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Parshin Residues via Coboundary Operators

Mikhail Mazin

1. Introduction

Let X be a compact complex curve and let ω be a meromorphic 1-form on X. In
an open neighborhood of each point x ∈ X we can write

ω = f(t) dt, f(t) =
∑
i>N

λit
i,

where t is a local normalizing parameter at x. The coefficient λ−1 in the series does
not depend on the choice of parameter t; it is called the residue of ω at x. The res-
idue is nonzero only at the finitely many points � ⊂ X where ω has a pole. The
well-known residue formula states that the sum of residues of ω over all points of
� is zero: ∑

x∈�

resx ω = 0.

Indeed, the residue at x ∈ � is equal to the integral of ω over any sufficiently
small cycle enclosing x, divided by 2πi. In the complement X\� the form ω is
closed, and the sum of cycles is homologous to zero. Thus, the residue formula
follows from the Stokes theorem.

Although this proof is topological, the residue itself can be defined purely alge-
braically. In fact, one can give an algebraic proof of the residue formula that works
in a much more general situation, not only in the case of complex curves (see e.g.
[S; T]).

In the late 1970s, Parshin introduced his notion of multidimensional residue for
a rational n-form ω on an n-dimensional algebraic varietyVn. (Although [P] deals
mostly with the 2-dimensional case, Beilinson [Bei] and Lomadze [L] general-
ized Parshin’s ideas to the multidimensional case.) The main difference between
the Parshin residue and the classical 1-dimensional residue is that, in higher di-
mensions, one computes the residue not at a point but instead at a complete flag
of subvarieties F = {Vn ⊃ · · · ⊃ V0}, dimVk = k.

Parshin, Beilinson, and Lomadze proved the “reciprocity law” for multidimen-
sional residues, which generalizes the classical residue formula and reads as
follows.

Fix a partial flag of irreducible subvarieties {Vn ⊃ · · · ⊃ V̂k ⊃ · · · ⊃V0},
where Vk is omitted (0 < k < n). Then
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∑
Vk+1⊃X⊃Vk−1

resVn⊃···⊃X⊃···⊃V0(ω) = 0,

where the sum is taken over all irreducible k-dimensional subvarieties
X such that Vk+1 ⊃ X ⊃ Vk−1.

More precisely, this theorem states that (a) there are only finitely many summands
that are not zero and (b) the sum of these nonzero summands is zero.

In addition, if V1 is proper (compact in the complex case) then one has the same
relation for k = 0: ∑

x∈V1

resVn⊃···⊃V1⊃{x}(ω) = 0.

Again, there are finitely many nonzero summands and their sum is zero.
All these papers are purely algebraic. The methods used by Parshin, Beilinson,

and Lomadze are applicable in very general settings; they are not restricted to com-
plex numbers. However, in the complex case one would expect a more geometric
variant of the theory.

Brylinski and McLaughlin [BMc] offer a more topological treatment of the
complex case. Given a flag F = {Vn ⊃ · · · ⊃ V0}, they introduce flag-localized
homology groups HVi∗ (Vn;F ) and a homology class kF ∈ HVn

n (Vn;F ) such that

resF ω = 1

(2πi)n

∫
kF

ω

for any meromorphic n-form ω. The class kF is obtained from the fundamen-
tal class cV0 ∈ H2n(Vn,Vn\V0) by applying the boundary homomorphisms in the
appropriate flag-localized homology groups n times. Brylinski and McLaughlin
mention that the class kF could be constructed in a more geometric way so that it
is naturally represented by a union of certain real n-tori. However, they describe
the construction only for the case when all elements of the flag F are smooth.

In this paper we develop a different approach to the construction of the class kF .
Namely, we use the geometry of the Whitney stratified spaces to introduce the
operators φX,Y : H∗(X) → H∗+k−n−1(Y ) for couples of consecutive strata X < Y

(dimX = n, dimY = k; see Definition 2.4) of a stratified space. We call these
operators the Leray coboundary operators by analogy with the Leray operator
φ : H∗(N ) → H∗+m−1(M\N) for a smooth manifold M and a submanifold
N ⊂ M of codimension m.

Given a flag F = {Vn ⊃ · · · ⊃ V0} and a meromorphic top-form ω on Vn,
one can choose a stratification of Vn such that the flag F consists of closures of
strata and ω is regular on the top-dimensional stratum. Then one can construct
the homology class �F := φV̆n−1,V̆n

� · · · � φV̆0,V̆1
([V0 ]) ∈ Hn(V̆n), where V̆k is the

unique k-dimensional stratum in Vk. In Section 3.2 we prove the following for-
mula (Theorem 3.2):

resF ω = 1

(2πi)n

∫
�F

ω.

The construction of the Leray coboundary operators is very geometric. In par-
ticular, the class �F is naturally represented by a smooth submanifold τF ⊂ V̆n,
which is a union of smooth n-dimensional tori τF = ⋃

τF,ai .
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In the original Parshin construction, the residue at the flag F is actually defined
as a sum of certain more delicate residues (we briefly review Parshin’s definitions
in Section 3.1). We will show that the tori τF,ai naturally correspond to the sum-
mands in Parshin’s definition.

Example 1.1. Let S ⊂ C
3 be the algebraic surface given by the equation

{xyz2 + x4 + y 4 = 0}. Consider the flag F = {V2 ⊃ V1 ⊃ V0}, where V2 is
the surface S, V1 is the z-axis (which is the singular locus of S), and V0 is the ori-
gin. The intersection of S with the real plane is the cone over a figure eight; see
Figure 1, which helps to visualize this example.

0V12V V

Figure 1 Intersection of the flag F with the real space (Example 1.1)

There is a natural stratification of S consisting of three strata: the origin, the
z-axis without the origin, and the regular part of S. In line with our previous no-
tation, we denote the strata V̆0, V̆1, and V̆2, respectively.

The pointV0 is on the complex lineV1. One can consider a small circle τ 1 going
counterclockwise around V0 on V1. This circle τ 1 naturally represents the class
φV̆0,V̆1

([V0 ]) ∈ H1(V̆1).

In the next step, we have two branches of V2 at each point of τ 1. Take a point
x ∈ τ 1. Consider a transversal section to V1 through x; its intersection withV2 is a
curve with two local branches at x. Consider two small circles S1 and S2 around
x, one on each branch.

