

)
, r 2 
= 1/2c,

inM 3(c).

Acknowledgments. The first author would like to thank the IMPA in Rio de
Janeiro for providing a very stimulative work environment during the preparation
of this paper.

2. Preliminaries

LetMn(c) be a simply connected n-dimensional manifold with constant sectional
curvature c, and consider the product manifold M̄ = Mn(c)× R. The expression
of the curvature tensor R̄ of such a manifold can be obtained from

〈R̄(X,Y )Z,W 〉 = c{〈dπY, dπZ〉〈dπX, dπW 〉 − 〈dπX, dπZ〉〈dπY, dπW 〉},
where π : M̄ = Mn(c) × R → Mn(c) is the projection map. A straightforward
computation yields

R̄(X,Y )Z = c{〈Y,Z〉X − 〈X,Z〉Y − 〈Y, ξ〉〈Z, ξ〉X + 〈X, ξ〉〈Z, ξ〉Y
+ 〈X,Z〉〈Y, ξ〉ξ − 〈Y,Z〉〈X, ξ〉ξ}, (2.1)

where ξ is the unit vector tangent to R.

Now let �2 be an immersed surface in M̄ and denote by R its curvature tensor.
Then, from the Gauss equation
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〈R(X,Y )Z,W 〉 = 〈R̄(X,Y )Z,W 〉

+
n+1∑
α=3

{〈AαY,Z〉〈AαX,W 〉 − 〈AαX,Z〉〈AαY,W 〉},
we obtain

R(X,Y )Z = c{〈Y,Z〉X − 〈X,Z〉Y − 〈Y, T 〉〈Z, T 〉X + 〈X, T 〉〈Z, T 〉Y
+ 〈X,Z〉〈Y, T 〉T − 〈Y,Z〉〈X, T 〉T }

+
n+1∑
α=3

{〈AαY,Z〉AαX − 〈AαX,Z〉AαY }; (2.2)

here T is the component of ξ tangent to the surface, and A is the shape operator
defined by the Weingarten equation

∇̄XV = −AVX + ∇⊥
X V

for any vector field X tangent to �2 and any vector field V normal to the surface.
Here ∇̄ is the Levi–Civita connection on M̄ and ∇⊥ is the connection in the nor-
mal bundle; also, Aα = AEα , with {Eα}n+1

α=3 a local orthonormal frame field in the
normal bundle.

Definition 2.1. If the mean curvature vector H of the surface �2 is parallel in
the normal bundle (i.e., if ∇⊥H = 0), then �2 is called a pmc surface.

We conclude this section by recalling the Omori–Yau maximum principle, which
will be used later.

Theorem 2.2 [21]. If M is a complete Riemannian manifold with Ricci curva-
ture bounded from below, then for any smooth function u∈C2(M) with supM u <
+∞ there exists a sequence of points {pk}k∈N ⊂ M satisfying

lim
k→∞ u(pk) = sup

M

u, |∇u|(pk) < 1

k
, and  u(pk) <

1

k
.

3. A Formula for pmc Surfaces in Mn(c) × RRR

Let�2 be an immersed surface inMn(c)×R with mean curvature vectorH. In this
section we prove a formula for the Laplacian of the squared norm of AV , whereV
is a normal vector field to the surface, such thatV is parallel in the normal bundle;
that is, ∇⊥V = 0 and traceAV = constant.

Lemma 3.1. If U and V are normal vectors to the surface and if V is parallel in
the normal bundle, then [AV ,AU ] = 0; in other words, AV commutes with AU.

