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Betti Numbers of Smooth Schubert Varieties
and the Remarkable Formula of

Kostant, Macdonald, Shapiro, and Steinberg

Ersan Akyildiz & James B. Carrell

1. Introduction

Let G be a semi-simple linear algebraic group over C, B a Borel subgroup of G,
and T ⊂ B a maximal torus. Let � denote the root system of the pair (G, T ) and
�+ the set of positive roots determined by B. Let α1, . . . ,α	 denote the basis of
� associated to �+, and recall the height of α = ∑

kiαi ∈ � is defined to be
ht(α) = ∑

ki. Finally, letW = NG(T )/T be the Weyl group of (G, T ).
A remarkable formula—originally noticed by A. Shapiro and proved by Kostant

[13] using the representation theory of the principal three-dimensional subgroup
ofG, by Macdonald [14] using the holomorphic Lefschetz formula, and by Stein-
berg [16] by verification—says that

	∏
i=1

(1 + t 2 + · · · + t 2mi ) =
∏
α∈�+

1 − t 2 ht(α)+2

1 − t 2 ht(α)
, (1)

where m1, . . . ,m	 are the exponents ofG. The identity (1) can also be formulated
combinatorically. Suppose hi is the number of roots of height i where k is the
height of the highest root. That is, k + 1 is the Coxeter number of (G, T ). Then
hi ≥ hi+1, so (h1,h2, . . . ,hk) is a partition of |�+|. Then (1) is equivalent to say-
ing that (h1,h2, . . . ,hk) is conjugate to the partition determined by the exponents
mj of (G, T ) (see Lemma 1).

A cohomological proof of (1), which we will generalize in this paper, goes as
follows. First, by the well-known Borel picture of the cohomology algebra of
G/B as the coinvariant algebra of W, the Poincaré polynomial P(G/B, t) of the
flag variety G/B has the expression

P(G/B, t) =
	∏
i=1

1 − t 2di

1 − t 2
, (2)

where d1, . . . , d	 are the degrees of the fundamental generators of the ring of W-
invariant polynomials on the Lie algebra t of T. By a different cohomological
method, reviewed in Section 2 (cf. [1, Cor. 1]), one also obtains that
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P(G/B, t) =
∏
α∈�+

1 − t 2 ht(α)+2

1 − t 2 ht(α)
. (3)

Since the fundamental degrees and exponents are related by the identities di =
mi + 1 for each i with 1 ≤ i ≤ 	, the identity (1) follows immediately from (2)
and (3). The proof of (3) is obtained from a theorem that is in the spirit of both the
holomorphic Lefschetz formula and the principal three-dimensional subgroups of
G. We will review this theorem in Section 2 and then present a generalization.
Briefly, it says that if a two-dimensional solvable group B acts algebraically on
a smooth complex projective variety X so that the unipotent radical U of B has a
unique fixed point, then the fixed point scheme of U has the property that its co-
ordinate algebra is a graded ring that is isomorphic with the cohomology algebra
H ∗(X, C) with its natural grading. The formula for the Poincaré polynomial is
then obtained from some basic commutative algebra.

The plan of this paper is to use the results just mentioned to generalize (1) to
smooth Schubert varieties in an arbitrary flag variety G/B. Before stating our re-
sult, we will quickly set up the notation. Recalling that α1, . . . ,α	 denote the sim-
ple roots, let S ⊂W be the associated set of simple relections rαi , and recall that
(W, S) is a Coxeter system. Let 	(w) be the length of w ∈ W and less than or
equal to the Bruhat–Chevalley order. By well-known properties of the Bruhat de-
compositionG = BWB, every B-orbit onG/B has the form BwB/B for a unique
w ∈W. The Zariski closure Xw of BwB/B is called the Schubert variety associ-
ated tow. Each Schubert varietyXw is a projective B-variety such that dimXw =
	(w), and one has

Xw =
⋃
x≤w

BxB/B.

