Parshin Residues via Coboundary Operators

Mikhail Mazin

1. Introduction

Let X be a compact complex curve and let ω be a meromorphic 1-form on X. In an open neighborhood of each point $x \in X$ we can write

$$
\omega=f(t) d t, \quad f(t)=\sum_{i>N} \lambda_{i} t^{i}
$$

where t is a local normalizing parameter at x. The coefficient λ_{-1} in the series does not depend on the choice of parameter t; it is called the residue of ω at x. The residue is nonzero only at the finitely many points $\Sigma \subset X$ where ω has a pole. The well-known residue formula states that the sum of residues of ω over all points of Σ is zero:

$$
\sum_{x \in \Sigma} \operatorname{res}_{x} \omega=0
$$

Indeed, the residue at $x \in \Sigma$ is equal to the integral of ω over any sufficiently small cycle enclosing x, divided by $2 \pi i$. In the complement $X \backslash \Sigma$ the form ω is closed, and the sum of cycles is homologous to zero. Thus, the residue formula follows from the Stokes theorem.

Although this proof is topological, the residue itself can be defined purely algebraically. In fact, one can give an algebraic proof of the residue formula that works in a much more general situation, not only in the case of complex curves (see e.g. [S; T]).

In the late 1970s, Parshin introduced his notion of multidimensional residue for a rational n-form ω on an n-dimensional algebraic variety V_{n}. (Although [P] deals mostly with the 2-dimensional case, Beilinson [Bei] and Lomadze [L] generalized Parshin's ideas to the multidimensional case.) The main difference between the Parshin residue and the classical 1 -dimensional residue is that, in higher dimensions, one computes the residue not at a point but instead at a complete flag of subvarieties $F=\left\{V_{n} \supset \cdots \supset V_{0}\right\}, \operatorname{dim} V_{k}=k$.

Parshin, Beilinson, and Lomadze proved the "reciprocity law" for multidimensional residues, which generalizes the classical residue formula and reads as follows.

Fix a partial flag of irreducible subvarieties $\left\{V_{n} \supset \cdots \supset \hat{V}_{k} \supset \cdots \supset V_{0}\right\}$, where V_{k} is omitted $(0<k<n)$. Then

[^0]$$
\sum_{V_{k+1} \supset X \supset V_{k-1}} \operatorname{res}_{V_{n} \supset \cdots \supset X \supset \cdots \supset V_{0}}(\omega)=0
$$
where the sum is taken over all irreducible k-dimensional subvarieties X such that $V_{k+1} \supset X \supset V_{k-1}$.
More precisely, this theorem states that (a) there are only finitely many summands that are not zero and (b) the sum of these nonzero summands is zero.

In addition, if V_{1} is proper (compact in the complex case) then one has the same relation for $k=0$:

$$
\sum_{x \in V_{1}} \operatorname{res}_{V_{n} \supset \cdots \supset V_{1} \supset\{x\}}(\omega)=0 .
$$

Again, there are finitely many nonzero summands and their sum is zero.
All these papers are purely algebraic. The methods used by Parshin, Beilinson, and Lomadze are applicable in very general settings; they are not restricted to complex numbers. However, in the complex case one would expect a more geometric variant of the theory.

Brylinski and McLaughlin [BMc] offer a more topological treatment of the complex case. Given a flag $F=\left\{V_{n} \supset \cdots \supset V_{0}\right\}$, they introduce flag-localized homology groups $H_{*}^{V_{i}}\left(V_{n} ; F\right)$ and a homology class $k_{F} \in H_{n}^{V_{n}}\left(V_{n} ; F\right)$ such that

$$
\operatorname{res}_{F} \omega=\frac{1}{(2 \pi i)^{n}} \int_{k_{F}} \omega
$$

for any meromorphic n-form ω. The class k_{F} is obtained from the fundamental class $c_{V_{0}} \in H_{2 n}\left(V_{n}, V_{n} \backslash V_{0}\right)$ by applying the boundary homomorphisms in the appropriate flag-localized homology groups n times. Brylinski and McLaughlin mention that the class k_{F} could be constructed in a more geometric way so that it is naturally represented by a union of certain real n-tori. However, they describe the construction only for the case when all elements of the flag F are smooth.

In this paper we develop a different approach to the construction of the class k_{F}. Namely, we use the geometry of the Whitney stratified spaces to introduce the operators $\phi_{X, Y}: H_{*}(X) \rightarrow H_{*+k-n-1}(Y)$ for couples of consecutive strata $X<Y$ ($\operatorname{dim} X=n, \operatorname{dim} Y=k$; see Definition 2.4) of a stratified space. We call these operators the Leray coboundary operators by analogy with the Leray operator $\phi: H_{*}(N) \rightarrow H_{*+m-1}(M \backslash N)$ for a smooth manifold M and a submanifold $N \subset M$ of codimension m.

Given a flag $F=\left\{V_{n} \supset \cdots \supset V_{0}\right\}$ and a meromorphic top-form ω on V_{n}, one can choose a stratification of V_{n} such that the flag F consists of closures of strata and ω is regular on the top-dimensional stratum. Then one can construct the homology class $\Delta_{F}:=\phi_{\breve{V}_{n-1}, \breve{V}_{n}} \circ \cdots \circ \phi_{\breve{V}_{0}, \breve{V}_{1}}\left(\left[V_{0}\right]\right) \in H_{n}\left(\breve{V}_{n}\right)$, where \breve{V}_{k} is the unique k-dimensional stratum in V_{k}. In Section 3.2 we prove the following formula (Theorem 3.2):

$$
\operatorname{res}_{F} \omega=\frac{1}{(2 \pi i)^{n}} \int_{\Delta_{F}} \omega
$$

The construction of the Leray coboundary operators is very geometric. In particular, the class Δ_{F} is naturally represented by a smooth submanifold $\tau_{F} \subset \breve{V}_{n}$, which is a union of smooth n-dimensional tori $\tau_{F}=\bigcup \tau_{F, a_{i}}$.

In the original Parshin construction, the residue at the flag F is actually defined as a sum of certain more delicate residues (we briefly review Parshin's definitions in Section 3.1). We will show that the tori $\tau_{F, a_{i}}$ naturally correspond to the summands in Parshin's definition.

Example 1.1. Let $S \subset \mathbb{C}^{3}$ be the algebraic surface given by the equation $\left\{x y z^{2}+x^{4}+y^{4}=0\right\}$. Consider the flag $F=\left\{V_{2} \supset V_{1} \supset V_{0}\right\}$, where V_{2} is the surface S, V_{1} is the z-axis (which is the singular locus of S), and V_{0} is the origin. The intersection of S with the real plane is the cone over a figure eight; see Figure 1, which helps to visualize this example.

Figure 1 Intersection of the flag F with the real space (Example 1.1)

There is a natural stratification of S consisting of three strata: the origin, the z-axis without the origin, and the regular part of S. In line with our previous notation, we denote the strata $\breve{V}_{0}, \breve{V}_{1}$, and \breve{V}_{2}, respectively.

The point V_{0} is on the complex line V_{1}. One can consider a small circle τ^{1} going counterclockwise around V_{0} on V_{1}. This circle τ^{1} naturally represents the class $\phi_{\breve{V}_{0}, \breve{V}_{1}}\left(\left[V_{0}\right]\right) \in H_{1}\left(\breve{V}_{1}\right)$.

In the next step, we have two branches of V_{2} at each point of τ^{1}. Take a point $x \in \tau^{1}$. Consider a transversal section to V_{1} through x; its intersection with V_{2} is a curve with two local branches at x. Consider two small circles S_{1} and S_{2} around x, one on each branch.

One can choose transversal sections to V_{1} at each point of τ^{1} such that they depend nicely on the point $x \in \tau^{1}$. Furthermore, one can choose the circles in such a way that they form a fiber bundle over τ^{1}. Clearly, the local branches of V_{2} do not interchange as one goes around the origin along τ^{1}. Hence in \breve{V}_{2} there are two tori, $\tau_{F, a_{1}}$ and $\tau_{F, a_{2}}$.

The Parshin residue of a meromorphic 2-form ω on S can be computed via integration over $\tau_{F}:=\tau_{F, a_{1}} \cup \tau_{F, a_{2}}$ as follows:

$$
\operatorname{res}_{F} \omega=\frac{1}{(2 \pi i)^{2}} \int_{\tau_{F}} \omega
$$

Example 1.2. Consider the Whitney umbrella, which is the surface $S \subset \mathbb{C}^{3}$ given by the equation $\left\{y^{2}-z x^{2}=0\right\}$. Consider the flag $F=\left\{V_{2} \supset V_{1} \supset V_{0}\right\}$;

Figure 2 Intersection of the flag F with the real space (Example 1.2)
here, as before, V_{2} is the surface, V_{1} is the z-axis, and V_{0} is the origin (see Figure 2). Observe that V_{1} again coincides with the singular locus of S.