Proof. The conclusion follows easily from the Ricci equation

〈R⊥(X,Y )V,U〉 = 〈[AV ,AU ]X,Y 〉 + 〈R̄(X,Y )V,U〉,
since R⊥(X,Y )V = 0 and (2.1) implies that 〈R̄(X,Y )V,U〉 = 0.
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Now, from the Codazzi equation

〈R̄(X,Y )Z,V 〉 = 〈∇⊥
X σ(Y,Z),V 〉 − 〈σ(∇XY,Z),V 〉 − 〈σ(Y, ∇XZ),V 〉

− 〈∇⊥
Y σ(X,Z),V 〉 + 〈σ(∇YX,Z),V 〉 + 〈σ(X, ∇YZ),V 〉

(where σ is the second fundamental form of �2), we get

〈R̄(X,Y )Z,V 〉 = X(〈AVY,Z〉)− 〈σ(Y,Z), ∇⊥
X V 〉 − 〈AV (∇XY ),Z〉

− 〈AVY, ∇XZ〉 − Y(〈AVX,Z〉)+ 〈σ(X,Z), ∇⊥
Y V 〉

+ 〈AV (∇YX),Z〉 + 〈AVX, ∇YZ〉
= 〈(∇XAV)Y − (∇YAV)X,Z〉,

since ∇⊥V = 0. Therefore, we can use (2.1) to obtain

(∇XAV)Y = (∇YAV)X + c〈V,N 〉(〈Y, T 〉X − 〈X, T 〉Y ), (3.1)

where N is the normal part of ξ.
Next, we have

1

2
 |AV |2 = |∇AV |2 + 〈∇2AV ,AV 〉, (3.2)

where we extended the metric 〈·, ·〉 to the tensor space in the standard way. In
order to calculate the second term on the right-hand side of (3.2), we shall use a
method introduced in [15].

Let us write
C(X,Y ) = ∇X(∇YAV)− ∇∇XYAV ,

and note that the vanishing of the torsion of ∇ and the definition of the curvature
tensor R on the surface together imply that

C(X,Y ) = C(Y,X)+ [R(X,Y ),AV ]. (3.3)

Now consider an orthonormal basis {e1, e2} in Tp�2 (p ∈�2), extend e1 and e2 to
vector fields E1 and E2 in a neighborhood of p such that ∇Ei = 0 at p, and let X
be a tangent vector field such that ∇X = 0. Obviously, at p we have

(∇2AV)X =
2∑
i=1

∇Ei(∇EiAV)X =
2∑
i=1

C(Ei,Ei)X.

Using equation (3.1) yields, at p,

C(Ei,X)Ei = (∇Ei(∇XAV))Ei − (∇∇EiX
AV)Ei

= ∇Ei((∇XAV)Ei)− (∇XAV)(∇EiEi)
= ∇Ei((∇EiAV)X)+ c∇Ei(〈V,N 〉(〈Ei, T 〉X − 〈X, T 〉Ei));

then

C(Ei,X)Ei = (∇Ei(∇EiAV))X + (∇EiAV)(∇EiX)
− c〈AVEi, T 〉(〈Ei, T 〉X − 〈X, T 〉Ei)
+ c〈V,N 〉(〈ANEi,Ei〉X − 〈ANX,Ei〉Ei)

= C(Ei,Ei)X − c〈AVEi, T 〉(〈Ei, T 〉X − 〈X, T 〉Ei)
+ c〈V,N 〉(〈ANEi,Ei〉X − 〈ANX,Ei〉Ei). (3.4)
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Here we have used that σ(Ei, T ) = −∇⊥
Ei
N and ∇EiT = ANEi, which follow be-

cause ξ is parallel.
We also have

C(X,Ei)Ei = ∇X((∇EiAV)Ei); (3.5)

then (3.3)–(3.5) yield

C(Ei,Ei)X = C(Ei,X)Ei + c〈AVEi, T 〉(〈Ei, T 〉X − 〈X, T 〉Ei)
− c〈V,N 〉(〈ANEi,Ei〉X − 〈ANX,Ei〉Ei)

= C(X,Ei)Ei + [R(Ei,X),AV ]Ei
+ c〈AVEi, T 〉(〈Ei, T 〉X − 〈X, T 〉Ei)
− c〈V,N 〉(〈ANEi,Ei〉X − 〈ANX,Ei〉Ei),

which means that

C(Ei,Ei)X = ∇X((∇EiAV)Ei)+ [R(Ei,X),AV ]Ei
+ c〈AVEi, T 〉(〈Ei, T 〉X − 〈X, T 〉Ei)
− c〈V,N 〉(〈ANEi,Ei〉X − 〈ANX,Ei〉Ei).