Furthermore, BwB/B is an affine cell isomorphic with C
	(w). Thus, the Poincaré

polynomial of Xw, which we will denote by Pw(t), has the expression

Pw(t) =
∑
x≤w

t 2	(x).

Not all Schubert varieties are smooth. In fact, smoothness is equivalent to hav-
ing dim Te(Xw) = 	(w), where Te(Xw) is the Zariski tangent space to Xw at the
identity coset e. A simple requirement given in terms of the Bruhat–Chevalley
order is as follows. Let �+(w) = {α > 0 | rα ≤ w}. Then, if Xw is smooth,
|�+(w)| = 	(w), the reason being that each α ∈ �+(w) gives rise to a T -stable
line in Te(Xw) having weight −α whereas, by [7, Sec. 2], Te(Xw) cannot contain
more than dim Te(Xw) T -stable lines.

The generalization of the identity (3) for a smooth Schubert variety Xw inG/B
says

Pw(t) =
∏

α∈�+(w)

1 − t 2 ht(α)+2

1 − t 2 ht(α)
. (4)

For each i > 0, put hw,i = |{α ∈�+(w) | ht(α) = i}|. We will show that hw,i ≥
hw,i+1, so thehw,i form a nonincreasing partition η of 	(w) = |�+(w)|. Let dw,i =
hw,i − hw,i+1. Then here is our result.
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Theorem 1. Let Xw be a smooth Schubert variety in G/B, and let k denote the
largest height occurring in Te(Xw). Then dw,k > 0, and

Pw(t) =
∏

1≤i≤k
(1 + t 2 + · · · + t 2i )dw,i . (5)

If µ is the partition of 	(w) conjugate to η and i ≥ 1, then dw,i is the number of
times i occurs in µ.

Remark 1. By definition,
∑

1≤i≤k dw,i = hw,1 is the number of simple roots in
�+(w), so by (5), the second Betti number of Xw satisfies b2(Xw) = hw,1.

Remark 2. What is notable about (5) is the factorization of Pw(t) into polyno-
mials of the formµi(t) = 1+ t 2 +· · ·+ t 2i. This doesn’t hold for smooth Schubert
varieties inG/P, for example. Indeed, the Poincaré polynomial1+t 2+2t 4+t 6+t 8

of the Grassmanian Gr(2, 4) of two planes in C
4 factors (1 + t 4)(1 + t 2 + t 4).

Different versions of (4) and (5) have appeared in several places. Formula (4) was
stated for arbitrary smooth Schubert varieties in [7, Thm. I] and used by Billey [2]
to derive (5) in type A. (We were unaware of this when the first version of this
paper was written.) Gasharov [10] gave a purely combinatorial proof in typeA for
the assertion that Pw(t) is palindromic if and only if there exist i1, . . . , ik such that
Pw(t) = µi1(t) · · ·µik(t), and Billey [2] showed that this is also true in types B
and C.

More recently, Oh, Postnikov, and Yoo [15] found a surprising expression for
the Poincaré polynomial of a smooth Schubert varietyXw ⊂ SL(n, C)/B in terms
of a certain arrangement associated to w. Let the inversion arrangement associ-
ated to X(w) be the hyperplane arrangement Aw in R

n defined by {α ∈ �+ |
w−1(α) < 0}. Then they showed Pw(t) is palindromic if and only if it equals the
wall-crossing polynomial Rw(t) associated to Aw. See Section 4 for the defini-
tion of this polynomial. This result was the motivation for us to reconsider the
factorization (4) in the smooth case. We will discuss some further questions about
the connection between the inversion arrangement and smoothness of Xw in Sec-
tion 4.

Acknowledgments. Our presentation was influenced by some useful com-
ments of Sara Billey and Monty McGovern, and we heartily thank them. We’d
also like to thank Dave Anderson for his interesting remarks.