One can choose transversal sections to V1 at each point of τ 1 such that they de-
pend nicely on the point x ∈ τ 1. Furthermore, one can choose the circles in such
a way that they form a fiber bundle over τ 1. Clearly, the local branches of V2 do
not interchange as one goes around the origin along τ 1. Hence in V̆2 there are two
tori, τF,a1 and τF,a2 .

The Parshin residue of a meromorphic 2-form ω on S can be computed via in-
tegration over τF := τF,a1 ∪ τF,a2 as follows:

resF ω = 1

(2πi)2

∫
τF

ω.

Example 1.2. Consider the Whitney umbrella, which is the surface S ⊂ C
3

given by the equation {y2 − zx 2 = 0}. Consider the flag F = {V2 ⊃ V1 ⊃ V0};
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Figure 2 Intersection of the flag F with the real space (Example 1.2)

here, as before, V2 is the surface, V1 is the z-axis, and V0 is the origin (see Fig-
ure 2). Observe that V1 again coincides with the singular locus of S.

In the same way as in the previous example, one can consider a small loop
around the origin on theV1. And once again, V2 has two branches at each point of
the loop. In this case, however, the branches do interchange as one goes around
the origin on V1. So here the class F� is represented by just one torus and there is
only one summand in Parshin’s definition of the residue.

Coboundary operators satisfy an interesting relation. Let X < Y be two strata
such that there exist k intermediate strata Z1, . . . ,Zk , and these intermediate strata
are incomparable (equivalently, for any m from 1 to k, X < Zm < Y are consecu-
tive strata). Then

φZ1,Y � φX,Z1 + φZ2,Y � φX,Z2 + · · · + φZk,Y � φX,Zk
= 0

(see Theorem 2.2.)
This relation is illustrated by the following example.

Example 1.3. In Figure 3, X is the origin, Z1 is a half-line, Z2 is a surface with
an isolated singularity at the origin, and Y = R

3\(X ∪ Z1 ∪ Z2). We take a small
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Figure 3 Example 1.3



Parshin Residues via Coboundary Operators 655

sphere S 2 with center at the origin. Then φX,Zi
([X]) ∈ HdimZi−1(Zi) is repre-

sented by the intersection Ni = S 2 ∩ Zi. Take a small neighborhood of Ni in
S 2. Its boundary Di represents the class φZi,Y � φX,Zi

([X]) ∈ H1(Y ). Then the
sphere S 2 with the neighborhoods of the Ni deleted gives a 2-dimensional chain
in Y whose boundary is the union D1 ∪ D2.

Our approach also allows one to prove an interesting result about Parshin residues.
Let ω be a meromorphic top-form on Vn, and consider any Whitney stratification
of Vn such that ω is regular on the top-dimensional stratum. Then the residue
resF ω can be nontrivial only if all elements of the flag F are closures of strata of
the stratification (Theorem 3.3). In particular, there are only finitely many non-
trivial residues for a given form.

The reciprocity law for Parshin residues in the complex case follows from the
preceding results. Indeed, given a partial flag of subvarieties and a meromorphic
form, one can choose a Whitney stratification such that (a) the elements of the flag
are closures of strata and (b) the form is regular on the open stratum. Then, by
Theorem 3.3, the only nonzero summands in the reciprocity law correspond to the
flags consisting of closures of strata, and the reciprocity law then follows from
the relation on coboundary operators (Theorem 2.2) and the formula for Parshin
residues via coboundary operators (Theorem 3.2).

The rest of the paper proceeds as follows. In Section 2 we introduce the Leray
coboundary operators for stratified spaces and prove the relation (Theorem 2.2).
In Section 3 we use the results from Section 2 to express the Parshin residue as
an integral over a real smooth cycle and to prove the reciprocity law. Section 2.1
offers a short introduction to the theory of stratified spaces, and in Section 3.1 we
review Parshin’s original definitions and formulation of the reciprocity law.

This paper constitutes the first part of the author’s Ph.D. thesis under the super-
vision of Professor Askold Khovanskii. A short announcement of the main results
of the thesis is available in [M2]. In this paper we include complete proofs as
well as some examples. The second part of the thesis, which concerns applying
“resolution of singularities” techniques to the theory of Parshin residues, is avail-
able in [M1].

Acknowledgments. I would like to thank my Ph.D. advisor, Professor Askold
Khovanskii, for raising the question and for helpful discussions. I am also grateful
to the referee for reading the paper carefully, pointing out misprints, and suggest-
ing improvements in the presentation.

2. Leray Coboundary Operators for Stratified Spaces

2.1. Whitney Stratifications and Mather’s Abstract Stratified Spaces

Definition 2.1. Let M be a smooth manifold, and letV be a locally closed sub-
set of M. By a Whitney stratification S of V we mean a subdivision of V into
smooth strata such that the following statements hold.



656 Mikhail Mazin

1. The subdivision S is locally finite—in other words, each point of V has an open
neighborhood that intersects only finitely many strata.

2. Condition of the frontier: For each stratum X ∈ S, its boundary (X̄\X) ∩V is
a union of strata.

3. Each pair (X,Y ) of strata satisfies the Whitney conditions (a) and (b).
(a) For any x ∈ X and any sequence {yn} ∈ Y such that yn → x, if the sequence

of tangent planes TynY converges to some plane τ ⊂ TxM (in the appro-
priate Grassmanian bundle over M) then TxX ⊂ τ.

(b) For any x ∈ X, any sequence {yn} ∈ Y, and any sequence {xn} ∈ X such that
yn → x and xn → x, if the sequence of tangent planes TynY converges
to some plane τ ⊂ TxM and if the sequence of secants xnyn converges to
some line l (in some smooth coordinate system in M) then l ⊂ τ.

Remark. One can show that condition (a) is implied by condition (b); therefore,
it is enough to require the latter. One can prove that if a pair of strata (X,Y ) sat-
isfies condition (b) and if Ȳ ∩ X �= ∅, then dimX < dimY.

Notation. We say that X < Y if Ȳ ∩ X �= ∅. One can see that this defines a
partial order on the set of strata S.