Since AV is symmetric, it follows that also ∇EiAV is symmetric. Hence by (3.1)
we have〈 2∑

i=1

(∇EiAV)Ei,Z
〉

=
2∑
i=1

〈Ei, (∇EiAV)Z〉 =
2∑
i=1

〈Ei, (∇ZAV)Ei〉

+ c〈V,N 〉
2∑
i=1

〈Ei, 〈Z, T 〉Ei − 〈Ei, T 〉Z〉

= trace(∇ZAV)+ c〈V,N 〉〈T,Z〉
= Z(traceAV)+ c〈V,N 〉〈T,Z〉
= c〈V,N 〉〈T,Z〉

for any vector Z that is tangent to �2, since traceAV = constant.
Therefore, at p,

(∇2AV)X =
2∑
i=1

C(Ei,Ei)X

= c∇X(〈V,N 〉T )+
2∑
i=1

[R(Ei,X),AV ]Ei

+ c
2∑
i=1

〈AVEi, T 〉(〈Ei, T 〉X − 〈X, T 〉Ei)

− c
2∑
i=1

〈V,N 〉(〈ANEi,Ei〉X − 〈ANX,Ei〉Ei).

Then, since ∇̄Xξ = 0 implies σ(X, T ) = −∇⊥
X N and ∇XT = ANX, we have
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(∇2AV)X =
2∑
i=1

[R(Ei,X),AV ]Ei

+ c{2〈V,N 〉ANX − 〈AVX, T 〉T + 〈AVT, T 〉X
− 〈X, T 〉AVT − 2〈H,N 〉〈V,N 〉X}. (3.6)

From the Gauss equation (2.2) of the surface �2 and Lemma 3.1, it now fol-
lows that

2∑
i=1

R(Ei,X)AVEi = c
2∑
i=1

{〈X,AVEi〉Ei − 〈Ei,AVEi〉X
− 〈X, T 〉〈AVEi, T 〉Ei + 〈Ei, T 〉〈AVEi, T 〉X
+ 〈Ei,AVEi〉〈X, T 〉T − 〈X,AVEi〉〈Ei, T 〉T }

+
2∑
i=1

n+1∑
α=3

{〈AαX,AVEi〉AαEi − 〈AαEi,AVEi〉AαX},

which means that
2∑
i=1

R(Ei,X)AVEi = c{AVX − (traceAV)X + (traceAV)〈X, T 〉T
− 〈AVX, T 〉T − 〈X, T 〉AVT + 〈AVT, T 〉X}

+
n+1∑
α=3

{AVA2
αX − (trace(AVAα))AαX}

and
2∑
i=1

AVR(Ei,X)Ei = c
2∑
i=1

{〈X,Ei〉AVEi − 〈Ei,Ei〉AVX
− 〈X, T 〉〈Ei, T 〉AVEi + 〈Ei, T 〉〈Ei, T 〉AVX
+ 〈Ei,Ei〉〈X, T 〉AVT − 〈X,Ei〉〈Ei, T 〉AVT }

+
2∑
i=1

n+1∑
α=3

{〈AαX,Ei〉AVAαEi − 〈AαEi,Ei〉AVAαX}

= −c(1 − |T |2)AVX +
n+1∑
α=3

{AVA2
αX − (traceAα)AVAαX}.

Finally, replacing in equation (3.6), we find

(∇2AV)X = c{(2 − |T |2)AVX + 2〈AVT, T 〉X − 2〈AVX, T 〉T − 2〈X, T 〉AVT
+ 2〈V,N 〉ANX − 2〈H,N 〉〈V,N 〉X
− (traceAV)X + (traceAV)〈X, T 〉T }

+
n+1∑
α=3

{(traceAα)AVAαX − (trace(AVAα))AαX};
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a straightforward computation then yields

〈∇2AV ,AV 〉 =
2∑
i=1

〈(∇2AV)Ei,AVEi〉

= c{(2 − |T |2)|AV |2 − 4|AVT |2 + 3(traceAV)〈AVT, T 〉
+ 2(trace(ANAV))〈V,N 〉 − (traceAV)

2

− 2(traceAV)〈H,N 〉〈V,N 〉}

+
n+1∑
α=3

{(traceAα)(trace(A2
VAα))− (trace(AVAα))

2}.