In the same way as in the previous example, one can consider a small loop around the origin on the V_{1}. And once again, V_{2} has two branches at each point of the loop. In this case, however, the branches do interchange as one goes around the origin on V_{1}. So here the class F_{Δ} is represented by just one torus and there is only one summand in Parshin's definition of the residue.

Coboundary operators satisfy an interesting relation. Let $X<Y$ be two strata such that there exist k intermediate strata Z_{1}, \ldots, Z_{k}, and these intermediate strata are incomparable (equivalently, for any m from 1 to $k, X<Z_{m}<Y$ are consecutive strata). Then

$$
\phi_{Z_{1}, Y} \circ \phi_{X, Z_{1}}+\phi_{Z_{2}, Y} \circ \phi_{X, Z_{2}}+\cdots+\phi_{Z_{k}, Y} \circ \phi_{X, Z_{k}}=0
$$

(see Theorem 2.2.)
This relation is illustrated by the following example.
Example 1.3. In Figure $3, X$ is the origin, Z_{1} is a half-line, Z_{2} is a surface with an isolated singularity at the origin, and $Y=\mathbb{R}^{3} \backslash\left(X \cup Z_{1} \cup Z_{2}\right)$. We take a small

Figure 3 Example 1.3
sphere S^{2} with center at the origin. Then $\phi_{X, Z_{i}}([X]) \in H_{\operatorname{dim} Z_{i}-1}\left(Z_{i}\right)$ is represented by the intersection $N_{i}=S^{2} \cap Z_{i}$. Take a small neighborhood of N_{i} in S^{2}. Its boundary D_{i} represents the class $\phi_{Z_{i}, Y} \circ \phi_{X, Z_{i}}([X]) \in H_{1}(Y)$. Then the sphere S^{2} with the neighborhoods of the N_{i} deleted gives a 2-dimensional chain in Y whose boundary is the union $D_{1} \cup D_{2}$.

Our approach also allows one to prove an interesting result about Parshin residues. Let ω be a meromorphic top-form on V_{n}, and consider any Whitney stratification of V_{n} such that ω is regular on the top-dimensional stratum. Then the residue $\operatorname{res}_{F} \omega$ can be nontrivial only if all elements of the flag F are closures of strata of the stratification (Theorem 3.3). In particular, there are only finitely many nontrivial residues for a given form.

The reciprocity law for Parshin residues in the complex case follows from the preceding results. Indeed, given a partial flag of subvarieties and a meromorphic form, one can choose a Whitney stratification such that (a) the elements of the flag are closures of strata and (b) the form is regular on the open stratum. Then, by Theorem 3.3, the only nonzero summands in the reciprocity law correspond to the flags consisting of closures of strata, and the reciprocity law then follows from the relation on coboundary operators (Theorem 2.2) and the formula for Parshin residues via coboundary operators (Theorem 3.2).

The rest of the paper proceeds as follows. In Section 2 we introduce the Leray coboundary operators for stratified spaces and prove the relation (Theorem 2.2). In Section 3 we use the results from Section 2 to express the Parshin residue as an integral over a real smooth cycle and to prove the reciprocity law. Section 2.1 offers a short introduction to the theory of stratified spaces, and in Section 3.1 we review Parshin's original definitions and formulation of the reciprocity law.

This paper constitutes the first part of the author's $\mathrm{Ph} . \mathrm{D}$. thesis under the supervision of Professor Askold Khovanskii. A short announcement of the main results of the thesis is available in [M2]. In this paper we include complete proofs as well as some examples. The second part of the thesis, which concerns applying "resolution of singularities" techniques to the theory of Parshin residues, is available in [M1].

Acknowledgments. I would like to thank my Ph.D. advisor, Professor Askold Khovanskii, for raising the question and for helpful discussions. I am also grateful to the referee for reading the paper carefully, pointing out misprints, and suggesting improvements in the presentation.

2. Leray Coboundary Operators for Stratified Spaces

2.1. Whitney Stratifications and Mather's Abstract Stratified Spaces

Definition 2.1. Let M be a smooth manifold, and let V be a locally closed subset of M. By a Whitney stratification \mathbf{S} of V we mean a subdivision of V into smooth strata such that the following statements hold.

1. The subdivision \mathbf{S} is locally finite-in other words, each point of V has an open neighborhood that intersects only finitely many strata.
2. Condition of the frontier: For each stratum $X \in \mathbf{S}$, its boundary $(\bar{X} \backslash X) \cap V$ is a union of strata.
3. Each pair (X, Y) of strata satisfies the Whitney conditions (a) and (b).
(a) For any $x \in X$ and any sequence $\left\{y_{n}\right\} \in Y$ such that $y_{n} \rightarrow x$, if the sequence of tangent planes $T_{y_{n}} Y$ converges to some plane $\tau \subset T_{x} M$ (in the appropriate Grassmanian bundle over M) then $T_{x} X \subset \tau$.
(b) For any $x \in X$, any sequence $\left\{y_{n}\right\} \in Y$, and any sequence $\left\{x_{n}\right\} \in X$ such that $y_{n} \rightarrow x$ and $x_{n} \rightarrow x$, if the sequence of tangent planes $T_{y_{n}} Y$ converges to some plane $\tau \subset T_{x} M$ and if the sequence of secants $\overline{x_{n} y_{n}}$ converges to some line l (in some smooth coordinate system in M) then $l \subset \tau$.

Remark. One can show that condition (a) is implied by condition (b); therefore, it is enough to require the latter. One can prove that if a pair of strata (X, Y) satisfies condition (b) and if $\bar{Y} \cap X \neq \emptyset$, then $\operatorname{dim} X<\operatorname{dim} Y$.
Notation. We say that $X<Y$ if $\bar{Y} \cap X \neq \emptyset$. One can see that this defines a partial order on the set of strata \mathbf{S}.

Example 2.1. Consider the surface in \mathbb{C}^{3} given by the equation $y^{2}+x^{3}-z^{2} x^{2}=$ 0 (see Figure 4). The singular locus of the surface coincides with the z-axis. Thus, the z-axis and its complement give a subdivision of the surface into two smooth pieces. It is easy to show that this pair satisfies condition (a) but does not satisfy condition (b) at the origin. Note that the small neighborhood of the origin looks much different from the neighborhood of any other point of the z-axis.

Figure 4 Intersection of the surface with the real space (Example 2.1)

It is easy to improve the subdivision in such a way that it satisfies condition (b); one need only consider the origin as a separate stratum.

Whitney showed that if conditions (a) and (b) are satisfied for the pair (X, Y), then Y "behaves regularly" along X.

Theorem 2.1 (see e.g. [GMac]). Let V be a closed subvariety in a smooth algebraic variety M, and let Σ be a locally finite family of subvarieties in V. Then
there exists a Whitney stratification of the set V such that each element of Σ is a union of strata and all strata are algebraic.

A detailed review of the theory of Whitney stratifications can be found in [GMac].
The notion of an abstract stratified space, introduced by Mather [Ma], provides a convenient setup for working with "nice" stratifications: subdivisions into smooth pieces with regular behavior along strata. Mather proved that any Whitney stratification can be endowed with a structure of an abstract stratified space, a notion that will be described next.

Let V be a Hausdorff locally compact topological space that satisfies the second countability axiom (i.e., there is a countable basis in the topology of V). Let \mathbf{S} be a locally finite subdivision of V into topological manifolds endowed with smoothness structures; the elements of \mathbf{S} are called strata. Let \mathbf{S} satisfy the condition of the frontier: the boundary of any stratum is a union of strata. Similarly as for Whitney stratifications, the set of strata \mathbf{S} inherits the natural partial order ($X<Y$ if $X \subset \partial Y$).

For every $X \in \mathbf{S}$, let U_{X} be a neighborhood of X in V, let $\rho_{X}: U_{X} \rightarrow \mathbb{R}_{\geq 0}$ be a continuous function, and let $\pi_{X}: U_{X} \rightarrow X$ be a retraction. One should think of ρ_{X} as of the distance to X. Therefore, we require that $X=\left\{\rho_{X}=0\right\}$. It is also convenient to say that $\rho_{X}(y)=\infty$ if $y \notin U_{X}$. We call ρ_{X} the tubular function and call U_{X} the tubular neighborhood.

Let $X, Y \in \mathbf{S}, X \neq Y$. We use the following notation:

$$
\begin{aligned}
U_{X, Y} & :=U_{X} \cap Y \\
\rho_{X, Y} & :=\left.\rho_{X}\right|_{U_{X, Y}}: U_{X, Y} \rightarrow \mathbb{R}_{+} \\
\pi_{X, Y} & :=\left.\pi_{X}\right|_{U_{X, Y}}: U_{X, Y} \rightarrow X
\end{aligned}
$$

We assume that $U_{X, Y}$ is empty unless $X<Y$. We also assume that if X and Y are incomparable then $U_{X} \cap U_{Y}$ is empty.