Example 2.1. Consider the surface in C
3 given by the equation y2 +x3 −z2x 2 =

0 (see Figure 4). The singular locus of the surface coincides with the z-axis. Thus,
the z-axis and its complement give a subdivision of the surface into two smooth
pieces. It is easy to show that this pair satisfies condition (a) but does not satisfy
condition (b) at the origin. Note that the small neighborhood of the origin looks
much different from the neighborhood of any other point of the z-axis.

Figure 4 Intersection of the surface with the real space (Example 2.1)

It is easy to improve the subdivision in such a way that it satisfies condition (b);
one need only consider the origin as a separate stratum.

Whitney showed that if conditions (a) and (b) are satisfied for the pair (X,Y ), then
Y “behaves regularly” along X.

Theorem 2.1 (see e.g. [GMac]). Let V be a closed subvariety in a smooth alge-
braic variety M, and let � be a locally finite family of subvarieties in V. Then
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there exists a Whitney stratification of the set V such that each element of � is a
union of strata and all strata are algebraic.

A detailed review of the theory of Whitney stratifications can be found in [GMac].
The notion of an abstract stratified space, introduced by Mather [Ma], provides a

convenient setup for working with “nice” stratifications: subdivisions into smooth
pieces with regular behavior along strata. Mather proved that any Whitney strat-
ification can be endowed with a structure of an abstract stratified space, a notion
that will be described next.

Let V be a Hausdorff locally compact topological space that satisfies the sec-
ond countability axiom (i.e., there is a countable basis in the topology of V ). Let
S be a locally finite subdivision of V into topological manifolds endowed with
smoothness structures; the elements of S are called strata. Let S satisfy the con-
dition of the frontier: the boundary of any stratum is a union of strata. Similarly
as for Whitney stratifications, the set of strata S inherits the natural partial order
(X < Y if X ⊂ ∂Y ).

For every X ∈ S, let UX be a neighborhood of X in V, let ρX : UX → R≥0 be
a continuous function, and let πX : UX → X be a retraction. One should think of
ρX as of the distance to X. Therefore, we require that X = {ρX = 0}. It is also
convenient to say that ρX(y) = ∞ if y /∈ UX. We call ρX the tubular function and
call UX the tubular neighborhood.

Let X,Y ∈ S, X �= Y. We use the following notation:

UX,Y := UX ∩ Y ;
ρX,Y := ρX|UX,Y

: UX,Y → R+;
πX,Y := πX|UX,Y

: UX,Y → X.

We assume that UX,Y is empty unless X < Y. We also assume that if X and Y are
incomparable then UX ∩ UY is empty.

We have the compatibility conditions

πX,Y (πY,Z(v)) = πX,Z(v),

ρX,Y (πY,Z(v)) = ρX,Z(v)

whenever both sides of these equations are defined.
The following two conditions ensure that the space V behaves regularly along

strata: (i) for any X ∈ S, the map

(πX, ρX)|UX\X : UX\X → X × R+
is a locally trivial fibration with a compact fiber; (ii) for any Y > X, the restriction

(πX,Y , ρX,Y ) : UX,Y → X × R+
is a smooth fibration.

Finally, we want the fiber of πX over a point x ∈ X to be a cone with the ver-
tex at x. Because that does not follow from the conditions stated so far, we must
add one more. Let U≤1

X = {y ∈ UX | ρX(y) ≤ 1} and NX = ∂U
≤1
X = {y ∈ UX |

ρX(y) = 1}. Then πX|
U

≤1
X

: U≤1
X → X is the mapping cone over πX|NX

: NX → X.
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Definition 2.2. The triple J = {{UX}, {πX}, {ρX}} is called control data.

Definition 2.3. The triple {V, S, J} under the conditions just specified is called
an abstract stratified space.

It follows that NX has a natural structure of an abstract stratified space, as ob-
tained by intersecting the strata of V with NX and restricting tubular functions and
retractions.

The original definition (in [Ma]) of abstract stratified spaces is slightly different
and less restrictive. However, it is clear that shrinking the tubular neighborhoods
and rescaling the tubular functions allows one to change the control data so that
they satisfy the conditions stipulated here.

2.2. Leray Coboundary Operators and Relations

Let f : M → N be a smooth fibration with compact oriented k-dimensional fiber
F. Then one can define the Gysin homomorphism on homology f ∗ : H∗(N ) →
H∗+k(M). In essence one can simply set f ∗(a) = [f −1(A)], where A is a repre-
sentative of the homology class a ∈ H∗(N ).

Remark. We use the following convention about the orientations. Let y ∈ M

and x = f(y) ∈ N. Let A ⊂ N be a smooth representative of a homology class
a ∈ H∗(N ) with x ∈ A. Let the differential form ωA on N be such that its restric-
tion to A defines the orientation of A at x, and let the differential form ωF on M be
such that its restriction to the fiber Fx defines the orientation of Fx at y. Then the
orientation of the preimage f −1(A) ⊂ M at the point y is given by the restriction
of the form f ∗(ωA) ∧ ωF .

Let now M be an oriented manifold with boundary, and let f : M → N be a
proper map to an oriented manifold N such that its restriction, both to the bound-
ary ∂M ⊂ M and the interior M̆ ⊂ M, are submersions. Then the Ehresmann
lemma for manifolds with boundary implies that f is a locally trivial fibration and
that its restrictions to ∂M and M̆ are smooth fibrations.

Let φ := (f |∂M)∗ : H∗(N ) → H∗+dimM−dimN−1(∂M) be the Gysin homo-
morphism.

Lemma 2.1. i∗ � φ = 0, where i : ∂M ↪→ M is the embedding.

Proof. One can generalize the Gysin homomorphism to the case just described
when the fiber of f is a manifold with boundary. The only difference is that
now the homomorphism lands in the relative homology group: f ∗ : H∗(N ) →
H∗+k(M, ∂M), where k = dimF = dimM − dimN. Then one immediately sees
that φ = ∂ � f ∗, where ∂ : H∗(M, ∂M) → H∗−1(∂M) is the boundary homomor-
phism from the long exact sequence of the pair (M, ∂M). However, by the long
exact sequence, i∗ � ∂ = 0.

We next apply the foregoing constructions to the stratified spaces.
Let all the strata of a stratified space V be oriented. Let X ∈ S be a stratum.