Thus, from (3.2) we obtain the following result.

Proposition 3.2. Let �2 be an immersed surface inMn(c)× R. If V is a nor-
mal vector field, parallel in the normal bundle and with traceAV = constant, then

1

2
 |AV |2 = |∇AV |2 + c{(2 − |T |2)|AV |2 − 4|AVT |2 + 3(traceAV)〈AVT, T 〉

+ 2(trace(ANAV))〈V,N 〉 − (traceAV)
2

− 2(traceAV)〈H,N 〉〈V,N 〉}
+
n+1∑
α=3

{(traceAα)(trace(A2
VAα))− (trace(AVAα))

2}, (3.7)

where {Eα}n+1
α=3 is a local orthonormal frame field in the normal bundle.

Corollary 3.3. If �2 is an immersed nonminimal pmc surface in Mn(c) × R

and if φH is the operator defined by φH = 1
|H |AH − |H | Id, then

1

2
 |φH |2 = |∇φH |2 + {c(2 − 3|T |2)+ 4|H |2 − |σ|2}|φH |2

− 2c|H |〈φHT, T 〉 + 2c

|H | 〈H,N 〉 trace(ANφH ). (3.8)

Proof. From the definition of φH we have ∇φH = 1
|H |∇AH as well as |φH |2 =

1
|H |2 |AH |2 − 2|H |2 and 1

|H |2 |AHT |2 = 1
2 |T |2|φH |2 + |H |2|T |2 + 2|H |〈φHT, T 〉;

here we have used that |φHT |2 = 1
2 |T |2|φH |2, which can be easily verified by work-

ing in a basis that diagonalizes φH while taking into account that traceφH = 0.
Next, from equation (3.6) with V = H we get 〈∇2AH , Id〉 = 0; therefore, from

Proposition 3.2 it follows that

1

2
 |φH |2 = |∇φH |2 + c(2 − 3|T |2)|φH |2 − 2c|H |〈φHT, T 〉

+ 2c

|H | 〈H,N 〉trace(ANφH )

+
n+1∑
α=3

{(traceAα)(trace(φ2
HAα))− (trace(φHAα))

2}. (3.9)
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We now consider the local orthonormal frame field {E3 =H/|H |,E4, . . . ,En+1}
in the normal bundle. One sees that traceA3 = 2|H | and traceAα = 0 for
α > 3, so

n+1∑
α=3

(traceAα)(trace(φ2
HAα)) = 2|H |(trace(φ2

HA3)) = 2(trace(φ2
HAH)).

From the definition of φH it follows that φ2
HAH = |H |φ3

H +|H |2φ2
H and, because

traceφ3
H = 0,

2(traceφ2
HAH) = 2|H | traceφ3

H + 2|H |2 traceφ2
H = 2|H |2|φH |2.

We have just proved that

n+1∑
α=3

(traceAα)(trace(φ2
HAα)) = 2|H |2|φH |2. (3.10)

As we have seen in Lemma 3.1, since H is parallel, AH commutes with AU for
any normal vector field U. Then, either there exists a basis that diagonalizes AU ,
for all vectors U normal to �2, or the surface is pseudo-umbilical (i.e., AH =
|H |2 Id). Moreover, since the map p ∈�2 → (AH −µ Id)(p) for µ a constant is
analytic, it follows that if H is an umbilical direction then this either holds on the
whole surface or only on a closed set without interior points.

That the vectorH is an umbilical direction everywhere implies that φH vanishes
on the surface; hence (3.8) is verified and so we will study only the case when H
is an umbilical direction on a closed set without interior points (which means that
H is not umbilical in an open dense set). We will first work on this set and then
extend our result throughout �2 via continuity.

