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Bulk Universality Holds Pointwise in the
Mean for Compactly Supported Measures

Doron S. Lubinsky

1. Introduction

Let µ be a finite positive Borel measure with compact support and infinitely many
points in the support. Define orthonormal polynomials

pn(x) = γnx
n + · · · , γn > 0,

n = 0,1, 2, . . . , satisfying the orthonormality conditions∫
pjpk dµ = δjk.

Throughout we use µ′ to denote the Radon–Nikodym derivative of µ. The nth re-
producing kernel for µ is

Kn(x, y) =
n−1∑
k=0

pk(x)pk(y), (1.1)

and the normalized kernel is

K̃n(x, y) = µ′(x)1/2µ′(y)1/2Kn(x, y). (1.2)

In the theory of n-by-n random Hermitian matrices (the so-called unitary case),
there arise probability distributions on the eigenvalues that are expressible as de-
terminants of reproducing kernels [5, p. 112]:

P (n)(x1, x2, . . . , xn) = 1

n!
det(K̃n(xi, xj ))1≤i,j≤n.

One may use this to compute a host of statistical quantities—for example, the
probability that a fixed number of eigenvalues of a random matrix lie in a given
interval. One important quantity is the m-point correlation function for M(n) [5,
p. 112]:

Rm(x1, x2, . . . , xm)

= n!

(n−m)!

∫
· · ·

∫
P (n)(x1, x2, . . . , xn) dxm+1 dxm+2 . . . dxn

= det(K̃n(xi, xj ))1≤i,j≤m.
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The universality limit in the bulk asserts that, for fixed m ≥ 2 and ξ in the inte-
rior of the support of µ and real a1, a2, . . . , am, we have

lim
n→∞

1

K̃n(ξ, ξ)m
Rm

(
ξ + a1

K̃n(ξ, ξ)
, ξ + a2

K̃n(ξ, ξ)
, . . . , ξ + am

K̃n(ξ, ξ)

)

= det

(
sinπ(ai − aj )

π(ai − aj )

)
1≤i,j≤m

.

Of course, when ai = aj , we interpret
sinπ(ai−aj )

π(ai−aj )
as 1. Because m is fixed in this

limit, this reduces to the case m = 2; namely

lim
n→∞

K̃n

(
ξ + a

K̃n(ξ,ξ)
, ξ + b

K̃n(ξ,ξ)

)
K̃n(ξ, ξ)

= sinπ(a − b)

π(a − b)
. (1.3)

Thus, an assertion about the distribution of eigenvalues of random matrices reduces
to a technical limit involving orthogonal polynomials. The adjective universal is
justified: the limit on the right-hand side of (1.3) is independent of ξ, but more
importantly it is independent of the underlying measure.

Typically, the limit (1.3) is established uniformly for a, b in compact subsets of
the real line, but if we remove the normalization from the outer Kn then we can
also establish its validity for complex a, b; that is,

lim
n→∞

Kn

(
ξ + a

K̃n(ξ,ξ)
, ξ + b

K̃n(ξ,ξ)

)
Kn(ξ, ξ)

= sinπ(a − b)

π(a − b)
. (1.4)

There is an extensive literature on the topic, and reviews may be found in [1; 3;
4; 5; 6; 10]. In [13], we showed that universality holds in measure for compactly
supported µ. More precisely, we proved the following result.

Theorem 1.1. Let µ be a measure with compact support and with infinitely many
points in the support. Let ε > 0 and r > 0. Then, as n → ∞,

meas

{
ξ ∈ {µ′ > 0} :

sup
|u|,|v|≤r

∣∣∣∣∣
Kn

(
ξ + u

K̃n(ξ,ξ)
, ξ + v

K̃n(ξ,ξ)

)
Kn(ξ, ξ)

− sinπ(u− v)

π(u− v)

∣∣∣∣∣ ≥ ε

}
→ 0. (1.5)

Here “meas” denotes linear Lebesgue measure, u, v are complex variables, and
{µ′ > 0} = {x : µ′(x) > 0}. Because convergence in measure implies conver-
gence a.e. of subsequences, we deduced universality for subsequences.

The obvious drawback of this result is that universality holds only in measure.
The strongest pointwise result to date is due to Totik [21; 22]. (See also [7; 11; 12;
16; 17].) A measure µ is called regular (in the sense of Stahl and Totik) if

lim
n→∞ γ 1/n

n = 1

cap(supp[µ])
,
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where cap(supp[µ]) denotes the logarithmic capacity of the support of µ. See
[18] for a thorough exploration of this concept. Totik proved that if µ is a measure
with compact support that is regular and if, in some interval I,∫

I

logµ′ > −∞,

then for a.e. ξ ∈ I we have the universality limit (1.3). Although regularity is a
weak global condition, it is not yet clear whether it is necessary for a full point-
wise result.

In this paper, we avoid any global assumptions onµ other than compact support.
We show that whenµ satisfies some local regularity condition, then pointwise uni-
versality holds in the mean.

Theorem 1.2. Let µ be a measure with compact support and with infinitely many
points in the support. Assume that J is an open interval in which, for some con-
stant C > 0,

µ′ ≥ C a.e. in J. (1.6)

Let ξ ∈ J be a Lebesgue point of µ. Then, for each r > 0,

lim
m→∞

1

m

m∑
n=1

sup
|u|,|v|≤r

∣∣∣∣∣
Kn

(
ξ + u

K̃n(ξ,ξ)
, ξ + v

K̃n(ξ,ξ)

)
Kn(ξ, ξ)

− sinπ(u− v)

π(u− v)

∣∣∣∣∣ = 0. (1.7)

In particular, this holds for a.e. ξ ∈ J.