Restriction of the retraction πX : UX → X to NX = {y ∈ UX | ρX(y) = 1} is a
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locally trivial fibration. Moreover, for any stratum Y such that X < Y, the restric-
tion to NX,Y = NX ∩ Y = {y ∈ UX,Y | ρX(y) = 1} is a smooth fibration.

Definition 2.4. Let X < Y be two strata. We say that X and Y are consecutive
strata if there is no Z such that X < Z < Y.

Lemma 2.2. LetX< Y be consecutive strata. Then the fiber of πX|NX,Y
: NX,Y →

X is compact.

Proof. Since X < Y are consecutive strata, it follows that NX,Y = Y ∩ NX is a
closed stratum of NX (indeed, otherwise the closure of NX,Y in NX would contain
a smaller stratum). The fiber of the restriction of πX to NX,Y is the intersection
of the fiber of the restriction of πX to NX and NX,Y . Therefore, it is compact as a
closed subset of a compact set.

Note that NX,Y is orientable; indeed, it is the level set of a smooth function ρX,Y

in UX,Y ⊂ Y. Let us fix the orientation of NX,Y as follows. We say that the restric-
tion of a differential (dimY − 1)-form ωNX,Y

on Y defines the positive orientation
of NX,Y if the form dρX,Y ∧ ωNX,Y

defines the positive orientation of Y.
Let dimX = n and dimY = k.

Definition 2.5. The Leray coboundary operator φX,Y : H∗(X) → H∗+k−n−1(Y )

is given by the composition φX,Y = i∗ � φ, where i : NX,Y ↪→ Y is the embedding
and φ : H∗(X) → H∗+k−n−1(NX,Y ) is the Gysin homomorphism.

Theorem 2.2. Let X < Y be two strata and let Z1, . . . ,Zm be all strata such that
X < Zi < Y. Suppose that Z1, . . . ,Zm are incomparable. Then

φZ1,Y � φX,Z1 + φZ2,Y � φX,Z2 + · · · + φZm,Y � φX,Zm
= 0.

Proof. We want to apply Lemma 2.1. Consider Di := NX,Y ∩ NZi,Y = {y ∈ Y |
ρZi

(y) = ρX(y) = 1}, and note thatDi = (πZi
|NZi,Y

)−1(NX,Zi
). Therefore, πZi

|Di

is a smooth fibration over NX,Zi
. Let pi := πX|NX,Zi

� πZi
|Di

: Di → X. By con-
struction of the Leray coboundary operators we have

φZi,Y � φX,Zi
= i∗ � φi,

where i : Di ↪→ Y is the embedding and φi : H∗(X) → H∗+dimY−dimX−2 is the
Gysin homomorphism of pi : Di → X. Here we fix the orientation of Di as fol-
lows. We say that the restriction of a differential (dimY −2)-formωDi

onY defines
the positive orientation of Di if the form dρZi,Y ∧dρX,Y ∧ωDi

defines the positive
orientation of Y.

Consider now NX,Y = {y ∈ Y | ρX(y) = 1}. The restriction πX|NX,Y
is a smooth

fibration, but the fibers of this fibration are not compact. On the other hand, if we
consider the restriction of πX to the union NX,Y∪Z1∪··· ∪Zm

:= NX,Y ∪NX,Z1 ∪· · ·∪
NX,Zm

= NX ∩ (Y ∪ Z1 ∪ · · · ∪ Zm), then the fibers are compact.
Now Di ⊂ NX,Y can be viewed as the boundary of the neighborhood

Ui = {y ∈ NX,Y ∩ UZi
| ρZi

(y) < 1} of NX,Zi
in NX,Y∪Z1∪··· ∪Zm

. Denote M =
NX,Y \(U1 ∪ · · · ∪ Um). By the Ehresmann lemma for manifolds with boundary,
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the restriction πX|M : M → X is a locally trivial fibration. Indeed, πX|M is proper
because M is a closed subset of NX,Y∪Z1∪··· ∪Zm

and πX|NX,Y∪Z1∪··· ∪Zm
is a fibration

with compact fibers; the restrictions of πX to the interior of M and the boundary
∂M = D1 ∪ · · · ∪ Dm are submersions.

To conclude the proof by Lemma 2.1, one needs to check that the orientation of
Di as a piece of the boundary of M always coincides with (or always is opposite
to) the orientation of Di used in the first part of the proof. Recall that we fixed the
orientation of Di in such a way that, if ωDi

|Di
gives the orientation of Di, then

dρZi,Y ∧ dρX,Y ∧ ωDi
gives the orientation of Y. Let ωNX,Y

:= −dρZi,Y ∧ ωDi
.

According to our convention about the orientation of NX,Y , ωNX,Y
gives the posi-

tive orientation of NX,Y . Therefore, the orientation of Di as a piece of the bound-
ary of M is given by −ωDi

.

2.3. Dual Homomorphism

In this section the coefficient ring is always R. For simplicity, we omit this in the
notation.

The following question naturally arises: Which operator is Poincaré dual to the
coboundary operator φX,Y ?

The manifolds X and Y are not compact, so one must use the Borel–Moore
homology to achieve the Poincaré duality. A nice review of the theory of Borel–
Moore homology (in much more detail than needed here) is given in [Gin].

Consider φX,Y : Hm(X) → Hm+k−n−1(Y ) (here dimX = n and dimY = k).

The dual operator is (φX,Y )
∗ : HBM

n−m+1(Y ) → HBM
n−m(X). There is a natural candi-

date for the dual; indeed, one can show that

HBM
n−m+1(Y ) = HBM

n−m+1(Y ∪ X,X).

Hence there exits the boundary operator

∂Y,X : HBM
n−m+1(Y ) → HBM

n−m(X).

Remark. It is crucial that X < Y are consecutive strata. Otherwise, the union
X ∪ Y would not be locally compact and so the boundary operator would not be
defined.

Theorem 2.3. The Leray coboundary operator φX,Y : Hm(X) → Hm+k−n−1(Y )

(dimX = n, dimY = k) is Poincaré dual to the boundary homomorphism
∂Y,X : HBM

n−m+1(Y ) → HBM
n−m(X).