We have the compatibility conditions

$$
\begin{aligned}
\pi_{X, Y}\left(\pi_{Y, Z}(v)\right) & =\pi_{X, Z}(v), \\
\rho_{X, Y}\left(\pi_{Y, Z}(v)\right) & =\rho_{X, Z}(v)
\end{aligned}
$$

whenever both sides of these equations are defined.
The following two conditions ensure that the space V behaves regularly along strata: (i) for any $X \in \mathbf{S}$, the map

$$
\left.\left(\pi_{X}, \rho_{X}\right)\right|_{U_{X} \backslash X}: U_{X} \backslash X \rightarrow X \times \mathbb{R}_{+}
$$

is a locally trivial fibration with a compact fiber; (ii) for any $Y>X$, the restriction

$$
\left(\pi_{X, Y}, \rho_{X, Y}\right): U_{X, Y} \rightarrow X \times \mathbb{R}_{+}
$$

is a smooth fibration.
Finally, we want the fiber of π_{X} over a point $x \in X$ to be a cone with the vertex at x. Because that does not follow from the conditions stated so far, we must add one more. Let $U_{\bar{X}}^{\leq 1}=\left\{y \in U_{X} \mid \rho_{X}(y) \leq 1\right\}$ and $N_{X}=\partial U_{X}^{\leq 1}=\left\{y \in U_{X} \mid\right.$ $\left.\rho_{X}(y)=1\right\}$. Then $\left.\pi_{X}\right|_{U_{X}^{\leq 1}}: U_{X}^{\leq 1} \rightarrow X$ is the mapping cone over $\left.\pi_{X}\right|_{N_{X}}: N_{X} \rightarrow X$.

Definition 2.2. The triple $\mathbf{J}=\left\{\left\{U_{X}\right\},\left\{\pi_{X}\right\},\left\{\rho_{X}\right\}\right\}$ is called control data.
Definition 2.3. The triple $\{V, \mathbf{S}, \mathbf{J}\}$ under the conditions just specified is called an abstract stratified space.

It follows that N_{X} has a natural structure of an abstract stratified space, as obtained by intersecting the strata of V with N_{X} and restricting tubular functions and retractions.

The original definition (in [Ma]) of abstract stratified spaces is slightly different and less restrictive. However, it is clear that shrinking the tubular neighborhoods and rescaling the tubular functions allows one to change the control data so that they satisfy the conditions stipulated here.

2.2. Leray Coboundary Operators and Relations

Let $f: M \rightarrow N$ be a smooth fibration with compact oriented k-dimensional fiber F. Then one can define the Gysin homomorphism on homology $f^{*}: H_{*}(N) \rightarrow$ $H_{*+k}(M)$. In essence one can simply set $f^{*}(a)=\left[f^{-1}(A)\right]$, where A is a representative of the homology class $a \in H_{*}(N)$.

Remark. We use the following convention about the orientations. Let $y \in M$ and $x=f(y) \in N$. Let $A \subset N$ be a smooth representative of a homology class $a \in H_{*}(N)$ with $x \in A$. Let the differential form ω_{A} on N be such that its restriction to A defines the orientation of A at x, and let the differential form ω_{F} on M be such that its restriction to the fiber F_{x} defines the orientation of F_{x} at y. Then the orientation of the preimage $f^{-1}(A) \subset M$ at the point y is given by the restriction of the form $f^{*}\left(\omega_{A}\right) \wedge \omega_{F}$.

Let now M be an oriented manifold with boundary, and let $f: M \rightarrow N$ be a proper map to an oriented manifold N such that its restriction, both to the boundary $\partial M \subset M$ and the interior $\breve{M} \subset M$, are submersions. Then the Ehresmann lemma for manifolds with boundary implies that f is a locally trivial fibration and that its restrictions to ∂M and \breve{M} are smooth fibrations.

Let $\phi:=\left(\left.f\right|_{\partial M}\right)^{*}: H_{*}(N) \rightarrow H_{*+\operatorname{dim} M-\operatorname{dim} N-1}(\partial M)$ be the Gysin homomorphism.

Lemma 2.1. $\quad i_{*} \circ \phi=0$, where $i: \partial M \hookrightarrow M$ is the embedding.
Proof. One can generalize the Gysin homomorphism to the case just described when the fiber of f is a manifold with boundary. The only difference is that now the homomorphism lands in the relative homology group: $f^{*}: H_{*}(N) \rightarrow$ $H_{*+k}(M, \partial M)$, where $k=\operatorname{dim} F=\operatorname{dim} M-\operatorname{dim} N$. Then one immediately sees that $\phi=\partial \circ f^{*}$, where $\partial: H_{*}(M, \partial M) \rightarrow H_{*-1}(\partial M)$ is the boundary homomorphism from the long exact sequence of the pair $(M, \partial M)$. However, by the long exact sequence, $i_{*} \circ \partial=0$.

We next apply the foregoing constructions to the stratified spaces.
Let all the strata of a stratified space V be oriented. Let $X \in \mathbf{S}$ be a stratum. Restriction of the retraction $\pi_{X}: U_{X} \rightarrow X$ to $N_{X}=\left\{y \in U_{X} \mid \rho_{X}(y)=1\right\}$ is a
locally trivial fibration. Moreover, for any stratum Y such that $X<Y$, the restriction to $N_{X, Y}=N_{X} \cap Y=\left\{y \in U_{X, Y} \mid \rho_{X}(y)=1\right\}$ is a smooth fibration.

Definition 2.4. Let $X<Y$ be two strata. We say that X and Y are consecutive strata if there is no Z such that $X<Z<Y$.

Lemma 2.2. Let $X<Y$ be consecutive strata. Then the fiber of $\left.\pi_{X}\right|_{N_{X, Y}}: N_{X, Y} \rightarrow$ X is compact.

Proof. Since $X<Y$ are consecutive strata, it follows that $N_{X, Y}=Y \cap N_{X}$ is a closed stratum of N_{X} (indeed, otherwise the closure of $N_{X, Y}$ in N_{X} would contain a smaller stratum). The fiber of the restriction of π_{X} to $N_{X, Y}$ is the intersection of the fiber of the restriction of π_{X} to N_{X} and $N_{X, Y}$. Therefore, it is compact as a closed subset of a compact set.

Note that $N_{X, Y}$ is orientable; indeed, it is the level set of a smooth function $\rho_{X, Y}$ in $U_{X, Y} \subset Y$. Let us fix the orientation of $N_{X, Y}$ as follows. We say that the restriction of a differential $(\operatorname{dim} Y-1)$-form $\omega_{N_{X, Y}}$ on Y defines the positive orientation of $N_{X, Y}$ if the form $d \rho_{X, Y} \wedge \omega_{N_{X, Y}}$ defines the positive orientation of Y.

Let $\operatorname{dim} X=n$ and $\operatorname{dim} Y=k$.
Definition 2.5. The Leray coboundaryoperator $\phi_{X, Y}: H_{*}(X) \rightarrow H_{*+k-n-1}(Y)$ is given by the composition $\phi_{X, Y}=i_{*} \circ \phi$, where $i: N_{X, Y} \hookrightarrow Y$ is the embedding and $\phi: H_{*}(X) \rightarrow H_{*+k-n-1}\left(N_{X, Y}\right)$ is the Gysin homomorphism.

Theorem 2.2. Let $X<Y$ be two strata and let Z_{1}, \ldots, Z_{m} be all strata such that $X<Z_{i}<Y$. Suppose that Z_{1}, \ldots, Z_{m} are incomparable. Then

$$
\phi_{Z_{1}, Y} \circ \phi_{X, Z_{1}}+\phi_{Z_{2}, Y} \circ \phi_{X, Z_{2}}+\cdots+\phi_{Z_{m}, Y} \circ \phi_{X, Z_{m}}=0 .
$$

Proof. We want to apply Lemma 2.1. Consider $D_{i}:=N_{X, Y} \cap N_{Z_{i}, Y}=\{y \in Y \mid$ $\left.\rho_{Z_{i}}(y)=\rho_{X}(y)=1\right\}$, and note that $D_{i}=\left(\left.\pi_{Z_{i}}\right|_{N_{Z_{i}, Y}}\right)^{-1}\left(N_{X, Z_{i}}\right)$. Therefore, $\left.\pi_{Z_{i}}\right|_{D_{i}}$ is a smooth fibration over $N_{X, Z_{i}}$. Let $p_{i}:=\left.\left.\pi_{X}\right|_{N_{X, Z_{i}}} \circ \pi_{Z_{i}}\right|_{D_{i}}: D_{i} \rightarrow X$. By construction of the Leray coboundary operators we have

$$
\phi_{Z_{i}, Y} \circ \phi_{X, Z_{i}}=i_{*} \circ \phi_{i},
$$

where $i: D_{i} \hookrightarrow Y$ is the embedding and $\phi_{i}: H_{*}(X) \rightarrow H_{*+\operatorname{dim} Y-\operatorname{dim} X-2}$ is the Gysin homomorphism of $p_{i}: D_{i} \rightarrow X$. Here we fix the orientation of D_{i} as follows. We say that the restriction of a differential $(\operatorname{dim} Y-2)$-form $\omega_{D_{i}}$ on Y defines the positive orientation of D_{i} if the form $d \rho_{Z_{i}, Y} \wedge d \rho_{X, Y} \wedge \omega_{D_{i}}$ defines the positive orientation of Y.