Remarks. (i) By a Lebesgue point ξ of µ, we mean a point at which

lim
h→0+

1

2h
µ[ξ − h, ξ + h] = µ′(ξ)

with µ′(ξ) finite. In particular, the singular part µs of µ satisfies

lim
h→0+

1

2h
µs[ξ − h, ξ + h] = 0.

Of course if µ is absolutely continuous in a neighborhood of ξ and if µ′ is contin-
uous at ξ, then the Lebesgue point condition is satisfied at ξ.

(ii) An equivalent formulation is that universality holds outside a set of positive
integers of density 0. That is, there exists a set E of integers of density 0 such that

lim
n→∞, n/∈E

Kn

(
ξ + u

K̃n(ξ,ξ)
, ξ + v

K̃n(ξ,ξ)

)
Kn(ξ, ξ)

= sinπ(u− v)

π(u− v)

uniformly for u, v in compact subsets of C. Here, recall that a set E of positive
integers has density 0 if

lim
n→∞

1

n
#{j : 1 ≤ j ≤ n and j ∈ E} = 0,

where # denotes cardinality. The set E depends on the particular ξ.
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Theorem1.2 is a special case of the following theorem, whose formulation involves
maximal functions. For a finite positive measure ν on the real line, its maximal
function is

M[dν](x) = sup
h>0

1

2h

∫ x+h

x−h

dν. (1.8)

In the sequel, M[Kn dµ](x) denotes the maximal function for the measure
Kn(x, x) dµ(x).

Theorem 1.3. Let µ be a measure with compact support and with infinitely many
points in the support. Let ξ be a Lebesgue point of µ with µ′(ξ) > 0. Assume that
there exist C1,C2,C3,C4 with the following properties: given r > 0, there exists
an n0 = n0(r) such that, for n ≥ n0, statements (I)–(III) hold.

(I) For all complex u, v with |u|, |v| ≤ r,∣∣∣∣Kn

(
ξ + u

n
, ξ + v

n
)

∣∣∣∣ ≤ C1ne
C2(|u|+|v|). (1.9)

(II) For all s ∈ [−r, r],

Kn

(
ξ + s

n
, ξ + s

n

)
≥ C3n. (1.10)

(III) For n ≥ 1,
M[Kn dµ](ξ) ≤ C4n. (1.11)

Then (1.7) holds for all r > 0.

When µ satisfies a Szegő-type condition
∫
J

logµ′ > −∞ in an interval J, then
results of Totik [21; 22] indicate that both (1.9) and (1.10) hold at a.e. ξ ∈ J.

However, it is not clear that (1.11) also follows. In [2], Avila, Last, and Simon as-
sumed conditions similar to (1.9) and (1.10) in proving pointwise universality, but
they assumed (instead of (1.11)) an implicit limit condition.

This paper is structured as follows. In Section 2, we present the ideas of proof.
In Section 3, we establish upper and lower bounds for Kn. In Section 4, we de-
duce normality of the normalized reproducing kernels and establish properties of
their subsequential limits, which are entire functions. In Section 5, we estimate
averages of tail integrals using maximal functions and then prove Theorems 1.2
and 1.3.

We close this section with some notation. Throughout, C,C1,C2, . . . denote
positive constants independent of n, x, t, and polynomials of degree ≤ n. The
same symbol does not necessarily denote the same constant in different occur-
rences. We shall use calligraphic symbols such as En, Fn, Gn, Hn, . . . to denote
sets that typically have small measure. The nth Christoffel function for µ is

λn(x) = 1

Kn(x, x)
= inf

deg(P )≤n−1

∫
P 2(t)

P 2(x)
dµ(t). (1.12)

For r > 0, we define the tail integral

&n(x, r) =
∫

|t−x|≥r/n
Kn(x, t)2 dµ(t)

Kn(x, x)
. (1.13)
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Let
An(x) = p2

n−1(x)+ p2
n(x). (1.14)

For complex u, v, real ξ, and r > 0, we let

fn(u, v, ξ) =
Kn

(
ξ + u

K̃n(ξ,ξ)
, ξ + v

K̃n(ξ,ξ)

)
Kn(ξ, ξ)

; (1.15)

)n(u, v, ξ, r)

= sup
s≥r(K̃n(ξ,ξ)/n)

∣∣∣∣∣fn(u, v, ξ)−
∫ s

−s

fn(u, t, ξ)fn(v, t, ξ)
dµ

(
ξ + t

K̃n(ξ,ξ)

)
µ′(ξ)

∣∣∣∣∣.
(1.16)

In the integral on the right-hand side, t is the variable of integration. Also, let

In(ξ, r) = 1

4

∫ 1

−1

∫ 1

−1
)n(u, v, ξ, r)(fn(u, u, ξ)fn(v, v, ξ))−1/2 du dv. (1.17)

For σ > 0, PWσ denotes the Paley–Wiener space, which consists of entire func-
tions of exponential type at most σ that are square integrable on the real axis and
with the usual L2(R) norm. The reproducing kernel for PWσ is sin σ(u−v)

π(u−v)
. Thus,

for g ∈ PWσ and all complex z [19, p. 95],

g(z) =
∫ ∞

−∞
g(t)

sin σ(t − z)

π(t − z)
dt.