Proof. By Poincaré duality, the intersection form H∗(M) × HBM
d−∗(M) → R

is well-defined and nondegenerate (here M is a smooth oriented manifold and
dimM = d). Thus we need only check that, for any classes a ∈ Hn(X) and b ∈
HBM

m−n+1(Y ),
〈∂Y,Xb, a〉 = 〈b,φX,Y (a)〉.

Let i : UX,Y ↪→ Y be the embedding. According to the definition of the
Leray coboundary operator, φX,Y can be factored: φX,Y = i∗ � φX,UX,Y

, where
φX,UX,Y

: Hm(X) → Hm+k−n−1(UX,Y ) is the Leray coboundary operator for the



Parshin Residues via Coboundary Operators 661

stratified space with two strata,X andUX,Y . On the other hand, the boundary homo-
morphism ∂Y,X also can be factored: ∂Y,X = ∂UX,Y,X � i∗ (here i∗ : HBM(Y ) →
HBM(UX,Y ) is the restriction homomorphism induced by the inclusion i). There-
fore, it is enough to assume that Y = UX,Y .

We know that UX,Y is diffeomorphic to NX,Y × R+. Hence there is an iso-
morphism θ : HBM∗ (UX,Y )

∼−→HBM∗−1(NX,Y ) given by taking a representative that is
transversal to NX,Y and then intersecting it with NX,Y . The inverse isomorphism
θ−1 is derived from multiplying a representative by R+.

We remark that one should be careful with the orientations. We want the fol-
lowing condition to be satisfied. Let B ⊂ UX,Y be a cycle transversal to NX,Y

such that [B] = b ∈ HBM∗ (UX,Y ), and let C = B ∩ NX,Y such that [C] = θ(b) ∈
HBM∗ (NX,Y ). Then a form ωC gives the positive orientation of C at a point in C if
and only if the form dρX,Y ∧ ωC gives the positive orientation of B at this point.

With the orientation conventions just described, we have

〈b,φX,Y (a)〉 = 〈θ(b),φ(a)〉;
here φ : H∗(X) → H∗+k−n−1(NX,Y ) is the Gysin homomorphism and the inter-
section on the right is taken inside NX,Y . Moreover,

∂UX,Y,X = (πX|NX,Y
)∗ � θ.

Therefore, we need only check that the Gysin homomorphism is dual to
(πX|NX,Y

)∗ : Hn−m(NX,Y ) → Hn−m(X), which is obvious.

Corollary. The Leray coboundary operator φX,Y does not depend on the choice
of the control data, at least modulo torsion.

One can also investigate the relation that is dual to the relation, proved in Theo-
rem 2.2, on the coboundary operators.

Consider the strata X,Z1, . . . ,Zp,Y satisfying the conditions of Theorem 2.2,
and let Z = ⋃

Zi. Then the boundary operator

∂Y,Z : HBM
∗ (Y ) → HBM

∗−1(Z) =
⊕

HBM
∗−1(Zi)

is dual to the direct sum of the coboundary operators
⊕

φZi,Y . In turn, the bound-
ary operator

∂Z,X : HBM
∗−1(Z) → HBM

∗−2(X)

is dual to the direct sum
⊕

φX,Zi
. Therefore, the dual relation is

∂Z,X � ∂Y,Z = 0.

However, it is not hard to prove this relation independently. Indeed, one can
use that HBM∗ (Y ) = HBM∗ (Y ∪ Z ∪ X,Z ∪ X) and HBM∗ (Z) = HBM∗ (Z ∪ X,X).

Then, in essence, the equality states that the boundary of the boundary of a chain
is zero, which is trivial. Thus we have given another proof of Theorem 2.2 modulo
torsion.

Remark. It is crucial for this argument that Y ∪Z ∪X be locally compact. That
is, the dual relation would not hold if one were to forget one of the intermediate
strata Zi.
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3. Application to Parshin Residues

3.1. Parshin Residues and the Reciprocity Law

In this section we review the definition of the Parshin residue and the reciprocity
law. As discussed in the Introduction, the Parshin residue at a flag F is defined
as a sum of certain more delicate residues. In fact, every flag “contains” finitely
many Parshin points, and the more delicate residues are computed at these points.

We start from the definition of a Parshin point. Let Vn be an algebraic variety of
dimension n, and let F =: {Vn ⊃ · · · ⊃ V0} be a flag of subvarieties of dimensions
dimVk = k. Now consider the diagram

Vn ⊃ Vn−1 ⊃ · · · ⊃ V1 ⊃ V0�pn

�pn

Ṽn ⊃Wn−1�pn−1

W̃n−1 ⊃ · · ·

· · · ⊃W1�p1

W̃1 ⊃W0 ,

(∗)

where the following statements hold.

1. pn : Ṽn → Vn is the normalization.
2. Wn−1 ⊂ Ṽn is the union of (n − 1)-dimensional irreducible components of the

preimage of Vn−1.

3. For every k = 1, 2, . . . , n − 1:
(a) pk : W̃k → Wk is the normalization;
(b) Wk−1 ⊂ W̃k is the union of (k − 1)-dimensional irreducible components

of the preimage of Vk−1.

Definition 3.1. We call diagram (∗) the normalization diagram of the flag
Vn ⊃ · · · ⊃ V0.

Definition 3.2. The flag F = {Vn ⊃ · · · ⊃ V0} of irreducible subvarieties to-
gether with the choice of a point aα ∈W0 is called a Parshin point.

Choosing a point aα ∈ W0 is equivalent to choosing irreducible components in
every Wi, i = n − 1, . . . , 0. Indeed, W̃i is normal and therefore locally irreducible
at every point. In particular, it is locally irreducible at the image of aα. Let W̃ α

i be

the irreducible component of W̃i that contains the image of aα. LetWα
i = pi(W̃

α
i ).

Note that Wα
i is an irreducible component of Wi.
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Figure 5 Intersection of the flagF with the real space (Example 3.1): normalization
splits the local irreducible components at every point; hence normalization of the cone
over the figure eight is the usual cone, and the preimage of the z-axis is two lines
intersecting at the origin

Example 3.1. Consider the flag from the Example 1.1 (see Figure 5). It follows
that there are two Parshin points corresponding to the flag. Note that these points
naturally correspond to the tori from Example 1.1.