Let {e1, e2} be a basis that diagonalizes AU for all vectors U normal to the sur-
face. Then, with respect to this basis and for α > 3, since traceAα = traceφH =
0 we have

Aα =
(
µα 0
0 −µα

)
and φH =

(
a 0
0 −a

)
;

therefore,
(trace(φHAα))

2 = 4a2µ2
α = |Aα|2|φH |2. (3.11)

We also obtain φHA3 = φ2
H + |H |φH , which leads to

(trace(φHA3))
2 = |φH |4 = (|A3|2 − 2|H |2)|φH |2. (3.12)

Finally, substituting (3.10)–(3.12) into (3.9), we get equation (3.8).

Remark 3.1. For the case of an immersed pmc submanifold in Sn(1), the La-
placian of |φH |2 was computed in [6; 19].

4. A Simons-Type Equation and Applications

In the following we shall derive a Simons-type equation for nonminimal pmc sur-
faces inM 3(c)× R and then use that equation to characterize some of these sur-
faces. Throughout this section, �2 will be an immersed nonminimal pmc surface
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in a product space M 3(c) × R, with mean curvature vector H and the Gaussian
curvature K.

Let us consider the local orthonormal frame field {E3 = H/|H |,E4} in the nor-
mal bundle, and denote by φ3 = A3 − |H | Id and φ4 = A4. The normal part of ξ
can be written as N = ν3E3 + ν4E4, where ν3 = 〈ξ,E3〉 and ν4 = 〈ξ,E4〉.

SinceH is parallel in the normal bundle, it follows that alsoE4 is parallel in the
normal bundle. We use the same argument as in the proof of Corollary 3.3 to see
that either H is an umbilical direction on the whole surface or it is not umbilical
on an open dense set. In both cases, it is easy to verify that

(traceA3)(trace(φ2
4A3)) = 2|H |2|φ4|2,

(trace(φ4A3))
2 = (|A3|2 − 2|H |2)|φ4|2;

then, since (traceφ2
4)

2 = |φ4|4, traceφ4 = 0, and |φ4T |2 = 1
2 |T |2|φ4|2, Proposi-

tion 3.2 allows us to derive the following formula for the Laplacian of |φ4|2:

1

2
 |φ4|2 = |∇φ4|2 + {c(2 − 3|T |2)+ 4|H |2 − |σ|2}|φ4|2

+ 2cν4 trace(ANφ4). (4.1)

Next, let φ be the traceless part of the second fundamental form σ of the surface

φ(X,Y ) = σ(X,Y )− 〈X,Y 〉H =
4∑
α=3

〈φαX,Y 〉Eα.

We have |φ|2 = |φ3|2 + |φ4|2 = |σ|2 − 2|H |2 and then, using (3.8) and (4.1), we
can state our next proposition.

Proposition 4.1. If �2 is an immersed nonminimal pmc surface inM 3(c)× R

and if φ is the traceless part of its second fundamental form, then

1

2
 |φ|2 = |∇φ3|2 + |∇φ4|2 − |φ|4 + {c(2 − 3|T |2)+ 2|H |2}|φ|2

− 2c〈φ(T, T ),H 〉 + 2c|ν3φ3 + ν4φ4|2 (4.2)

or, equivalently,

1

2
 |φ|2 = |∇φ3|2 + |∇φ4|2 − |φ|4 + {c(2 − 3|T |2)+ 2|H |2}|φ|2

− 2c〈φ(T, T ),H 〉 + 2c|AN |2 − 4c〈H,N 〉2.

Theorem 4.2. Let�2 be an immersed complete nonminimal pmc surface in M̄ =
M 3(c)× R, with c < 0, such that

sup
�2

|φ|2 < 2|H |2 + c(4 − 5|T |2) and 〈φ(T, T ),H 〉 ≥ 0.

Then |φ|2 = 0 and �2 is a round sphere inM 3(c).

Proof. We start by using the Schwarz inequality to obtain

|ν3φ3 + ν4φ4|2 ≤ (ν 2
3 + ν 2

4 )(|φ3|2 + |φ4|2) = (1 − |T |2)|φ|2;
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this expression, together with (4.2) and the hypothesis, leads to

1

2
 |φ|2 ≥ −|φ|4 + {c(4 − 5|T |2)+ 2|H |2}|φ|2 − 2c〈φ(T, T ),H 〉

≥ {−|φ|2 + c(4 − 5|T |2)+ 2|H |2}|φ|2
≥ 0. (4.3)

Next we show that the Gaussian curvature K of the surface is bounded from
below. Indeed, by (2.2) we have

2K = 2c(1 − |T |2)+ 4|H |2 − |σ|2
= 2c(1 − |T |2)+ 2|H |2 − |φ|2 > c(3|T |2 − 2) ≥ c.