The Cartwright class [9] consists of all entire functions g of exponential type
such that ∫ ∞

−∞
log+|g(t)|

1 + t 2
dt < ∞, (1.18)

where log+x = max{0, log x}.

2. Ideas of Proof

Recall our notation

fn(u, v, ξ) =
Kn

(
ξ + u

K̃n(ξ,ξ)
, ξ + v

K̃n(ξ,ξ)

)
Kn(ξ, ξ)

.

Our local hypotheses on µ in Theorem 1.2 give upper bounds on Kn(t, t) for t in
any compact subinterval of J. We can then use Bernstein’s growth inequality in
the plane to show that, for ξ ∈ J and all complex u, v,∣∣∣∣Kn

(
ξ + u

n
, ξ + v

n

)∣∣∣∣ ≤ C1ne
C2(|u|+|v|).

Here C1,C2 depend on ε but are independent of u, v, n, ξ. There is also a lower
bound for Kn(t, t) that holds for arbitrary measures. Thus the hypotheses of
Theorem 1.2 imply those of Theorem 1.3. The latter give uniform boundedness of
{fn} for all complex u, v,
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|fn(u, v, ξ)| ≤ C1e
C2(|u|+|v|).

One deduces that if f(·, ·, ξ) is a subsequential limit, then it is entire of exponen-
tial type in each variable. Moreover, there exists a σ > 0 such that, for all real a,
f(a, ·, ξ) is of exponential type σ and lies in Cartwright’s class. Some assertions
about the zeros of f(0, ·, ξ) are then proved as in [11; 13].

The most difficult step is to show that

f(u, v, ξ) = sinπ(u− v)

π(u− v)
. (2.1)

We adopt an indirect approach based on a uniqueness theorem proved in [13]. The
essential feature there is that the relation

f(a, b, ξ) =
∫ ∞

−∞
f(a, t, ξ)f(b, t, ξ) dt (2.2)

for all complex a, b, together with f(0, 0, ξ) = 1 and some other restrictions on
zeros of f(0, ·), yields (2.1).

To establish (2.2), we estimate averages of the tail integrals

&n(x, r) =
∫

|t−x|≥r/n
Kn(x, t)2 dµ(t)

Kn(x, x)
.

Using maximal functions, we show in Section 5 that, for |y − x| ≤ r/4m,

2m−1∑
n=m

&n(x, r)1/2 ≤ 12C0

r1/2

(
K2m(x, x)

Km(x, x)

)1/2

(mM[K2m dµ](y))1/2,

where
C0 = sup

n

γn−1

γn
.

We can then deduce estimates for averages of

In(ξ, r) = 1

4

∫ 1

−1

∫ 1

−1
)n(u, v, ξ, r)(fn(u, u, ξ)fn(v, v, ξ))−1/2 du dv,

where

)n(u, v, ξ, r)

= sup
s≥r(K̃n(ξ,ξ)/n)

∣∣∣∣∣fn(u, v, ξ)−
∫ s

−s

fn(u, t, ξ)fn(v, t, ξ)
dµ

(
ξ + t

K̃n(ξ,ξ)

)
µ′(ξ)

∣∣∣∣∣.
More precisely, we show that for some C independent of r and m,

1

m

2m−1∑
n=m

In(ξ, r)1/2 ≤ C

r1/2
.

This leads to (2.2), and hence (2.1), for subsequential limits f that avoid a thin set
of integers. Using the fact that the {fn} are uniformly bounded in compact sets,
we then obtain (1.7).
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3. Bounds for Kn

We show that the hypotheses of Theorem 1.2 imply those of Theorem 1.3.

Lemma 3.1. Assume the hypotheses of Theorem 1.2. Let J1 be a compact sub-
interval of J. Then there exist C1, C2, and C3 with the following properties.

(a) Given r > 0, there exists an n0 = n0(r) such that for n ≥ n0, ξ ∈ J1, and all
complex u, v with |u|, |v| ≤ r,∣∣∣∣Kn

(
ξ + u

n
, ξ + v

n

)∣∣∣∣ ≤ C1ne
C2(|u|+|v|). (3.1)

(b) Let ξ ∈ J be a Lebesgue point of µ. Then, for n ≥ 1,

M[Kn dµ](ξ) ≤ C3n. (3.2)

Proof. (a) This follows, from the assumed lower bounds on µ′ and Bernstein’s
growth inequality for polynomials, by using standard methods. Here are some de-
tails. Let ω denote the Legendre measure for the interval J, so that ω ′ = 1 there.
By (1.6) and monotonicity of Christoffel functions,

λn(µ, x) ≥ Cλn(ω, x).

Standard estimates for the Christoffel function for the Legendre weight [15, p. 108,
Lemma 5] give that, for n ≥ 1 and x ∈ J1,

λn(ω, x) ≥ C1/n.

Thus, for n ≥ 1 and x ∈ J1,

Kn(x, x) = λ−1
n (x) ≤ (CC1)

−1n.

By Cauchy–Schwarz, for n ≥ 1 and x, y ∈ J1,

|Kn(x, y)| ≤ (CC1)
−1n.

We now apply Bernstein’s growth inequality,

|P(z)| ≤ ∣∣z +
√
z2 − 1

∣∣n‖P ‖L∞[−1,1],

which is valid for all complex z and polynomials P of degree ≤ n. We reformulate
this inequality for the interval J and then estimate in a standard fashion to obtain
(3.1). See [11, Lemmas 5.1 and 5.2, pp. 383–384].