Example 3.2. The normalization of the Whitney umbrella (Example 1.2) is iso-
morphic to C

2. The preimage of the z-axis is a line that covers the z-axis twice
with a branching at the origin. Therefore, W0 is just one point. This corresponds
to the existence of only one torus in Example 1.2.

Defining the Parshin residue requires that one first define the local parameters at
a Parshin point, which play the same role that the normalizing parameter does in
the 1-dimensional case. After that, one uses these parameters to define a sequence
of residual meromorphic forms ωn−1, . . . ,ω0 on Wα

n−1, . . . ,W
α
0 .

The local parameters are defined as follows: Wα
i−1 ⊂ W̃i is a hypersurface in a

normal variety. It follows that there exists a (meromorphic) function ui on W̃i that
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has zero of order 1 at a generic point of Wα
i−1. Since meromorphic functions are

the same onWi and W̃i, one can consider ui as a function onWi. Then one can ex-
tend (in an arbitrary way) ui to W̃i+1 and so on. For simplicity, we denote all these
functions by ui. Now the ui are defined on Vn and can be consecutively restricted
to Wj for j ≥ i.

Definition 3.3. Functions (u1, . . . , un) are called local parameters at the Parshin
point P = {Vn ⊃ · · · ⊃ V0, aα}.
Remark. One can choose local parameters in such a way that ui has zero of
order 1 at a generic point not only of Wα

i−1, but of the wholeWi−1. Then these local
parameters work for all Parshin points with the flag F = {Vn ⊃ · · · ⊃ V0}. We
only use local parameters with this property.

Let ω be a meromorphic n-form on Vn. One can show that the differentials
du1, . . . , dun are linearly independent at a generic point of Vn. Therefore, one
can write

ω = f du1 ∧ · · · ∧ dun,

where f is a meromorphic function on Vn.

Now we define the residual forms ωi. Take a generic point p ∈Wα
n−1. Both Ṽn

and Wn−1 are smooth at p. Moreover, the parameters u1, . . . , un provide an iso-
morphism of a neighborhood of p to an open subset in C

n, and Wα
n−1 is given by

the equation un = 0 in this neighborhood. Restrict the function f to the transver-
sal section to Wn−1 at p that is given by fixing the parameters u1, . . . , un−1. The
restriction can be expanded into a Laurent series in un. It is easy to see that the
coefficients of this expansion depend analytically on p. Moreover, one can see
that the coefficients are meromorphic functions onWα

n−1. Let f−1 be the coefficient
at u−1

n in this expansion. Then ωn−1 = f−1 du1 ∧ · · · ∧ dun−1 is a meromorphic
(n − 1)-form on Wα

n−1.

Repeating this procedure one more time yields a meromorphic (n − 2)-form
on Wα

n−2. Finally, after n steps, one obtains a function ω0 on the one-point set
Wα

0 = {aα}.
Definition 3.4. The residue of ω at the Parshin point P = {Vn ⊃ · · · ⊃ V0,
aα ∈W0} is resP (ω) = ω0(aα).

Parshin proves that the residue does not depend on the choice of local parameters.

Definition 3.5. The sum of residues over all a ∈W0 is called the residue at the
flag F = {Vn ⊃ · · · ⊃ V0} and is denoted resF (ω) = ∑

a∈W0
res{F,a}(ω).

Theorem 3.1 [Bei; L; P]. Let ω be a meromorphic n-form on Vn. Fix a partial
flag of irreducible subvarieties {Vn ⊃ · · · ⊃ V̂k ⊃ · · · ⊃ V0}, where Vk is omitted
(0 < k < n). Then ∑

Vk+1⊃X⊃Vk−1

resVn⊃···⊃X⊃···⊃V0(ω) = 0;
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here the sum is taken over all irreducible k-dimensional subvarieties X such that
Vk−1 ⊃ X ⊃ Vk+1, and only finitely many summands are nonzero.

In addition, if V1 is compact then one has the same relation for k = 0.

3.2. Residues via Leray Coboundary Operators
and the Reciprocity Law

We want to apply the stratification theory to study the Parshin points and residues.
Hence we must stratify all the spaces in the normalization diagram in such a way
that the stratifications respect the normalization maps p1, . . . ,pn. The following
lemma easily follows from well-known results on the existence of Whitney strat-
ifications (see e.g. [GMac, Sec. 1.7]).

Notation. Let X be an irreducible (complex analytic) variety considered with
a fixed Whitney stratification; then by X̆ we denote the stratum of maximal di-
mension. If X is reducible, then by X̆ we denote the union of strata of maximal
dimension.

Lemma 3.1. Fix a Parshin point P = {Vn ⊃ · · · ⊃ V0, aα ∈ W0} and local pa-
rameters u1, . . . , un. Then there exist Whitney stratifications S, SṼ , SW̃n−1

, . . . , SW̃1

of (respectively) Vn, Ṽn,W̃n−1, . . . ,W̃1 such that :

1. Vn−1, . . . ,V0 are unions of strata of S;
2. Wn−1,Wn−2, . . . ,W0 are unions of strata of SṼ , SW̃n−1

, . . . , SW̃1
, respectively;

3. for all i = 1, . . . , n, the local parameter ui is regular and nonvanishing on

V̆n, ˘̃Vn, ˘̃Wn−1, . . . , ˘̃Wi; and
4. for all i = 1, . . . , n, the restriction of the normalization map pi to any stratum

in the source is a covering over a stratum in the image.

An important corollary about stratifications SW̃i
is expressed as the following

lemma.

Lemma 3.2. The stratum (or the union of strata if Wi−1 is reducible) W̆i−1 ∈ SW̃i

consists of regular points of W̃i .

Proof. We prove the lemma by contradiction. Assume there is a point x ∈ W̆i−1

such that W̃i is singular at x. Observe that, by dimension reasons and the condi-
tion of the frontier, the only strata intersecting a small neighborhood of x are W̆i−1

and ˘̃Wi. Note that ui is regular in ˘̃Wi and at a generic point of W̆i−1. Therefore, by
the extension theorem for normal varieties, ui is regular at x.