Consider now $N_{X, Y}=\left\{y \in Y \mid \rho_{X}(y)=1\right\}$. The restriction $\left.\pi_{X}\right|_{N_{X, Y}}$ is a smooth fibration, but the fibers of this fibration are not compact. On the other hand, if we consider the restriction of π_{X} to the union $N_{X, Y \cup Z_{1} \cup \ldots \cup Z_{m}}:=N_{X, Y} \cup N_{X, Z_{1}} \cup \cdots \cup$ $N_{X, Z_{m}}=N_{X} \cap\left(Y \cup Z_{1} \cup \cdots \cup Z_{m}\right)$, then the fibers are compact.

Now $D_{i} \subset N_{X, Y}$ can be viewed as the boundary of the neighborhood $U_{i}=\left\{y \in N_{X, Y} \cap U_{Z_{i}} \mid \rho_{Z_{i}}(y)<1\right\}$ of $N_{X, Z_{i}}$ in $N_{X, Y \cup Z_{1} \cup \ldots \cup Z_{m}}$. Denote $M=$ $N_{X, Y} \backslash\left(U_{1} \cup \cdots \cup U_{m}\right)$. By the Ehresmann lemma for manifolds with boundary,
the restriction $\left.\pi_{X}\right|_{M}: M \rightarrow X$ is a locally trivial fibration. Indeed, $\left.\pi_{X}\right|_{M}$ is proper because M is a closed subset of $N_{X, Y \cup Z_{1} \cup \ldots \cup Z_{m}}$ and $\left.\pi_{X}\right|_{N_{X, Y \cup Z_{1} \cup \ldots \cup Z_{m}}}$ is a fibration with compact fibers; the restrictions of π_{X} to the interior of M and the boundary $\partial M=D_{1} \cup \cdots \cup D_{m}$ are submersions.

To conclude the proof by Lemma 2.1, one needs to check that the orientation of D_{i} as a piece of the boundary of M always coincides with (or always is opposite to) the orientation of D_{i} used in the first part of the proof. Recall that we fixed the orientation of D_{i} in such a way that, if $\left.\omega_{D_{i}}\right|_{D_{i}}$ gives the orientation of D_{i}, then $d \rho_{Z_{i}, Y} \wedge d \rho_{X, Y} \wedge \omega_{D_{i}}$ gives the orientation of Y. Let $\omega_{N_{X, Y}}:=-d \rho_{Z_{i}, Y} \wedge \omega_{D_{i}}$. According to our convention about the orientation of $N_{X, Y}, \omega_{N_{X, Y}}$ gives the positive orientation of $N_{X, Y}$. Therefore, the orientation of D_{i} as a piece of the boundary of M is given by $-\omega_{D_{i}}$.

2.3. Dual Homomorphism

In this section the coefficient ring is always \mathbb{R}. For simplicity, we omit this in the notation.

The following question naturally arises: Which operator is Poincaré dual to the coboundary operator $\phi_{X, Y}$?

The manifolds X and Y are not compact, so one must use the Borel-Moore homology to achieve the Poincaré duality. A nice review of the theory of BorelMoore homology (in much more detail than needed here) is given in [Gin].

Consider $\phi_{X, Y}: H_{m}(X) \rightarrow H_{m+k-n-1}(Y)$ (here $\operatorname{dim} X=n$ and $\operatorname{dim} Y=k$). The dual operator is $\left(\phi_{X, Y}\right)^{*}: H_{n-m+1}^{\mathrm{BM}}(Y) \rightarrow H_{n-m}^{\mathrm{BM}}(X)$. There is a natural candidate for the dual; indeed, one can show that

$$
H_{n-m+1}^{\mathrm{BM}}(Y)=H_{n-m+1}^{\mathrm{BM}}(Y \cup X, X)
$$

Hence there exits the boundary operator

$$
\partial_{Y, X}: H_{n-m+1}^{\mathrm{BM}}(Y) \rightarrow H_{n-m}^{\mathrm{BM}}(X) .
$$

Remark. It is crucial that $X<Y$ are consecutive strata. Otherwise, the union $X \cup Y$ would not be locally compact and so the boundary operator would not be defined.

Theorem 2.3. The Leray coboundary operator $\phi_{X, Y}: H_{m}(X) \rightarrow H_{m+k-n-1}(Y)$ $(\operatorname{dim} X=n, \operatorname{dim} Y=k)$ is Poincaré dual to the boundary homomorphism $\partial_{Y, X}: H_{n-m+1}^{\mathrm{BM}}(Y) \rightarrow H_{n-m}^{\mathrm{BM}}(X)$.

Proof. By Poincaré duality, the intersection form $H_{*}(M) \times H_{d-*}^{\mathrm{BM}}(M) \rightarrow \mathbb{R}$ is well-defined and nondegenerate (here M is a smooth oriented manifold and $\operatorname{dim} M=d)$. Thus we need only check that, for any classes $a \in H_{n}(X)$ and $b \in$ $H_{m-n+1}^{\mathrm{BM}}(Y)$,

$$
\left\langle\partial_{Y, X} b, a\right\rangle=\left\langle b, \phi_{X, Y}(a)\right\rangle .
$$

Let $i: U_{X, Y} \hookrightarrow Y$ be the embedding. According to the definition of the Leray coboundary operator, $\phi_{X, Y}$ can be factored: $\phi_{X, Y}=i_{*} \circ \phi_{X, U_{X, Y}}$, where $\phi_{X, U_{X, Y}}: H_{m}(X) \rightarrow H_{m+k-n-1}\left(U_{X, Y}\right)$ is the Leray coboundary operator for the
stratified space with two strata, X and $U_{X, Y}$. On the other hand, the boundary homomorphism $\partial_{Y, X}$ also can be factored: $\partial_{Y, X}=\partial_{U_{X, Y}, X} \circ i^{*}\left(\right.$ here $i^{*}: H^{\mathrm{BM}}(Y) \rightarrow$ $H^{\mathrm{BM}}\left(U_{X, Y}\right)$ is the restriction homomorphism induced by the inclusion $\left.i\right)$. Therefore, it is enough to assume that $Y=U_{X, Y}$.

We know that $U_{X, Y}$ is diffeomorphic to $N_{X, Y} \times \mathbb{R}_{+}$. Hence there is an isomorphism $\theta: H_{*}^{\mathrm{BM}}\left(U_{X, Y}\right) \xrightarrow{\sim} H_{*-1}^{\mathrm{BM}}\left(N_{X, Y}\right)$ given by taking a representative that is transversal to $N_{X, Y}$ and then intersecting it with $N_{X, Y}$. The inverse isomorphism θ^{-1} is derived from multiplying a representative by \mathbb{R}_{+}.

We remark that one should be careful with the orientations. We want the following condition to be satisfied. Let $B \subset U_{X, Y}$ be a cycle transversal to $N_{X, Y}$ such that $[B]=b \in H_{*}^{\mathrm{BM}}\left(U_{X, Y}\right)$, and let $C=B \cap N_{X, Y}$ such that $[C]=\theta(b) \in$ $H_{*}^{\mathrm{BM}}\left(N_{X, Y}\right)$. Then a form ω_{C} gives the positive orientation of C at a point in C if and only if the form $d \rho_{X, Y} \wedge \omega_{C}$ gives the positive orientation of B at this point.

With the orientation conventions just described, we have

$$
\left\langle b, \phi_{X, Y}(a)\right\rangle=\langle\theta(b), \phi(a)\rangle ;
$$

here $\phi: H_{*}(X) \rightarrow H_{*+k-n-1}\left(N_{X, Y}\right)$ is the Gysin homomorphism and the intersection on the right is taken inside $N_{X, Y}$. Moreover,

$$
\partial_{U_{X, Y}, X}=\left(\left.\pi_{X}\right|_{N_{X, Y}}\right)_{*} \circ \theta .
$$

Therefore, we need only check that the Gysin homomorphism is dual to $\left(\left.\pi_{X}\right|_{N_{X, Y}}\right)_{*}: H_{n-m}\left(N_{X, Y}\right) \rightarrow H_{n-m}(X)$, which is obvious.