(b) Choose η > 0 so that ξ ± η ∈ J1, a compact subinterval of J. In J1, part (a)
implies that Kn(x, x) ≤ C1n. Then, for ξ ∈ J and 0 < h < η,

1

2h

∫ ξ+h

ξ−h

Kn(t, t) dµ(t) ≤ C1n
1

2h
µ[ξ − h, ξ + h].

Since ξ is a Lebesgue point of µ,

lim
h→0+

1

2h
µ[ξ − h, ξ + h] = µ′(ξ) < ∞.
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Hence there exists a C2 > 0 such that, for h > 0,

1

2h
µ[ξ − h, ξ + h] ≤ C2.

This yields the desired estimate for 0 < h < η. For h ≥ η, we use the trivial
estimate

1

2h

∫ ξ+h

ξ−h

Kn(t, t) dµ(t) ≤ 1

2η

∫
Kn(t, t) dµ(t) = n

2η
.

Lemma 3.2. Let µ be a measure with compact support and with infinitely many
points in its support. For each Lebesgue point ξ of µ, there exists a C = C(ξ)

with the following property. If T > 0 then there exists an n0 such that, for n ≥ n0,

inf
s∈[−T,T ]

Kn

(
ξ + s

n
, ξ + s

n

)
≥ Cn. (3.3)

Moreover, this also holds at every point ξ /∈ supp[µ].

Proof. See, for example, [13, Lemmas 3.1 and 3.2]. A far more precise asymp-
totic lower bound was proved in [20].

4. Normal Family Estimates

Recall the definition (1.15) of fn. In this section, we prove Theorem 4.1.

Theorem 4.1. Assume that µ and ξ are as in Theorem 1.3. There exist C1,C2 >

0 with the following properties.

(a) For all complex u, v,

|fn(u, v, ξ)| ≤ C1e
C2(|u|+|v|). (4.1)

(b) Let f(·, ·, ξ) be the limit of some subsequence {fn}n∈T of {fn}n≥1. Then the
following statements hold.

(i) f(·, ·, ξ) is entire in each variable; with C1,C2 as in (a), for all complex
u, v,

|f(u, v, ξ)| ≤ C1e
C2(|u|+|v|). (4.2)

(ii) For each complex u,∫ ∞

−∞
|f(u, s, ξ)|2 ds ≤ f(u, ū, ξ) < ∞. (4.3)

(iii) f(0, ·, ξ) has infinitely many real simple zeros {ρj}j �=0, where

· · · < ρ−2 < ρ−1 < 0 < ρ1 < ρ2 < · · · ,
and no other zeros. Let ρ0 = 0. For j �= 0, f(ρj , ·, ξ) has zeros
{ρk}k∈Z\{j} and no other zeros.

(iv) There exists a C0 > 0 such that, for all real t,

f(t, t, ξ) ≥ C0 (4.4)

and f(0, 0, ξ) = 1.
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(v) There exists a σ > 0 such that, for each real a, f(a, ·, ξ) is an entire
function of exponential type σ.

Remark. The constants C0, C1, and C2 are independent of n, u, v and of the par-
ticular subsequential limit f.

Proof of Theorem 4.1(a). From Lemmas 3.1 and 3.2 or (1.9) and (1.10) we deduce
that, for Lebesgue points ξ ∈ J1 and all complex u, v,∣∣∣∣∣

Kn

(
ξ + u

n
, ξ + v

n

)
Kn(ξ, ξ)

∣∣∣∣∣ ≤ C1e
C2(|u|+|v|).

Here C1,C2 are independent of n, u, v. Since also

n

K̃n(ξ, ξ)
≤ C

in J1 for some C (from Lemma 3.2), we obtain for (different) C1,C2 that∣∣∣∣∣
Kn

(
ξ + u

K̃n(ξ,ξ)
, ξ + v

K̃n(ξ,ξ)

)
Kn(ξ, ξ)

∣∣∣∣∣ ≤ C1e
C2(|u|+|v|).

Proof of Theorem 4.1(b). (i) The statement indicates that {fn}n≥1 is a normal fam-
ily in compact subsets of C

2. If f denotes some subsequential limit, say as n → ∞
through T , then (a) gives the bound

|f(u, v, ξ)| ≤ C1e
C2(|u|+|v|)

for all complex u, v.
(ii) Next, let u ∈ C and U = ξ + u/K̃n(ξ, ξ), and use the reproducing kernel

relation

1 =
∫ |K2

n(U, t)|
Kn(U, Ū )

dµ(t).

We drop most of the integral and make the substitution t = ξ + s/K̃n(ξ, ξ):

1 ≥
∫ ξ+r/K̃n(ξ,ξ)

ξ−r/K̃n(ξ,ξ)

|K2
n(U, t)|

Kn(U, Ū )
dµ(t)

=
∫ r

−r

|fn(u, s, ξ)|2
fn(u, ū, ξ)

dµ
(
ξ + s

K̃n(ξ,ξ)

)
µ′(ξ)

.

As we assumed that ξ is a Lebesgue point ofµ, and we may assume that as n → ∞
through T , fn → f locally uniformly, we obtain

1 ≥
∫ r

−r

|f(u, s, ξ)|2
f(u, ū, ξ)

ds.