Therefore, since �2 is complete, the Omori–Yau maximum principle holds on the
surface.

We take u = |φ|2 in Theorem 2.2, from which it follows that there exists a se-
quence of points {pk}k∈N ⊂ �2 such that

lim
k→∞|φ|2(pk) = sup

�2
|φ|2 and  |φ|2(pk) < 1

k
.

By (4.3), limk→∞|φ|2(pk) = 0 and then sup�2|φ|2 = 0, which implies |φ|2 = 0.
Since φ3 = A3 − |H | Id = 0, it follows that H is an umbilical direction; this, in
turn, implies that �2 is a totally umbilical surface in M 3(c) (see [5, Lemma 3]).
Therefore, �2 is a horosphere or a round sphere. But |φ|2 < 2|H |2 + 4c implies
that K > −c > 0, so �2 cannot be flat; hence we conclude that the surface is a
round sphere.

Theorem 4.3. Let�2 be an immersed complete nonminimal pmc surface in M̄ =
M 3(c)× R, with c > 0, such that

|φ|2 ≤ 2|H |2 + c(2 − 3|T |2) and 〈φ(T, T ),H 〉 ≤ 0.

Then ξ is normal to the surface, and either

(1) |φ|2 = 0 and �2 is a round sphere inM 3(c) or
(2) |φ|2 = 2|H |2 + 2c and �2 is a torus S1(r) × S1

(√
1/c − r 2

)
, r 2 
= 1/2c,

inM 3(c).

Proof. From the Gauss equation (2.2) of the surface it follows that, since |φ|2 ≤
2|H |2 + c(2 − 3|T |2), we have

2K = 2c(1 − |T |2)+ 4|H |2 − |σ|2 = 2c(1 − |T |2)+ 2|H |2 − |φ|2 ≥ c|T |2 ≥ 0;
a result of Huber [14] then implies that �2 is a parabolic space.

On the other hand, by (4.2) we have  |φ|2 ≥ 0 and so |φ|2 is a bounded sub-
harmonic function on a parabolic space. Hence |φ|2 is a constant and, again using
(4.2), we obtain

{−|φ|2 + c(2 − 3|T |2)+ 2|H |2}|φ|2 = 0,

〈φ(T, T ),H 〉 = 0, and ν3φ3 + ν4φ4 = 0.
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Now we can split our study in two cases.

Case I: |φ|2 = 0. This case can be handled exactly as in the proof of Theo-
rem 4.2.

Case II: |φ|2 = c(2 − 3|T |2)+ 2|H |2. Since |φ|2 is a constant, it follows that
|T |2 is a constant and thus that 〈∇XT, T 〉 = 0 for any vectorX tangent to�2. Since
∇̄Xξ = 0 implies ∇XT = ANX, we have 〈ANX, T 〉 = 0. But ν3φ3 + ν4φ4 =
0 means that AN = 〈H,N 〉 Id, which implies 〈H,N 〉〈X, T 〉 = 0 for any tangent
vector X. Therefore, ξ is orthogonal to �2 either at any point or only on a closed
set without interior points. In the latter case, 〈H, ξ〉 = 0 holds on an open dense
set in which we also have 〈∇̄T H, ξ〉 = −〈AHT, T 〉 = 0. We have just shown that
〈A3T, T 〉 = 0 on an open dense set; therefore, since also

〈φ(T, T ),H 〉 = |H |〈φ3T, T 〉 = |H |(〈A3T, T 〉 − |H ||T |2) = 0,

it follows that T = 0 on the whole surface. Hence�2 lies inM 3(c) and its Gauss-
ian curvature isK = c

2 |T |2 = 0. We use a similar argument to that in the proof of
[3, Thm. 1.5] (see also [16]) to conclude.