Corollary. The Leray coboundary operator $\phi_{X, Y}$ does not depend on the choice of the control data, at least modulo torsion.

One can also investigate the relation that is dual to the relation, proved in Theorem 2.2 , on the coboundary operators.

Consider the strata $X, Z_{1}, \ldots, Z_{p}, Y$ satisfying the conditions of Theorem 2.2, and let $Z=\bigcup Z_{i}$. Then the boundary operator

$$
\partial_{Y, Z}: H_{*}^{\mathrm{BM}}(Y) \rightarrow H_{*-1}^{\mathrm{BM}}(Z)=\bigoplus H_{*-1}^{\mathrm{BM}}\left(Z_{i}\right)
$$

is dual to the direct sum of the coboundary operators $\bigoplus \phi_{Z_{i}, Y}$. In turn, the boundary operator

$$
\partial_{Z, X}: H_{*-1}^{\mathrm{BM}}(Z) \rightarrow H_{*-2}^{\mathrm{BM}}(X)
$$

is dual to the direct sum $\bigoplus \phi_{X, Z_{i}}$. Therefore, the dual relation is

$$
\partial_{Z, X} \circ \partial_{Y, Z}=0 .
$$

However, it is not hard to prove this relation independently. Indeed, one can use that $H_{*}^{\mathrm{BM}}(Y)=H_{*}^{\mathrm{BM}}(Y \cup Z \cup X, Z \cup X)$ and $H_{*}^{\mathrm{BM}}(Z)=H_{*}^{\mathrm{BM}}(Z \cup X, X)$. Then, in essence, the equality states that the boundary of the boundary of a chain is zero, which is trivial. Thus we have given another proof of Theorem 2.2 modulo torsion.

Remark. It is crucial for this argument that $Y \cup Z \cup X$ be locally compact. That is, the dual relation would not hold if one were to forget one of the intermediate strata Z_{i}.

3. Application to Parshin Residues

3.1. Parshin Residues and the Reciprocity Law

In this section we review the definition of the Parshin residue and the reciprocity law. As discussed in the Introduction, the Parshin residue at a flag F is defined as a sum of certain more delicate residues. In fact, every flag "contains" finitely many Parshin points, and the more delicate residues are computed at these points.

We start from the definition of a Parshin point. Let V_{n} be an algebraic variety of dimension n, and let $F=:\left\{V_{n} \supset \cdots \supset V_{0}\right\}$ be a flag of subvarieties of dimensions $\operatorname{dim} V_{k}=k$. Now consider the diagram

$$
\begin{align*}
& V_{n} \supset V_{n-1} \supset \cdots \supset V_{1} \supset V_{0} \\
& \uparrow_{p_{n}} \uparrow p_{n} \\
& \tilde{V}_{n} \supset W_{n-1} \\
& \uparrow^{p_{n-1}} \\
& \widetilde{W}_{n-1} \supset \ldots \tag{*}
\end{align*}
$$

where the following statements hold.

1. $p_{n}: \tilde{V}_{n} \rightarrow V_{n}$ is the normalization.
2. $W_{n-1} \subset \tilde{V}_{n}$ is the union of $(n-1)$-dimensional irreducible components of the preimage of V_{n-1}.
3. For every $k=1,2, \ldots, n-1$:
(a) $p_{k}: \widetilde{W}_{k} \rightarrow W_{k}$ is the normalization;
(b) $W_{k-1} \subset \widetilde{W}_{k}$ is the union of $(k-1)$-dimensional irreducible components of the preimage of V_{k-1}.

Definition 3.1. We call diagram ($*$) the normalization diagram of the flag $V_{n} \supset \cdots \supset V_{0}$.

Definition 3.2. The flag $F=\left\{V_{n} \supset \cdots \supset V_{0}\right\}$ of irreducible subvarieties together with the choice of a point $a_{\alpha} \in W_{0}$ is called a Parshin point.

Choosing a point $a_{\alpha} \in W_{0}$ is equivalent to choosing irreducible components in every $W_{i}, i=n-1, \ldots, 0$. Indeed, \widetilde{W}_{i} is normal and therefore locally irreducible at every point. In particular, it is locally irreducible at the image of a_{α}. Let $\widetilde{W}_{i}^{\alpha}$ be the irreducible component of \widetilde{W}_{i} that contains the image of a_{α}. Let $W_{i}^{\alpha}=p_{i}\left(\widetilde{W}_{i}^{\alpha}\right)$. Note that W_{i}^{α} is an irreducible component of W_{i}.

Figure 5 Intersection of the flag F with the real space (Example 3.1): normalization splits the local irreducible components at every point; hence normalization of the cone over the figure eight is the usual cone, and the preimage of the z-axis is two lines intersecting at the origin

Example 3.1. Consider the flag from the Example 1.1 (see Figure 5). It follows that there are two Parshin points corresponding to the flag. Note that these points naturally correspond to the tori from Example 1.1.

Example 3.2. The normalization of the Whitney umbrella (Example 1.2) is isomorphic to \mathbb{C}^{2}. The preimage of the z-axis is a line that covers the z-axis twice with a branching at the origin. Therefore, W_{0} is just one point. This corresponds to the existence of only one torus in Example 1.2.

Defining the Parshin residue requires that one first define the local parameters at a Parshin point, which play the same role that the normalizing parameter does in the 1-dimensional case. After that, one uses these parameters to define a sequence of residual meromorphic forms $\omega_{n-1}, \ldots, \omega_{0}$ on $W_{n-1}^{\alpha}, \ldots, W_{0}^{\alpha}$.

The local parameters are defined as follows: $W_{i-1}^{\alpha} \subset \widetilde{W}_{i}$ is a hypersurface in a normal variety. It follows that there exists a (meromorphic) function u_{i} on \widetilde{W}_{i} that
has zero of order 1 at a generic point of W_{i-1}^{α}. Since meromorphic functions are the same on W_{i} and \widetilde{W}_{i}, one can consider u_{i} as a function on W_{i}. Then one can extend (in an arbitrary way) u_{i} to \widetilde{W}_{i+1} and so on. For simplicity, we denote all these functions by u_{i}. Now the u_{i} are defined on V_{n} and can be consecutively restricted to W_{j} for $j \geq i$.

Definition 3.3. Functions $\left(u_{1}, \ldots, u_{n}\right)$ are called local parameters at the Parshin point $P=\left\{V_{n} \supset \cdots \supset V_{0}, a_{\alpha}\right\}$.

Remark. One can choose local parameters in such a way that u_{i} has zero of order 1 at a generic point not only of W_{i-1}^{α}, but of the whole W_{i-1}. Then these local parameters work for all Parshin points with the flag $F=\left\{V_{n} \supset \cdots \supset V_{0}\right\}$. We only use local parameters with this property.

Let ω be a meromorphic n-form on V_{n}. One can show that the differentials $d u_{1}, \ldots, d u_{n}$ are linearly independent at a generic point of V_{n}. Therefore, one can write

$$
\omega=f d u_{1} \wedge \cdots \wedge d u_{n}
$$

where f is a meromorphic function on V_{n}.
Now we define the residual forms ω_{i}. Take a generic point $p \in W_{n-1}^{\alpha}$. Both \tilde{V}_{n} and W_{n-1} are smooth at p. Moreover, the parameters u_{1}, \ldots, u_{n} provide an isomorphism of a neighborhood of p to an open subset in \mathbb{C}^{n}, and W_{n-1}^{α} is given by the equation $u_{n}=0$ in this neighborhood. Restrict the function f to the transversal section to W_{n-1} at p that is given by fixing the parameters u_{1}, \ldots, u_{n-1}. The restriction can be expanded into a Laurent series in u_{n}. It is easy to see that the coefficients of this expansion depend analytically on p. Moreover, one can see that the coefficients are meromorphic functions on W_{n-1}^{α}. Let f_{-1} be the coefficient at u_{n}^{-1} in this expansion. Then $\omega_{n-1}=f_{-1} d u_{1} \wedge \cdots \wedge d u_{n-1}$ is a meromorphic ($n-1$)-form on W_{n-1}^{α}.

Repeating this procedure one more time yields a meromorphic ($n-2$)-form on W_{n-2}^{α}. Finally, after n steps, one obtains a function ω_{0} on the one-point set $W_{0}^{\alpha}=\left\{a_{\alpha}\right\}$.