Note also that ui is nonvanishing in ˘̃Wi and has zero of order 1 at a generic point
of Wi−1. Therefore, the {ui = 0} coincide with Wi−1 near x. Moreover, it is easy
to see that the germ of ui at x generates the ideal of the germ of Wi−1 at x. Indeed,
if g is a function that is regular at x and vanishing on Wi−1, then g/ui is regular at
x by the extension theorem for normal varieties.

Now let f1, . . . , fi−1 be any coordinate system onWi−1 at x. Then it is clear that
the functions ui, f1, . . . , fi−1 generate the maximal ideal in the local ring of {x} ⊂
W̃i . Hence x is a smooth point of W̃i , which contradicts our assumption.
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Our goal is to show that

resF (ω) = 1

(2πi)n

∫
�F

ω,

where F := {Vn ⊃ · · · ⊃ V0} and �F = φV̆n−1,V̆n
� · · · � φV̆0,V̆1

([V0 ]) ∈ Hn(V̆n).

Moreover, we will show that �F naturally splits into the sum

�F =
∑
ai∈W0

�{F,ai}

such that
res{F,ai}(ω) = 1

(2πi)n

∫
�{F,ai}

ω.

According to the construction of the Leray coboundary operator, �F is represented
by a smooth compact real n-dimensional submanifold τF ⊂ V̆n. This submanifold
is obtained from a point by the following procedure: there are n steps, and at each
step we take the total space of an oriented fibration with 1-dimensional compact
fiber over the result of the previous step. Thus, τF is a union of n-dimensional tori.
We will show that (i) the connected components of τF are in natural one-to-one
correspondence with the points of W0 and (ii) the connected component τF,ai cor-
responding to ai ∈W0 represents �F,ai .

Fix control data on the stratification S of Vn. Let us use these control data to
construct the representative τF ⊂ V̆n of �F . We also denote by τk ⊂ V̆k the
representative of �k = φV̆k−1,V̆k

� · · · � φV̆0,V̆1
([V0 ]) ∈ Hk(V̆k) constructed in the

same way.
Let us introduce the following notation:

• Û0 := V̆0;
• Ûk := π−1

V̆k−1,V̆k
(Ûk−1) for k = 1, . . . , n.

Note that, for k > 0, Ûk is the preimage of Ûk−1 × R+ under the mapping
(πV̆k−1,V̆k

, ρV̆k−1,V̆k
) : UV̆k−1,V̆k

→ V̆k−1 × R+. Since V̆k−1 and V̆k are consecutive
strata, it follows that the restriction (πV̆k−1,V̆k

, ρV̆k−1,V̆k
)|Ûk

is a proper submersion
to Ûk−1 × R+.

Composing these maps n times yields the following lemma.

Lemma 3.3. (ρV̆0
, . . . , ρV̆k−1

) : Ûk → (R+)k is a proper submersion. Therefore,
Ûk is diffeomorphic to τk × (R+)k.

Consider the preimages Uk = (pn � · · · � pk)
−1(Ûk) ⊂ W̃k. By Lemma 3.1, Uk ⊂˘̃Wk and (pn � · · · � pk)|Uk

: Uk → Ûk is a covering.
Let Ūk := Uk ∪ pk−1(Uk−1) for k = n, n − 1, . . . ,1.

Lemma 3.4. Ūk ⊂ W̃k is an open subset consisting of regular points of W̃k.

Proof. Ûk ∪ Ûk−1 is an open subset in V̆k ∪ V̆k−1. Indeed, it is the preimage of the
Ûk−1 under the restriction of the projection πV̆k−1

, restricted to UV̆k−1
∩ (V̆k−1 ∪ V̆k).

In turn, Ūk is the preimage of Ûk ∪ Ûk−1 under (pn � · · · � pk)| ˘̃
Wk∪W̆k−1

.

Finally, by Lemma 3.2, W̆k−1 consists of regular points of W̃k.
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We need the following lemma about lifting the control data.

Lemma 3.5. Let V and V ′ be two stratified spaces consisting of two strata each:
V = X ! Y for X < Y, and V ′ = X ′ ! Y ′ for X ′ < Y ′. Let p : V ′ → V be a map
such that p|X ′ is a covering over X and p|Y ′ is a covering over Y. Let UX ⊂ V,
πX : UX → X, and ρX : UX → R≥0 be the control data on V. Then there exist
control data UX ′ ,πX ′ , ρX ′ on V ′ such that

(1) ρX � p = ρX ′ and
(2) πX � p = p � πX ′ .

Proof. We set the tubular neighborhood UX ′ := p−1(UX). The tubular function
ρX ′ is defined by property (1). The retraction ρX ′ is defined uniquely by prop-
erty (2) and continuity.

We next apply Lemma 3.5 to theV = Ûk ! Ûk−1 and V ′ = Ūk = pk−1(Uk−1)!Uk.

Let πpk−1(Uk−1) : Ūk → pk−1(Uk−1) and ρpk−1(Uk−1) : Ūk → R≥0 be the correspond-
ing retraction and tubular function. We have the following corollary.

Corollary. For any k = n, n − 1, . . . , 1, the connected components of Uk are
in natural one-to-one correspondence with the connected components of Uk−1.

Proof. Indeed, the map from the connected components of Uk to the connected
components of pk−1(Uk−1) is given by the retraction πpk−1(Uk−1). Existence of the
inverse to this map follows because pk−1(Uk−1) ⊂ Ūk is a complex hypersurface
in the manifold Ūk. Indeed, if H ⊂ M is a hypersurface in a complex manifold M,
then there is only one connected component of M in a neighborhood of a con-
nected component of H.

Finally, pk−1|Uk−1 is an isomorphism to the image.

Pick a point aα ∈W0. Let Uα
1 , . . . ,Uα

n be the corresponding connected components
of U1, . . . ,Un, respectively, and let Ū α

k := Uα
k ∪ pk−1(U

α
k−1) be the corresponding

connected components of Ūk.

Let τ̃k := (pn�· · ·�pk)
−1(τk). Note that τ̃k ⊂ Uk is a union of connected compo-

nents, one in each Uα
k . Let τ̃ α

k ⊂ Uα
k be the corresponding connected component.

Lemma 3.6. φpk−1(Uk−1),Uk
� (pk−1|Uk−1)∗([τ̃ α

k−1]) = [τ̃ α
k ].