2. Regular Actions and the Product Formula

In fact, Theorem 1 follows immediately from a general product formula that holds
for certain B-varieties. Let X denote a smooth complex projective variety with
an algebraic action B � X such that the unipotent radical U of B has exactly
one fixed point, say XU = {o}. We will stick with the terms “regular action” for
(B,X) and “B-regular variety” for X used in [8]. The following facts, proved in
[6], will be needed in the sequel.
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(a) The fixed point set of a maximal torus of B is finite. Moreover, if T is the
maximal torus on the diagonal of B then o ∈XT.

(b) If λ : C
∗ → T is the one-parameter subgroup λ(s) = diag[s, s−1], then the

Bialynicki–Birula cell

Xo =
{
x ∈X ∣∣ lim

s→∞ λ(s) · x = o
}

(6)

is a dense open subset of X. Consequently, the weights of the natural action
of λ on To(X) are negative integers, say b1 > b2 > · · · > bk.

(c) Xo is T-equivariantly isomorphic with the Zariski tangent space To(X).

Consequently, C[To(X)] and C[Xo] are isomorphic rings graded by the T-action.
Putting ai = −bi for each i, we have 0 < a1 < a2 < · · · < ak.

Let Mbi ⊂ To(X) denote the T-weight space corresponding to bi and let µi =
dimMbi so that

To(X) = Mb1 ⊕Mb2 ⊕ · · · ⊕Mbk . (7)

The main result on regular varieties (see [6] and also [1]) says that if X is a
B-regular variety then the cohomology algebra H ∗(X, C) is isomorphic with
C[Xo]/I, where I is the ideal of the fixed point scheme of U , which is a punctual
scheme supported by o. Note that this isomorphism doubles degrees. As shown in
[1], this gives rise to a product representation for the Poincaré polynomial P(X, t)
of X. Namely,

P(X, t) =
∏

1≤i≤k

(
1 − t ai+2

1 − t ai

)µi
. (8)

The exponents grow by 2 because the induced Lie(B)-module action on To(X)
has the property that v(Mbi ) ⊂ Mbi+2, where

v =
(

0 1
0 0

)
.

As in [1], we say a B-regular variety is homogeneous when ker v = Mb1.

Homogeneity has a number of nice consequences. For example, v is injective on
Mbi for all i > 1, so the weight spaces have nonincreasing dimension: dimMbj ≤
dimMbi if i ≤ j. The following key result is proved in [1, Thm. 3].

Theorem 2. Suppose X is a B-regular homogeneous variety. Then ai = 2i for
each i = 1, . . . , k.

Therefore, by (8),

P(X, t) =
∏

1≤i≤k

(
1 − t 2i+2

1 − t 2i

)µi
. (9)

Define defects di = µi − µi+1 for each i = 1, . . . k, where µk+1 = 0. Thus∑k
i=1 di = µ1 and dk > 0. Now we have the main result.

Theorem 3. Let X denote a homogeneous B-regular variety with defects
d1, . . . , dk. Then
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P(X, t) =
∏

1≤i≤k
(1 + t 2 + · · · + t 2i )di. (10)

Consequently, b2(X) = µ1, so the nonzero defects form a not necessarily decreas-
ing partition of b2(X).

Proof. The right-hand side of (9) is(
1 − t 4

1 − t 2

)µ1
(

1 − t 6

1 − t 4

)µ2

· · ·
(

1 − t 2k

1 − t 2k−2

)µk−1
(

1 − t 2k+2

1 − t 2k

)µk
,

which after a little algebra becomes the right-hand side of (10). The assertion about
b2(X) follows from a straightforward calculation.

Before stating the next corollary, we make a well-known and useful remark on
partitions.

Lemma 1. Let µ = (µ1,µ2, . . . ,µk) be a nonincreasing partition with µk > 0,
and put δi = µi − µi+1 where µk+1 = 0. Then the partition

(k, . . . , k, k − 1, . . . , k − 1, . . . , 1, . . . , 1), (11)

where i is repeated δi times, is conjugate to µ.

Proof. Indeed, consider the Ferrers diagram of µ and observe that the first µk col-
umns have k boxes, the next µk−1 −µk columns have k−1 boxes, and so on.