Definition 3.4. The residue of ω at the Parshin point $P=\left\{V_{n} \supset \cdots \supset V_{0}\right.$, $\left.a_{\alpha} \in W_{0}\right\}$ is $\operatorname{res}_{P}(\omega)=\omega_{0}\left(a_{\alpha}\right)$.

Parshin proves that the residue does not depend on the choice of local parameters.
Definition 3.5. The sum of residues over all $a \in W_{0}$ is called the residue at the flag $F=\left\{V_{n} \supset \cdots \supset V_{0}\right\}$ and is denoted $\operatorname{res}_{F}(\omega)=\sum_{a \in W_{0}} \operatorname{res}_{\{F, a\}}(\omega)$.

Theorem 3.1 [Bei; L; P]. Let ω be a meromorphic n-form on V_{n}. Fix a partial flag of irreducible subvarieties $\left\{V_{n} \supset \cdots \supset \hat{V}_{k} \supset \cdots \supset V_{0}\right\}$, where V_{k} is omitted $(0<k<n)$. Then

$$
\sum_{V_{k+1} \supset X \supset V_{k-1}} \operatorname{res}_{V_{n} \supset \cdots \supset X \supset \cdots \supset V_{0}}(\omega)=0
$$

here the sum is taken over all irreducible k-dimensional subvarieties X such that $V_{k-1} \supset X \supset V_{k+1}$, and only finitely many summands are nonzero.

In addition, if V_{1} is compact then one has the same relation for $k=0$.

3.2. Residues via Leray Coboundary Operators and the Reciprocity Law

We want to apply the stratification theory to study the Parshin points and residues. Hence we must stratify all the spaces in the normalization diagram in such a way that the stratifications respect the normalization maps p_{1}, \ldots, p_{n}. The following lemma easily follows from well-known results on the existence of Whitney stratifications (see e.g. [GMac, Sec. 1.7]).

Notation. Let X be an irreducible (complex analytic) variety considered with a fixed Whitney stratification; then by \breve{X} we denote the stratum of maximal dimension. If X is reducible, then by \breve{X} we denote the union of strata of maximal dimension.

Lemma 3.1. Fix a Parshin point $P=\left\{V_{n} \supset \cdots \supset V_{0}, a_{\alpha} \in W_{0}\right\}$ and local parameters u_{1}, \ldots, u_{n}. Then there exist Whitney stratifications $\mathbf{S}, \mathbf{S}_{\tilde{V}}, \mathbf{S}_{\tilde{W}_{n-1}}, \ldots, \mathbf{S}_{\tilde{W}_{1}}$ of (respectively) $V_{n}, \tilde{V}_{n}, \widetilde{W}_{n-1}, \ldots, \widetilde{W}_{1}$ such that:

1. V_{n-1}, \ldots, V_{0} are unions of strata of \mathbf{S};
2. $W_{n-1}, W_{n-2}, \ldots, W_{0}$ are unions of strata of $\mathbf{S}_{\tilde{V}}, \mathbf{S}_{\tilde{W}_{n-1}}, \ldots, \mathbf{S}_{\tilde{W}_{1}}$, respectively;
3. for all $i=1, \ldots, n$, the local parameter u_{i} is regular and nonvanishing on $\breve{V}_{n}, \breve{V}_{n}, \breve{\widetilde{W}}_{n-1}, \ldots, \breve{W}_{i}$; and
4. for all $i=1, \ldots, n$, the restriction of the normalization map p_{i} to any stratum in the source is a covering over a stratum in the image.

An important corollary about stratifications $\mathbf{S}_{\tilde{W}_{i}}$ is expressed as the following lemma.

Lemma 3.2. The stratum (or the union of strata if W_{i-1} is reducible) $\breve{W}_{i-1} \in \mathbf{S}_{\widetilde{W}_{i}}$ consists of regular points of \widetilde{W}_{i}.

Proof. We prove the lemma by contradiction. Assume there is a point $x \in \breve{W}_{i-1}$ such that \widetilde{W}_{i} is singular at x. Observe that, by dimension reasons and the condition of the frontier, the only strata intersecting a small neighborhood of x are \breve{W}_{i-1} and \widetilde{W}_{i}. Note that u_{i} is regular in \widetilde{W}_{i} and at a generic point of \breve{W}_{i-1}. Therefore, by the extension theorem for normal varieties, u_{i} is regular at x.

Note also that u_{i} is nonvanishing in \widetilde{W}_{i} and has zero of order 1 at a generic point of W_{i-1}. Therefore, the $\left\{u_{i}=0\right\}$ coincide with W_{i-1} near x. Moreover, it is easy to see that the germ of u_{i} at x generates the ideal of the germ of W_{i-1} at x. Indeed, if g is a function that is regular at x and vanishing on W_{i-1}, then g / u_{i} is regular at x by the extension theorem for normal varieties.

Now let f_{1}, \ldots, f_{i-1} be any coordinate system on W_{i-1} at x. Then it is clear that the functions $u_{i}, f_{1}, \ldots, f_{i-1}$ generate the maximal ideal in the local ring of $\{x\} \subset$ \widetilde{W}_{i}. Hence x is a smooth point of \widetilde{W}_{i}, which contradicts our assumption.

Our goal is to show that

$$
\operatorname{res}_{F}(\omega)=\frac{1}{(2 \pi i)^{n}} \int_{\Delta_{F}} \omega
$$

where $F:=\left\{V_{n} \supset \cdots \supset V_{0}\right\}$ and $\Delta_{F}=\phi_{\breve{V}_{n-1}, \breve{V}_{n}} \circ \cdots \circ \phi_{\breve{V}_{0}, \breve{V}_{1}}\left(\left[V_{0}\right]\right) \in H_{n}\left(\breve{V}_{n}\right)$.
Moreover, we will show that Δ_{F} naturally splits into the sum

$$
\Delta_{F}=\sum_{a_{i} \in W_{0}} \Delta_{\left\{F, a_{i}\right\}}
$$

such that

$$
\operatorname{res}_{\left\{F, a_{i}\right\}}(\omega)=\frac{1}{(2 \pi i)^{n}} \int_{\Delta_{\left\{F, a_{i}\right\}}} \omega
$$

According to the construction of the Leray coboundary operator, Δ_{F} is represented by a smooth compact real n-dimensional submanifold $\tau_{F} \subset \breve{V}_{n}$. This submanifold is obtained from a point by the following procedure: there are n steps, and at each step we take the total space of an oriented fibration with 1-dimensional compact fiber over the result of the previous step. Thus, τ_{F} is a union of n-dimensional tori. We will show that (i) the connected components of τ_{F} are in natural one-to-one correspondence with the points of W_{0} and (ii) the connected component $\tau_{F, a_{i}}$ corresponding to $a_{i} \in W_{0}$ represents $\Delta_{F, a_{i}}$.

Fix control data on the stratification \mathbf{S} of V_{n}. Let us use these control data to construct the representative $\tau_{F} \subset \breve{V}_{n}$ of Δ_{F}. We also denote by $\tau_{k} \subset \breve{V}_{k}$ the representative of $\Delta_{k}=\phi_{\breve{V}_{k-1}, \breve{V}_{k}} \circ \cdots \circ \phi_{\breve{V}_{0}, \breve{V}_{1}}\left(\left[V_{0}\right]\right) \in H_{k}\left(\breve{V}_{k}\right)$ constructed in the same way.

Let us introduce the following notation:

- $\hat{U}_{0}:=\breve{V}_{0}$;
- $\hat{U}_{k}:=\pi_{\breve{V}_{k-1}, \breve{V}_{k}}^{-1}\left(\hat{U}_{k-1}\right)$ for $k=1, \ldots, n$.

Note that, for $k>0, \hat{U}_{k}$ is the preimage of $\hat{U}_{k-1} \times \mathbb{R}_{+}$under the mapping $\left(\pi_{\breve{V}_{k-1}, \breve{V}_{k}}, \rho_{\breve{V}_{k-1}, \breve{V}_{k}}\right): U_{\breve{V}_{k-1}, \breve{V}_{k}} \rightarrow \breve{V}_{k-1} \times \mathbb{R}_{+}$. Since \breve{V}_{k-1} and \breve{V}_{k} are consecutive strata, it follows that the restriction $\left.\left(\pi_{\breve{V}_{k-1}, \check{V}_{k}}, \rho_{\breve{V}_{k-1}, \breve{V}_{k}}\right)\right|_{\hat{U}_{k}}$ is a proper submersion to $\hat{U}_{k-1} \times \mathbb{R}_{+}$.

Composing these maps n times yields the following lemma.
Lemma 3.3. $\left(\rho_{\breve{V}_{0}}, \ldots, \rho_{\breve{V}_{k-1}}\right): \hat{U}_{k} \rightarrow\left(\mathbb{R}_{+}\right)^{k}$ is a proper submersion. Therefore, \hat{U}_{k} is diffeomorphic to $\tau_{k} \times\left(\mathbb{R}_{+}\right)^{k}$.