Proof. Since we have chosen the control data on Ūk to be coherent with the control
data on Ûk ∪ Ûk−1 (given by restricting the control data from the ambient space),
we have the equality on the level of representatives.

Now we use the local parameters (u1, . . . , un) to construct cycles γ α
k ⊂ Uα

k such
that, on the one hand, it is obvious that

res{F,aα}(ω) = 1

(2πi)n

∫
γ α
n

ω,

and on the other hand γ α
k is homologically equivalent to τ̃ α

k in Uα
k .
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The function uk is regular and nonvanishing in Uα
k ⊂ ˘̃Wk and has zero of order 1

at a generic point of pk−1(U
α
k−1) ⊂ Ū α

k . It follows immediately that uk is regular
on Ū α

k and that the equation uk = 0 defines pk−1(U
α
k−1) in Ū α

k .

Our next lemma easily follows from the preceding observation.

Lemma 3.7. There exist smooth positive real functions ε1, . . . , εn (εk : C
k−1 →

R+) and open subsets Bk ⊂ Uα
k (k = 1, . . . , n) such that

(u1, . . . , uk) : Bk → Ak

:= {(z1, . . . , zk) : 0 < |zi | < εi(z1, . . . , zi−1), i = 1, . . . , k} ⊂ C
k

are biholomorphisms. (Note that ε1 is a constant.)

Let δ1, . . . , δn ∈ R+ be small enough that

{(z1, . . . , zn) : |zi | = δi, i = 1, . . . , n} ⊂ An.

Definition 3.6. Let γ α
k = {x ∈ Bk : |ui(x)| = δi, i = 1, . . . , k} and γ α

0 = aα.

It follows immediately from the definition of the Parshin residue that

res{F,aα}(ω) = 1

(2πi)n

∫
γ α
n

ω.

Lemma 3.8. γ α
k and τ̃ α

k define the same homology class in Hk(Uk).

Proof. We prove this lemma by induction. For k = 0 one has γ α
0 = τ̃ α

0 = aα. For
the induction step, use Lemma 3.6 and the similar observation for cycles γ α

k .

We have thus proved the following theorem.

Theorem 3.2.
resF (ω) = 1

(2πi)n

∫
�F

ω,

where F := {Vn ⊃ · · · ⊃ V0} and �F = φV̆n−1,V̆n
� · · · � φV̆0,V̆1

([V0 ]) ∈ Hn(V̆n).

In order to derive the Parshin reciprocity law from Theorem 2.2 and Theorem 3.2,
one needs a fixed stratification ofV such that all nonzero residues of a given formω

are in the flags consisting of closures of strata of the stratification. As it happens,
any Whitney stratification such that ω is regular on the top-dimensional stratum
is good enough. More precisely, we have the following theorem.

Theorem 3.3. Let V be an n-dimensional variety and let ω be a meromorphic
n-form on V. Let Sω be a Whitney stratification of V such that ω is regular on V̆.

Let F = {Vn ⊃ · · · ⊃ V0} be a flag of irreducible subvarieties of V, where
dimVi = i. Suppose that at least one of Vi is not the closure of a stratum of Sω.

Then res{F,aα} ω = 0 for all aα ∈W0.

Proof. Consider the normalization diagram for the flag F. Let aα ∈ W0 and let
(u1, . . . , un) be local parameters. Let S be a stratification of V satisfying the
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conditions of Lemma 3.1 and such that all strata of the stratification Sω are unions
of strata of S. As usual, we denote by V̆k the stratum of S that is open and dense
in Vk.

The proof is based on the following two observations.

1. Let X ′ < Y ′ be consecutive strata of Sω, and let X < Y be the consecutive
strata of S such that X is an open dense subset in X ′ and Y is an open dense sub-
set in Y ′. Let iX : X ↪→ X ′ and iY : Y ↪→ Y ′ be the embeddings. Then it easily
follows—by the construction of coboundary operators φX,Y and φX ′,Y ′ and by
the independence of these operators from the choice of the control data—that
φX ′,Y ′ � iX∗ = iY∗ � φX,Y .

2. Let Y ′ be a stratum of Sω, and let X < Y be consecutive strata of S such that
(X∪Y ) ⊂ Y ′ and Y is open and dense in Y ′. Then i∗�φX,Y = 0, where i : Y ↪→
Y ′ is the embedding. Moreover, if A is a representative of a homology class
in H∗(X) and if B is the representative of φX,Y ([A]) ∈ H∗+dimY−dimX−1(Y )

constructed in the standard way, then every connected component ofB is homo-
logically equivalent to 0 in Y. Indeed, one can use the control data on S to embed
the mapping cone of πX|B : B → A into Y ′.

Let k be the largest number such that V̆k is a subset of a stratum of Sω of di-
mension greater than k. For m = k + 1, . . . , n, let V̆ ′

m be the stratum of Sω such

that V̆m ⊂ V̆ ′
m. Observe that dim V̆ ′

m = m and that V̆m is open and dense in V̆ ′
m.

Moreover, by dimension reasons and the condition of the frontier, V̆k ⊂ V̆ ′
k+1.

Let im : V̆m ↪→ V̆ ′
m be the embedding. Then, by observation 1,

(in)∗ � φV̆n−1,V̆n
� · · · � φV̆1,V̆0

= φV̆ ′
n−1,V̆

′
n

� · · · � φV̆ ′
k+1,V̆

′
k+2

� (ik+1)∗ � φV̆k,V̆k+1
� · · · � φV̆1V̆0

.

Yet by observation 2, (ik+1)∗ � φV̆k,V̆k+1
= 0. Therefore,

(in)∗ � φV̆n−1,V̆n
� · · · � φV̆1V̆0

= 0;
since ω is regular in V̆ ′

n, it follows that resF ω = 0. Moreover, it is easy to see
that each connected component of the standard representative of the φV̆n−1,V̆n

� · · · �
φV̆1V̆0

([V0 ]) is homologically equivalent to 0. Hence resF,a ω = 0 for any a ∈W0.

Corollary. There are only finitely many nonzero Parshin residues for a given
meromorphic form.

Note that the Parshin reciprocity law follows from Theorems 3.2, 3.3, and 2.2.
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