Now let r → ∞.
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(iii) Now, for each fixed real ξ with (pn−1pn)(ξ) �= 0, the function

Ln(t, ξ) = (t − ξ)Kn(t, ξ)

= γn−1

γn
(pn(t)pn−1(ξ)− pn−1(t)pn(ξ))

has simple zeros that interlace those of pn. See, for example, [8, pp. 19ff ]. More
precisely, Ln(·, ξ) has a simple zero in (xjn, xj−1,n) for 2 ≤ j ≤ n and one zero
outside (xnn,x1n). If (pn−1pn)(ξ) = 0, then Ln is a multiple of pn−1 or pn. It fol-
lows that in all cases Ln(·, ξ) has a zero in [xjn, xj−1,n), 2 ≤ j ≤ n, and at most
one other zero, outside [xnn, x1n). Let {tjn}j �=0 = {tjn(ξ)}j �=0 denote these zeros of
Kn(ξ, t), and let t0n(ξ) = ξ. We order the zeros as

· · · < t−1n(ξ) < t0n(ξ) < t1n(ξ) < t2n(ξ) < · · · .
Then fn(0, ·, ξ) has simple zeros

ρjn = K̃n(ξ, ξ)(tjn − ξ), j �= 0,

and no other zeros. Let ρ0n = 0. Note that

· · · < ρ−1,n < ρ0n = 0 < ρ1n < ρ2n < · · · .
Now, as n → ∞ through T , we have

lim
n→∞,n∈T

fn(0, u, ξ) = f(0, u, ξ)

uniformly for u in compact subsets of the plane. Moreover, f(0, 0, ξ) =
limn→∞,n∈T fn(0, 0, ξ) = 1, so f is not identically 0. By Hurwitz’s theorem,
each zero of f(0, ·, ξ) is a limit of zeros of fn(0, ·, ξ).

Next, (i) shows that f(0, ·, ξ) is of exponential type at most type C2, and from
(ii),

∫ ∞
−∞ f(0, s, ξ)2 ds < ∞. A well-known bound [9, p. 149] asserts that

|f(0, x + iy, ξ)|2 ≤ 2

π
e2C2(|y|+1)

∫ ∞

−∞
f(0, s, ξ)2 ds (4.5)

for all complex x+ iy. In particular, then f(0, ·, ξ) is bounded on the real axis and
so satisfies (1.18) and lies in the Cartwright class. It is also real-valued on the real
axis. Now, by [9, p. 130], if {ρj} are the zeros of f(0, ·, ξ) then

f(0, z, ξ) = lim
R→∞

∏
|ρj |<R

(
1 − z

ρj

)
.

It follows that f has infinitely many zeros {ρj}, and these are then necessarily the
limits of the zeros {ρj,n} of fn(0, ·, ξ). Since each ρj,n is a simple zero of fn, ρj is
a simple zero of f(0, ·, ξ) unless ρj = ρj−1 or ρj+1.

Next, we note that for j �= k,

Kn(tjn, tkn) = 0.

Indeed, it follows from the Christoffel–Darboux formula that both tjn and tkn are
roots of the equation
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pn(t)pn−1(ξ)− pn−1(t)pn(ξ) = 0.

Then, for j �= k,
fn(ρjn, ρkn, ξ) = 0

and, because of the locally uniform convergence,

f(ρj , ρk , ξ) = 0.

Moreover, by Hurwitz’s theorem, f(ρj , ·, ξ) has no other zeros. We still have to
show the simplicity of the zeros.

(iv) We know from Lemma 3.2 that there exists a C > 0 such that given T > 0
there exists an n0 = n0(T ) such that, for n ≥ n0,

inf
s∈[−T,T ]

Kn

(
ξ + s

K̃n(ξ, ξ)
, ξ + s

K̃n(ξ, ξ)

)
≥ Cn,

where C is independent of T. Also, we have the upper bound (3.1) for Kn(ξ, ξ).
Thus

inf
s∈[−T,T ]

fn(s, s, ξ) ≥ C.

As C is independent of T, we obtain

inf
t∈R

f(t, t, ξ) ≥ C.

This also shows that f(ρj , ρj , ξ) > 0, so necessarily ρj±1 �= ρj , and all zeros of
f(0, ·, ξ) are simple.

(v) As before, the zeros of Ln(t, ξ) = (t − ξ)Kn(t, ξ) interlace those of pn. Let
m > k. It follows that whatever is ξ, the number j of zeros ofKn(t, ξ) in [xmn, xkn]
satisfies

|j − (m− k)| ≤ 1.

Now let N(g, r) denote the number of zeros of a function g in [−r, r]. It follows
from this last estimate that, for any real a, b, r > 0 and n ≥ 1, we have

|N(fn(a, ·, ξ), r)−N(fn(b, ·, ξ), r)| ≤ 2.

Letting n → ∞ through the appropriate subsequence of integers gives, for each
r > 0,

|N(f(a, ·, ξ), r)−N(f(b, ·, ξ), r)| ≤ 4. (4.6)

Since f(a, ·, ξ) has only real zeros and lies in Cartwright’s class, as follows from
(i) and (ii), we have

lim
r→∞

N(f(a, ·), r)
2πr

= σa ,

where σa is the exponential type of f(a, ·, ξ) (see [9, p. 127, eqn. (5)]). It follows
from (4.6) that σa = σ is independent of a. We must still show that σ > 0. To do
this, we use the bound (4.5) with C2 = σ :

|f(0, x + iy, ξ)|2 ≤ 2

π
e2σ(|y|+1)

∫ ∞

−∞
|f(0, t, ξ)|2 dt.
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If σ = 0, this implies that f(0, ·, ξ) is bounded and hence constant, contradicting
its square integrability over the real line.