5. A Gap Theorem for pmc Surfaces with
Nonnegative Gaussian Curvature

In this section we will prove our main results, Theorem 5.2 and Theorem 5.3. In
order to do so, let us consider an immersed pmc surface �2 in Mn(c) × R. We
begin by computing the Laplacian of |T |2.

Let {e1, e2} be an orthonormal in Tp�2 (p ∈ �2), and extend e1, e2 to vector
fields E1,E2 in a neighborhood of p such that ∇Ei = 0 at p. At p, we have

1

2
 |T |2 =

2∑
i=1

(〈∇EiT, ∇EiT 〉 + 〈∇Ei∇EiT, T 〉)

= |AN |2 +
2∑
i=1

〈∇EiANEi, T 〉;

then, since ∇XAN is symmetric,

2∑
i=1

〈∇EiANEi, T 〉 =
2∑
i=1

〈(∇EiAN)Ei, T 〉

=
2∑
i=1

〈(∇EiAN)T,Ei〉 =
2∑
i=1

〈∇EiANT − AN∇EiT,Ei〉

=
2∑
i=1

〈∇Ei∇T T − ∇∇EiT
T,Ei〉

=
2∑
i=1

〈∇Ei∇T T + ∇[T,Ei ]T,Ei〉 =
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=
2∑
i=1

(〈∇T∇EiT,Ei〉 − 〈R(T,Ei)T,Ei〉)

= |T |2K +
2∑
i=1

〈∇T ANEi,Ei〉

= |T |2K +
2∑
i=1

T(〈ANEi,Ei〉) = |T |2K + T(traceAN)

= |T |2K + 2T(〈H,N 〉) = |T |2K − 2〈σ(T, T ),H 〉
= c|T |2(1 − |T |2)− 1

2
|T |2|φ|2 − 2〈φ(T, T ),H 〉 − |T |2|H |2.

Here we used that ∇XT = ANX and ∇⊥
X N = −σ(X, T ), and φ is the traceless

part of the second fundamental form σ of the surface.
Now we can state the following result.

Proposition 5.1. If �2 is an immersed pmc surface inMn(c)× R, then
1

2
 |T |2 = |AN |2 − 1

2
|T |2|φ|2 − 2〈φ(T, T ),H 〉

+ c|T |2(1 − |T |2)− |T |2|H |2. (5.1)

In [4] the authors introduced a holomorphic differential defined on pmc surfaces
inMn(c)×R (when n = 2 this is just the Abresch–Rosenberg differential defined
in [1]). This holomorphic differential is the (2, 0)-part of the quadratic form Q,
which is given by

Q(X,Y ) = 2〈σ(X,Y ),H 〉 − c〈X, ξ〉〈Y, ξ〉.
Using this result and Proposition 5.1, we can characterize pmc 2-spheres �2 im-
mersed in Mn(c) × R and whose second fundamental form satisfies a certain
condition.

Theorem 5.2. Let �2 be an immersed pmc 2-sphere inMn(c)× R such that :

(1) |T |2 = 0 or |T |2 ≥ 2
3 and |σ|2 ≤ c(2 − 3|T |2) if c < 0;

(2) |T |2 ≤ 2
3 and |σ|2 ≤ c(2 − 3|T |2) if c > 0.

Then �2 is either a minimal surface in a totally umbilical hypersurface ofMn(c)

or a standard sphere inM 3(c).

Proof. If ξ is orthogonal to the surface in an open connected subset, then this sub-
set lies inMn(c) and, by analyticity, it follows that �2 lies inMn(c). In this case
we use [20, Thm. 4] to conclude.

Next, let us assume that we are not in the previous case. Then we can choose an
orthonormal frame {e1, e2}on the surface such that e1 = T/|T |. Since�2 is a sphere
and since the (2, 0)-part of Q is holomorphic, it follows that the (2, 0)-part of Q
vanishes on the surface. This means that Q(e1, e1) = Q(e2, e2) and Q(e1, e2) =
0. From Q(e1, e1) = Q(e2, e2) we obtain 2〈σ(e1, e1) − σ(e2, e2),H 〉 = c|T |2.
Then
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〈φ(T, T ),H 〉 = 〈σ(T, T ),H 〉 − |T |2|H |2

= 1

2
|T |2〈σ(e1, e1)− σ(e2, e2),H 〉 = 1

4
c|T |4,

after which (5.1) becomes

1

2
 |T |2 = |AN |2 + 1

2
|T |2(−|σ|2 + c(2 − 3|T |2)) ≥ 0.