Consider the preimages $U_{k}=\left(p_{n} \circ \cdots \circ p_{k}\right)^{-1}\left(\hat{U}_{k}\right) \subset \widetilde{W}_{k}$. By Lemma 3.1, $U_{k} \subset$ $\widetilde{\widetilde{W}}_{k}$ and $\left.\left(p_{n} \circ \cdots \circ p_{k}\right)\right|_{U_{k}}: U_{k} \rightarrow \hat{U}_{k}$ is a covering.

Let $\bar{U}_{k}:=U_{k} \cup p_{k-1}\left(U_{k-1}\right)$ for $k=n, n-1, \ldots, 1$.
Lemma 3.4. $\quad \bar{U}_{k} \subset \widetilde{W}_{k}$ is an open subset consisting of regular points of \widetilde{W}_{k}.
Proof. $\hat{U}_{k} \cup \hat{U}_{k-1}$ is an open subset in $\breve{V}_{k} \cup \breve{V}_{k-1}$. Indeed, it is the preimage of the \hat{U}_{k-1} under the restriction of the projection $\pi_{\breve{V}_{k-1}}$, restricted to $U_{\breve{V}_{k-1}} \cap\left(\breve{V}_{k-1} \cup \breve{V}_{k}\right)$. In turn, \bar{U}_{k} is the preimage of $\hat{U}_{k} \cup \hat{U}_{k-1}$ under $\left.\left(p_{n} \circ \cdots \circ p_{k}\right)\right|_{\tilde{W}_{k} \cup \breve{W}_{k-1}}$.

Finally, by Lemma 3.2, \breve{W}_{k-1} consists of regular points of \widetilde{W}_{k}.

We need the following lemma about lifting the control data.
Lemma 3.5. Let V and V^{\prime} be two stratified spaces consisting of two strata each: $V=X \sqcup Y$ for $X<Y$, and $V^{\prime}=X^{\prime} \sqcup Y^{\prime}$ for $X^{\prime}<Y^{\prime}$. Let $p: V^{\prime} \rightarrow V$ be a map such that $\left.p\right|_{X^{\prime}}$ is a covering over X and $\left.p\right|_{Y^{\prime}}$ is a covering over Y. Let $U_{X} \subset V$, $\pi_{X}: U_{X} \rightarrow X$, and $\rho_{X}: U_{X} \rightarrow \mathbb{R}_{\geq 0}$ be the control data on V. Then there exist control data $U_{X^{\prime}}, \pi_{X^{\prime}}, \rho_{X^{\prime}}$ on V^{\prime} such that
(1) $\rho_{X} \circ p=\rho_{X^{\prime}}$ and
(2) $\pi_{X} \circ p=p \circ \pi_{X^{\prime}}$.

Proof. We set the tubular neighborhood $U_{X^{\prime}}:=p^{-1}\left(U_{X}\right)$. The tubular function $\rho_{X^{\prime}}$ is defined by property (1). The retraction $\rho_{X^{\prime}}$ is defined uniquely by property (2) and continuity.

We next apply Lemma 3.5 to the $V=\hat{U}_{k} \sqcup \hat{U}_{k-1}$ and $V^{\prime}=\bar{U}_{k}=p_{k-1}\left(U_{k-1}\right) \sqcup U_{k}$. Let $\pi_{p_{k-1}\left(U_{k-1}\right)}: \bar{U}_{k} \rightarrow p_{k-1}\left(U_{k-1}\right)$ and $\rho_{p_{k-1}\left(U_{k-1}\right)}: \bar{U}_{k} \rightarrow \mathbb{R}_{\geq 0}$ be the corresponding retraction and tubular function. We have the following corollary.

Corollary. For any $k=n, n-1, \ldots, 1$, the connected components of U_{k} are in natural one-to-one correspondence with the connected components of U_{k-1}.

Proof. Indeed, the map from the connected components of U_{k} to the connected components of $p_{k-1}\left(U_{k-1}\right)$ is given by the retraction $\pi_{p_{k-1}\left(U_{k-1}\right)}$. Existence of the inverse to this map follows because $p_{k-1}\left(U_{k-1}\right) \subset \bar{U}_{k}$ is a complex hypersurface in the manifold \bar{U}_{k}. Indeed, if $H \subset M$ is a hypersurface in a complex manifold M, then there is only one connected component of M in a neighborhood of a connected component of H.

Finally, $\left.p_{k-1}\right|_{U_{k-1}}$ is an isomorphism to the image.
Pick a point $a_{\alpha} \in W_{0}$. Let $U_{1}^{\alpha}, \ldots, U_{n}^{\alpha}$ be the corresponding connected components of U_{1}, \ldots, U_{n}, respectively, and let $\bar{U}_{k}^{\alpha}:=U_{k}^{\alpha} \cup p_{k-1}\left(U_{k-1}^{\alpha}\right)$ be the corresponding connected components of \bar{U}_{k}.

Let $\tilde{\tau}_{k}:=\left(p_{n} \circ \cdots \circ p_{k}\right)^{-1}\left(\tau_{k}\right)$. Note that $\tilde{\tau}_{k} \subset U_{k}$ is a union of connected components, one in each U_{k}^{α}. Let $\tilde{\tau}_{k}^{\alpha} \subset U_{k}^{\alpha}$ be the corresponding connected component.

Lemma 3.6. $\quad \phi_{p_{k-1}\left(U_{k-1}\right), U_{k}} \circ\left(\left.p_{k-1}\right|_{U_{k-1}}\right)_{*}\left(\left[\tilde{\tau}_{k-1}^{\alpha}\right]\right)=\left[\tilde{\tau}_{k}^{\alpha}\right]$.
Proof. Since we have chosen the control data on \bar{U}_{k} to be coherent with the control data on $\hat{U}_{k} \cup \hat{U}_{k-1}$ (given by restricting the control data from the ambient space), we have the equality on the level of representatives.

Now we use the local parameters $\left(u_{1}, \ldots, u_{n}\right)$ to construct cycles $\gamma_{k}^{\alpha} \subset U_{k}^{\alpha}$ such that, on the one hand, it is obvious that

$$
\operatorname{res}_{\left\{F, a_{\alpha}\right\}}(\omega)=\frac{1}{(2 \pi i)^{n}} \int_{\gamma_{n}^{\alpha}} \omega,
$$

and on the other hand γ_{k}^{α} is homologically equivalent to $\tilde{\tau}_{k}^{\alpha}$ in U_{k}^{α}.

The function u_{k} is regular and nonvanishing in $U_{k}^{\alpha} \subset \breve{W}_{k}$ and has zero of order 1 at a generic point of $p_{k-1}\left(U_{k-1}^{\alpha}\right) \subset \bar{U}_{k}^{\alpha}$. It follows immediately that u_{k} is regular on \bar{U}_{k}^{α} and that the equation $u_{k}=0$ defines $p_{k-1}\left(U_{k-1}^{\alpha}\right)$ in \bar{U}_{k}^{α}.

Our next lemma easily follows from the preceding observation.
Lemma 3.7. There exist smooth positive real functions $\varepsilon_{1}, \ldots, \varepsilon_{n}\left(\varepsilon_{k}: \mathbb{C}^{k-1} \rightarrow\right.$ $\left.\mathbb{R}_{+}\right)$and open subsets $B_{k} \subset U_{k}^{\alpha}(k=1, \ldots, n)$ such that

$$
\begin{aligned}
& \left(u_{1}, \ldots, u_{k}\right): B_{k} \rightarrow A_{k} \\
& \quad:=\left\{\left(z_{1}, \ldots, z_{k}\right): 0<\left|z_{i}\right|<\varepsilon_{i}\left(z_{1}, \ldots, z_{i-1}\right), i=1, \ldots, k\right\} \subset \mathbb{C}^{k}
\end{aligned}
$$

are biholomorphisms. (Note that ε_{1} is a constant.)
Let $\delta_{1}, \ldots, \delta_{n} \in \mathbb{R}_{+}$be small enough that

$$
\left\{\left(z_{1}, \ldots, z_{n}\right):\left|z_{i}\right|=\delta_{i}, i=1, \ldots, n\right\} \subset A_{n}
$$

Definition 3.6. Let $\gamma_{k}^{\alpha}=\left\{x \in B_{k}:\left|u_{i}(x)\right|=\delta_{i}, i=1, \ldots, k\right\}$ and $\gamma_{0}^{\alpha}=a_{\alpha}$.
It follows immediately from the definition of the Parshin residue that

$$
\operatorname{res}_{\left\{F, a_{\alpha}\right\}}(\omega)=\frac{1}{(2 \pi i)^{n}} \int_{\gamma_{n}^{\alpha}} \omega .
$$

Lemma 3.8. $\quad \gamma_{k}^{\alpha}$ and $\tilde{\tau}_{k}^{\alpha}$ define the same homology class in $H_{k}\left(U_{k}\right)$.
Proof. We prove this lemma by induction. For $k=0$ one has $\gamma_{0}^{\alpha}=\tilde{\tau}_{0}^{\alpha}=a_{\alpha}$. For the induction step, use Lemma 3.6 and the similar observation for cycles γ_{k}^{α}.