5. Proof of Theorems 1.2 and 1.3

We begin by estimating the tail integral &n using maximal functions. It is really
these estimates that allow us to avoid the hypothesis that µ is regular. Recall our
notation (1.13)–(1.17). A version of Lemma 5.1(a) was already proved and used
in [14].

In the sequel, we let

C0 = sup
n

γn−1

γn
. (5.1)

Lemma 5.1. (a) Let µ be a measure on the real line with infinitely many points
in its support. Let r > 0 and m ≥ 1. Let |y − x| ≤ r/4m. Then

2m−1∑
n=m

&n(x, r)1/2 ≤ 12C0

r1/2

(
K2m(x, x)

Km(x, x)

)1/2

(mM[K2m dµ](y))1/2. (5.2)

(b) Let 0 < A ≤ r/4. Then∫ ξ+A/m

ξ−A/m

( 2m−1∑
n=m

&n(t, r)
1/2

)
dt

≤ 12C0

r1/2
(mM[K2m dµ](ξ))1/2

∫ ξ+A/m

ξ−A/m

(
K2m(t, t)

Km(t, t)

)1/2

dt. (5.3)

(c) Assume, in addition, that µ and ξ satisfy the hypotheses of Theorem 1.3.
Then there exist C > 0 and m1 such that, for m ≥ m1 and all r > 0,∫ ξ+A/m

ξ−A/m

( 2m−1∑
n=m

&n(t, r)
1/2

)
dt ≤ C√

r
. (5.4)

Here C is independent of m, r but depends on A, ξ.

Proof. (a) Observe that

|Kn(x, t)| = γn−1

γn

∣∣∣∣pn(x)pn−1(t)− pn−1(x)pn(t)

x − t

∣∣∣∣
≤ γn−1

γn

An(x)
1/2A

1/2
n (t)

|x − t |
by Cauchy–Schwarz. Then, for 2m− 1 ≥ n ≥ m,

&n(x, r) ≤ C2
0

An(x)

Km(x, x)

∫
|t−x|≥r/2m

An(t)

(t − x)2
dµ(t).

Using Cauchy–Schwarz, we obtain
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2m−1∑
n=m

&n(x, r)1/2

≤ C0

Km(x, x)1/2

2m−1∑
n=m

An(x)
1/2

(∫
|t−x|≥r/2m

An(t)

(t − x)2
dµ(t)

)1/2

≤ C0

Km(x, x)1/2

( 2m−1∑
n=m

An(x)

)1/2( 2m−1∑
n=m

∫
|t−x|≥r/2m

An(t)

(t − x)2
dµ(t)

)1/2

≤ 2C0

Km(x, x)1/2
(K2m(x, x))1/2

(∫
|t−x|≥r/2m

K2m(t, t)

(t − x)2
dµ(t)

)1/2

. (5.5)

We assumed that |y − x| ≤ r/4m. Then for j ≥ 0 and |t − x| ≤ 2j+1r/2m,

|t − y| ≤ 2j+1 r

2m
+ |x − y| ≤ 2j+2 r

2m
and so, using the definition of the maximal function, we see that∫

2jr/2m≤|t−x|≤2j+1r/2m
Km(t, t) dµ(t) ≤

∫
|t−y|≤2j+2 r/2m

Km(t, t) dµ(t)

≤ 2j+2 r

m
M[K2m dµ](y).

Then∫
|t−x|≥r/2m

K2m(t, t)

(t − x)2
dµ(t) ≤

∞∑
j=0

∫
2jr/2m≤|t−x|≤2j+1r/2m

K2m(t, t)

(2jr/2m)2
dµ(t)

≤
∞∑
j=0

4m2

22jr 2
2j+2 r

m
M[K2m dµ](y)

= 32m

r
M[K2m dµ](y).

Substituting this into (5.5) yields (5.2).
(b) This follows directly from (a) because |t − ξ| ≤ A/m implies |t − ξ| ≤

r/4m.
(c) This follows directly from (b) and our hypotheses (1.9), (1.10), and (1.11).

We can now deduce estimates for )n and In as defined, respectively, by (1.16)
and (1.17).

Lemma 5.2. Assume that µ and ξ are as in Theorem 1.3. Then there exists a
δ > 0 with the following properties.

(a) For r > 0 and |u|, |v| ≤ rδ/2,

)n(u, v, ξ, r) ≤
[
fn(u, u, ξ)&n

(
ξ + u

K̃n(ξ, ξ)
,
r

2

)]1/2

×
[
fn(v, v, ξ)&n

(
ξ + v

K̃n(ξ, ξ)
,
r

2

)]1/2

. (5.6)



644 Doron S. Lubinsky

(b) For r ≥ 4/δ,
1

m

2m−1∑
n=m

In(ξ, r)1/2 ≤ C1

r1/2
. (5.7)

Here C1 is independent of m, r.