Since �2 is a sphere and |T |2 a bounded subharmonic function, it follows that
|T |2 is constant and hence that |AN |2 = 0 and |T |2(−|σ|2 + c(2 − 3|T |2)) = 0.
Because AN = 0 and ξ is parallel, we have ∇XT = 0 for any tangent vector X.
This implies that K = 0—a contradiction, since our surface is a sphere. There-
fore, �2 lies in Mn(c) and, again using [20, Thm. 4] (see also [5, Thm. 2]), we
come to the conclusion.

Next we assume that �2 is an immersed nonminimal pmc surface inM 3(c)× R.

Then (4.2) and (5.1) yield

1

2
 (|φ|2 − c|T |2)

= |∇φ3|2 + |∇φ4|2 +
{
−|φ|2 + c

2
(4 − 5|T |2)+ 2|H |2

}
|φ|2

+ c|AN |2 − 4c〈H,N 〉2 + c|T |2|H |2 − c2|T |2(1 − |T |2). (5.2)

We shall use this equation to prove the following theorem.

Theorem 5.3. Let�2 be an immersed complete nonminimal pmc surface in M̄ =
M 3(c)× R, with c > 0. Assume

(i) |φ|2 ≤ 2|H |2 + 2c − 5c
2 |T |2 and

(ii) either
(a) |T | = 0 or
(b) |T |2 > 2

3 and |H |2 ≥ c|T |2(1 − |T |2)/(3|T |2 − 2).

Then either

(1) |φ|2 = 0 and �2 is a round sphere inM 3(c), or
(2) |φ|2 = 2|H |2 + 2c and �2 is a torus S1(r) × S1

(√
1/c − r 2

)
, r 2 
= 1/2c,

inM 3(c).

Proof. If |T |2 = 0, then it is easy to see that (5.2) implies

1

2
 (|φ|2 − c|T |2) ≥ {−|φ|2 + 2c + 2|H |2}|φ|2 ≥ 0.

We therefore assume that |T |2 > 2
3 and |H |2 ≥ c|T |2(1−|T |2)/(3|T |2 −2). Since

|AN |2 − 2〈H,N 〉2 = |ν3φ3 + ν4φ4|2 ≥ 0

and since
〈H,N 〉2 ≤ |N |2|H |2 = (1 − |T |2)|H |2 (5.3)

by the Schwarz inequality, it follows from (5.2) that
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1

2
 (|φ|2 − c|T |2) ≥

{
−|φ|2 + c

2
(4 − 5|T |2)+ 2|H |2

}
|φ|2

+ c(3|T |2 − 2)|H |2 − c2|T |2(1 − |T |2)
≥ 0.

The Gaussian curvature of the surface satisfies

2K = 2c(1 − |T |2)+ 2|H |2 − |φ|2 ≥ 1

2
c|T |2 ≥ 0,

which means that�2 is a parabolic space. Now, as a bounded subharmonic function,
|φ|2 −c|T |2 is constant. Therefore, either |φ|2 = 0 or |φ|2 = 2|H |2 +2c− 5c

2 |T |2.
The first case can be handled exactly as in the proof of Theorem 4.2. For the sec-
ond case, by (5.2) we have ν3φ3 + ν4φ4 = 0, which means that AN = 〈H,N 〉 Id
and that the equality holds in (5.3); in other words, either N = ν3H or ξ is tan-
gent to the surface. If ξ is tangent to the surface then, by (5.2) and the hypothesis,
�2 is a minimal surface—a contradiction. Hence N = ν3H and we obtain AH =
|H |2 Id, which (again using [5, Lemma 3.1]) implies that the surface lies inM 3(c).

We then arrive at the conclusion in the same way as in the proof of the second part
of Theorem 4.3.
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