We have thus proved the following theorem.
Theorem 3.2.

$$
\operatorname{res}_{F}(\omega)=\frac{1}{(2 \pi i)^{n}} \int_{\Delta_{F}} \omega
$$

where $F:=\left\{V_{n} \supset \cdots \supset V_{0}\right\}$ and $\Delta_{F}=\phi_{\breve{V}_{n-1}, \breve{V}_{n}} \circ \cdots \circ \phi_{\breve{V}_{0}, \breve{V}_{1}}\left(\left[V_{0}\right]\right) \in H_{n}\left(\breve{V}_{n}\right)$.
In order to derive the Parshin reciprocity law from Theorem 2.2 and Theorem 3.2, one needs a fixed stratification of V such that all nonzero residues of a given form ω are in the flags consisting of closures of strata of the stratification. As it happens, any Whitney stratification such that ω is regular on the top-dimensional stratum is good enough. More precisely, we have the following theorem.

Theorem 3.3. Let V be an n-dimensional variety and let ω be a meromorphic n-form on V. Let \mathbf{S}_{ω} be a Whitney stratification of V such that ω is regular on \breve{V}.

Let $F=\left\{V_{n} \supset \cdots \supset V_{0}\right\}$ be a flag of irreducible subvarieties of V, where $\operatorname{dim} V_{i}=i$. Suppose that at least one of V_{i} is not the closure of a stratum of \mathbf{S}_{ω}. Then $\operatorname{res}_{\left\{F, a_{\alpha}\right\}} \omega=0$ for all $a_{\alpha} \in W_{0}$.

Proof. Consider the normalization diagram for the flag F. Let $a_{\alpha} \in W_{0}$ and let $\left(u_{1}, \ldots, u_{n}\right)$ be local parameters. Let \mathbf{S} be a stratification of V satisfying the
conditions of Lemma 3.1 and such that all strata of the stratification \mathbf{S}_{ω} are unions of strata of \mathbf{S}. As usual, we denote by \breve{V}_{k} the stratum of \mathbf{S} that is open and dense in V_{k}.

The proof is based on the following two observations.

1. Let $X^{\prime}<Y^{\prime}$ be consecutive strata of \mathbf{S}_{ω}, and let $X<Y$ be the consecutive strata of \mathbf{S} such that X is an open dense subset in X^{\prime} and Y is an open dense subset in Y^{\prime}. Let $i_{X}: X \hookrightarrow X^{\prime}$ and $i_{Y}: Y \hookrightarrow Y^{\prime}$ be the embeddings. Then it easily follows-by the construction of coboundary operators $\phi_{X, Y}$ and $\phi_{X^{\prime}, Y^{\prime}}$ and by the independence of these operators from the choice of the control data-that $\phi_{X^{\prime}, Y^{\prime}} \circ i_{X *}=i_{Y *} \circ \phi_{X, Y}$.
2. Let Y^{\prime} be a stratum of \mathbf{S}_{ω}, and let $X<Y$ be consecutive strata of \mathbf{S} such that $(X \cup Y) \subset Y^{\prime}$ and Y is open and dense in Y^{\prime}. Then $i_{*} \circ \phi_{X, Y}=0$, where $i: Y \hookrightarrow$ Y^{\prime} is the embedding. Moreover, if A is a representative of a homology class in $H_{*}(X)$ and if B is the representative of $\phi_{X, Y}([A]) \in H_{*+\operatorname{dim} Y-\operatorname{dim} X-1}(Y)$ constructed in the standard way, then every connected component of B is homologically equivalent to 0 in Y. Indeed, one can use the control data on \mathbf{S} to embed the mapping cone of $\left.\pi_{X}\right|_{B}: B \rightarrow A$ into Y^{\prime}.
Let k be the largest number such that \breve{V}_{k} is a subset of a stratum of \mathbf{S}_{ω} of dimension greater than k. For $m=k+1, \ldots, n$, let \breve{V}_{m}^{\prime} be the stratum of \mathbf{S}_{ω} such that $\breve{V}_{m} \subset \breve{V}_{m}^{\prime}$. Observe that $\operatorname{dim} \breve{V}_{m}^{\prime}=m$ and that \breve{V}_{m} is open and dense in \breve{V}_{m}^{\prime}. Moreover, by dimension reasons and the condition of the frontier, $\breve{V}_{k} \subset \breve{V}_{k+1}^{\prime}$.

Let $i_{m}: \breve{V}_{m} \hookrightarrow \breve{V}_{m}^{\prime}$ be the embedding. Then, by observation 1 ,

$$
\begin{aligned}
\left(i_{n}\right)_{*} \circ \phi_{\breve{V}_{n-1}, \breve{V}_{n}} \circ & \cdots \circ \phi_{\breve{V}_{1}, \breve{V}_{0}} \\
& =\phi_{\breve{V}_{n-1}^{\prime}, \breve{V}_{n}^{\prime}} \circ \cdots \circ \phi_{\breve{V}_{k+1}^{\prime}, \breve{V}_{k+2}^{\prime}} \circ\left(i_{k+1}\right)_{*} \circ \phi_{\breve{V}_{k}, \breve{V}_{k+1}} \circ \cdots \circ \phi_{\breve{V}_{1} \breve{V}_{0}} .
\end{aligned}
$$

Yet by observation 2, $\left(i_{k+1}\right)_{*} \circ \phi_{\breve{V}_{k}}, \breve{V}_{k+1}=0$. Therefore,

$$
\left(i_{n}\right)_{*} \circ \phi_{\breve{V}_{n-1}, \breve{V}_{n}} \circ \cdots \circ \phi_{\breve{V}_{1} \breve{V}_{0}}=0
$$

since ω is regular in \breve{V}_{n}^{\prime}, it follows that $\operatorname{res}_{F} \omega=0$. Moreover, it is easy to see that each connected component of the standard representative of the $\phi_{\breve{V}_{n-1}, \breve{V}_{n}} \circ \cdots \circ$ $\phi_{\breve{V}_{1} \breve{V}_{0}}\left(\left[V_{0}\right]\right)$ is homologically equivalent to 0 . Hence $\operatorname{res}_{F, a} \omega=0$ for any $a \in W_{0}$.

Corollary. There are only finitely many nonzero Parshin residues for a given meromorphic form.

Note that the Parshin reciprocity law follows from Theorems 3.2, 3.3, and 2.2.

References

[Bei] A. Beilinson, Residues and adèles, Funktsional. Anal. i Prilozhen. 14 (1980), 44-45.
[BMc] J.-L. Brylinski and D. A. McLaughlin, Multidimensional reciprocity laws, J. Reine Angew. Math. 481 (1996), 125-147.
[Gin] V. Ginzburg, Geometric methods in representation theory of Hecke algebras and quantum groups, preprint, 1998, arXiv:math/9802004.
[GMac] M. Goretsky and R. MacPherson, Stratified Morse theory, Ergeb. Math. Grenzgeb. (3), 14, Springer-Verlag, New York, 1988.
[L] V. G. Lomadze, On residues in algebraic geometry, Izv. Akad. Nauk SSSR Ser. Mat. 45 (1981), 1258-1287.
[Ma] J. Mather, Notes on topological stability, Lecture notes, Harvard Univ., 1970.
[M1] M. Mazin, Geometric theory of Parshin's residues II. Toric neighborhoods of Parshin's points, preprint, 2009, arXiv:0910.2529v1.
[M2] -, Geometric theory of Parshin residues, C. R. Math. Acad. Sci. Soc. R. Can. 32 (2010), 81-96.
[P] A. N. Parshin, On the arithmetic of two-dimensional schemes, Izv. Akad. Nauk SSSR Ser. Mat. 40 (1976), 736-773.
[S] J.-P. Serre, Algebraic groups and class fields, Grad. Texts in Math., 117, Springer-Verlag, New York, 1988.
[T] J. Tate, Residues of differentials on curves, Ann. Sci. École Norm. Sup. (4) 1 (1968), 149-159.

Institute for Mathematical Sciences
Stony Brook University
Stony Brook, NY 11794
mmazin@math.sunysb.edu

[^0]: Received April 25, 2011. Revision received October 21, 2011.