Proof. We use the fact that, for some δ ∈ (0, 1),

δn ≤ K̃n(ξ, ξ) ≤ δ−1n, n ≥ 1. (5.8)

This follows from Lemmas 3.1 and 3.2.
(a) This is as in [13]. Let

U = ξ + u

K̃n(ξ, ξ)
, V = ξ + v

K̃n(ξ, ξ)
,

and let s ≥ r. From the reproducing kernel relation,

Kn(U,V )

Kn(ξ, ξ)
−

∫
|y−ξ|≤s/n

Kn(U, y)

Kn(ξ, ξ)

Kn(V, y)

Kn(ξ, ξ)
K̃n(ξ, ξ)

dµ(y)

µ′(ξ)

=
∫

|y−ξ|>s/n
Kn(U, y)√
Kn(ξ, ξ)

Kn(V, y)√
Kn(ξ, ξ)

dµ(y).

We now make the substitution y = ξ + t/K̃n(ξ, ξ) in the first integral only, recast-
ing the last equation as

fn(u, v, ξ)−
∫ sK̃n(ξ,ξ)/n

−sK̃n(ξ,ξ)/n

fn(u, t, ξ)fn(v, t, ξ)
dµ

(
ξ + t

K̃n(ξ,ξ)

)
µ′(ξ)

= fn(u, u, ξ)1/2fn(v, v, ξ)1/2
∫

|y−ξ|>s/n
Kn(U, y)√
Kn(U,U)

Kn(V, y)√
Kn(V,V )

dµ(y). (5.9)

Next observe that, for ξ ∈ J and s ≥ r, (5.8) yields

|y − ξ| ≥ s

n
�⇒ |y − U | ≥ |y − ξ| − |u|

n

n

K̃n(ξ, ξ)

≥ s

n
− |u|

δn
≥ s

2n
≥ r

2n
because |u| ≤ δr/2 ≤ δs/2. Now use Cauchy–Schwarz on the right-hand side of
(5.9) and the fact that s ≥ r:

)n(u, v, ξ, r)

= sup
s≥r

∣∣∣∣∣fn(u, v, ξ)−
∫ sK̃n(ξ,ξ)/n

−sK̃n(ξ,ξ)/n

fn(u, t, ξ)fn(v, t, ξ)
dµ

(
ξ + t

K̃n(ξ,ξ)

)
µ′(ξ)

∣∣∣∣∣
≤

[
fn(u, u, ξ)fn(v, v, ξ)

∫
|y−U |>r/2n

K2
n(U, y)

Kn(U,U)
dµ(y)

∫
|y−V |>r/2n

K2
n(V, y)

Kn(V,V )
dµ(y)

]1/2

.

We obtain (5.6) after taking into account the definition (1.13) of &n.
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(b) Using (a) and integrating gives

In(ξ, r) = 1

4

∫ 1

−1

∫ 1

−1
)n(u, v, ξ, r)(fn(u, u, ξ)fn(v, v, ξ))−1/2 du dv

≤
(

1

2

∫ 1

−1
&n

(
ξ + u

K̃n(ξ, ξ)
,
r

2

)1/2

du

)2

=
(
K̃n(ξ, ξ)

2

∫
|t−ξ|≤1/K̃n(ξ,ξ)

&n

(
t,
r

2

)1/2

dt

)2

≤
(
n

2δ

∫
|t−ξ|≤1/nδ

&n

(
t,
r

2

)1/2

dt

)2

by (5.8). Adding for m ≤ n ≤ 2m− 1 gives

1

m

2m−1∑
n=m

In(ξ, r)1/2 ≤ δ−1
∫

|t−ξ|≤1/mδ

[ 2m−1∑
n=m

&n(t, r)
1/2

]
dt

≤ C

r1/2

by Lemma 5.1(c). Here we need 1/δ ≤ r/4.

We will need the following definition.

Definition 5.3. For a given (ξ, r), we say a positive integer n is (ξ, r) bad if

In(ξ, r) ≥ r−1/2.

We denote by B(ξ, r) the set of all (ξ, r) bad integers, and for k ≥ 1 we let

Dk(ξ) =
∞⋃
j=k

B(ξ, 2j ). (5.10)

Lemma 5.4. Let δ be as in Lemma 5.2. Then, for n ≥ 1 and k ≥ log2(4/δ),

1

n
#(Dk(ξ) ∩ [1, n]) ≤ C2 2−k/4. (5.11)

Here C2 is independent of n and k.

Proof. By Lemma 5.2(b), provided r ≥ 4/δ we have

C1r
−1/2 ≥ 1

m

2m−1∑
n=m

In(ξ, r)1/2

≥ 1

m
r−1/4#(B(ξ, r) ∩ [m, 2m− 1]).

That is,
#(B(ξ, r) ∩ [m, 2m− 1]) ≤ C1mr

−1/4.

Then, for 6 ≥ 1 and 2k ≥ 4/δ,
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#(Dk(ξ) ∩ [26, 26+1 − 1]) ≤
∞∑
j=k

#(B(ξ, 2j ) ∩ [26, 26+1 − 1])

≤ C1

∞∑
j=k

26

2j/4
≤ C2 26−k/4.

Then

#(Dk(ξ) ∩ [1, n]) ≤
[log2 n]+1∑

6=0

#(Dk(ξ) ∩ [26, 26+1 − 1])

≤ C2

[log2 n]+1∑
6=0

26−k/4 ≤ C3n2−k/4.

We need the following characterization of the sinc kernel.

Lemma 5.5. Let σ > 0, and let F : C
2 → C be an entire function in each vari-

able with the following properties.

(i) For each real a, F(a, ·) is an entire function of exponential type σ that is real
on the real axis, with ∫ ∞

−∞
|F(a, s)|2 ds < ∞.

(ii) Let ρ0 = 0 and F(0, ·) have distinct simple zeros {ρj}j∈Z\{0}, ordered in in-
creasing size, and no other zeros. Assume that for j �= 0, F(ρj , ·) has zeros
{ρk}k∈Z\{j} and no other zeros.

(iii) There exists a C > 0 such that, for all real t,

F(t, t) ≥ C

and F(0, 0) = 1.
(iv) For all complex a, b,

F(a, b) =
∫ ∞

−∞
F(a, s)F(b, s) ds.

Then for all complex u, v,

F(u, v) = sinπ(u− v)

π(u− v)
.

Proof. See [13, Thm. 6.1].

Lemma 5.6. Let δ be as in Lemma 5.2. Let k ≥ log2(4/δ). Let µ and ξ ∈ J be
as in Theorem 1.3. Then uniformly for u, v in compact subsets of C,

lim
n→∞,n/∈Dk(ξ)

fn(u, v, ξ) = sinπ(u− v)

π(u− v)
.

Proof. We know that {fn(·, ·, ξ)}n≥1 is a normal family. Suppose that S is a sub-
sequence of positive integers that does not intersect Dk(ξ). By passing to a further



Bulk Universality Holds Pointwise in the Mean 647

subsequence (and keeping the same notation for the sequence), we can assume
that fn → f as n → ∞ through S, uniformly in compact subsets of C

2. Now if
n∈ S, then n /∈ B(ξ, 2j ) for all j ≥ k. It follows that, for fixed such j,

In(ξ, 2j ) < 2−j/2.

That is, taking account of (1.17) and the uniform boundedness above and below of
fn(u, u, ξ), we have for each fixed s ≥ 2jK̃n(ξ, ξ)/n, and hence for s ≥ (4/δ)2j,
that∫ 1

−1

∫ 1

−1

∣∣∣∣∣fn(u, v, ξ)−
∫ s

−s

fn(u, t, ξ)fn(v, t, ξ)
dµ

(
ξ + t

K̃n(ξ,ξ)

)
µ′(ξ)

∣∣∣∣∣ du dv
≤ C2−j/2.

The constant C is independent of both n and j. Letting n → ∞ through S, and
using that ξ is a Lebesgue point, gives∫ 1

−1

∫ 1

−1

∣∣∣∣f(u, v, ξ)−
∫ s

−s

f(u, t, ξ)f(v, t, ξ) dt

∣∣∣∣ du dv ≤ C2−j/2.

Letting first s → ∞ and then j → ∞, we obtain∫ 1

−1

∫ 1

−1

∣∣∣∣f(u, v, ξ)−
∫ ∞

−∞
f(u, t, ξ)f(v, t, ξ) dt

∣∣∣∣ du dv = 0.

This is permissible in view of (4.3). Thus, for a.e. (u, v) ∈ [−1,1] × [−1,1],
we have

f(u, v, ξ) =
∫ ∞

−∞
f(u, t, ξ)f(v, t, ξ) dt.

Because both sides are entire, this equation holds for all complex u, v. Then
Lemma 5.5 shows that

f(u, v, ξ) = sinπ(u− v)

π(u− v)
.

Indeed, all the remaining hypotheses of Lemma 5.5 were proved in Theorem 4.1.
Since every subsequence of positive integers outside Dk(ξ) has a subsequence
converging locally uniformly to the sinc kernel, it follows that the full sequence
outside Dk(ξ) converges to the sinc kernel.

Lemma 5.4 shows that Dk(ξ) is a set of density at most C2−k/4. This is small for
large k, but it is not 0.

Proof of Theorem 1.3. Let δ be as in Lemma 5.2. Given k≥ log2(4/δ) and r > 0,
there exists an nk such that, for n ≥ nk and n /∈ Dk(ξ),

sup
|u|,|v|≤r

∣∣∣∣fn(u, v, ξ)− sinπ(u− v)

π(u− v)

∣∣∣∣ ≤ 1

k
. (5.12)

Moreover, given the uniform boundedness proved in Theorem 4.1, there exists a
C(r) depending only on r and such that, for n ≥ 1,
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sup
|u|,|v|≤r

∣∣∣∣fn(u, v, ξ)− sinπ(u− v)

π(u− v)

∣∣∣∣ ≤ C(r). (5.13)

Then

1

m

m∑
n=1

sup
|u|,|v|≤r

∣∣∣∣fn(u, v, ξ)− sinπ(u− v)

π(u− v)

∣∣∣∣
≤ 1

m

( ∑
nk≤n≤m, n/∈Dk(ξ)

1

k
+

∑
n≤nk or nk<n≤m, n∈Dk(ξ)

C(r)

)

≤ 1

k
+ nk

m
C(r)+ (C2 2−k/4)C(r).

Here we have used Lemma 5.4, and it is crucial that both C(r) and C2 are inde-
pendent of k,m. We first take limit suprema as m → ∞, and then let k → ∞, to
obtain (1.7).

Remark. The proof actually shows that if 8 : [0, ∞) → [0, ∞) is an increasing
function with lim t→0+ 8(t) = 0, then

lim
m→∞

1

m

m∑
n=1

8

(
sup

|u|,|v|≤r

∣∣∣∣fn(u, v, ξ)− sinπ(u− v)

π(u− v)

∣∣∣∣
)

= 0.

Proof of Theorem 1.2. The hypotheses of Theorem 1.2 were shown to imply those
of Theorem 1.3 in Lemmas 3.1 and 3.2.
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