Hence, if X is regular and homogeneous then the lemma gives a direct connec-
tion among the weight decomposition of To(X), the Poincaré polynomial of X,
and a polynomial associated to the partition conjugate to the partition associated
to the dimensions of the weight spaces. This gives an interesting expression for
the Euler characteristic χ(X) = P(X, 1) of X.

Corollary 1. If X is as in Theorem 3, then the Euler number χ(X) is given by

χ(X) =
∏

1≤i≤k
(i + 1)di. (12)

Consequently, χ(X) is divisible by 1+k. Moreover, the number of nontrivial terms
in this factorization is b2(X).

Proof. This follows immediately by setting t = 1 in (10).

3. Schubert Varieties in G/B As Homogeneous
B-Regular Varieties

Let g, b, and t denote the Lie algebras ofG, B, and T. Since the identity coset eB
is fixed under the natural action of B on G/B by left translation, Te(G/B) is a
b-module, which, as is well known, is isomorphic to g/b. Choosing a weight vec-
tor e−α ∈ g for each α ∈�+, one also has an isomorphism
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Te(G/B) ∼=
∑
α>0

Ce−α

in the sense of t-modules. To see that G/B is B-regular, consider the principal
nilpotent

e =
	∑
i=1

eαi , (13)

where α1, . . . ,α	 are the simple roots determined by B. Let h be the unique ele-
ment of t such that αi(h) = 2 for each i. Thus, α(h) = 2 ht(α) for any α ∈ �.
Let B denote the solvable subgroup of B corresponding to the two-dimensional
solvable subalgebra Ch⊕ Ce. Then the action B � G/B is regular with o = eB.

Indeed, if we identify G/B with the variety of Borel subalgebras of g [12], then
the fixed point set of U consists of all Borel subalgebras containing u = Lie(U).
However, since e is a regular nilpotent (i.e., its centralizer has dimension 	), it
follows that e and hence u is contained in just one Borel subalgebra—namely, b.

Since [h, e−α] = −α(h)e−α , the Ch-weight subspaces of Te(G/B) take the
form

M2i = span{e−α | α ∈�+, ht(α) = 2i},
where i = 1, . . . , k, k being the height of the highest root. Clearly ker e = M2,
so B � G/B is homogeneous. Recalling the notation dimM2i = hi and di =
hi − hi+1, Theorem 3 gives

P(G/B, t) =
∏

1≤i≤k

(
1 − t 2i+2

1 − t 2i

)hi
=

∏
1≤i≤k

(1 + t 2 + t 4 + · · · + t 2i )di, (14)

which implies the KMSS identity (1) by Lemma 1.
Corollary 1 gives a variation of a well-known expression for the order of the

Weyl group: namely,

|W | =
k∏
i=1

(i + 1)di.

In what follows we will generalize this to Weyl group intervals corresponding to
smooth Schubert varieties. For example, if G = SL(n, C), then W = Sn, k =
n− 1, and each di = 1, so

P(SL(n, C)/B, t) =
n−1∏
i=1

(1 + t 2 + · · · + t 2i ),

which gives another proof of the trivial fact that |Sn| = n!.
Since Schubert varieties in G/B are B-stable, a smooth Schubert variety Xw is

B-regular and automatically homogeneous. Assume from now on that Xw is in
fact smooth. By the discussion preceding (4),

Te(Xw) =
⊕

α∈�+(w)
Ce−α. (15)
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It follows that the Ch-weight subspaces of Te(Xw) have the form

M(w)2i = span{e−α | ht(α) = i, rα ≤ w}.
Fixing notation, lethw,i= dimM(w)2i and putdw,i= dimM(w)2i−dimM(w)2i+2.

Define kw to be the height of the highest root (or roots) in �+(w), and put hw =
dimM(w)2kw . Finally, set χw = χ(Xw). Theorems 2 and 3 then yield the follow-
ing result.

Theorem 4. A smooth Schubert varietyXw inG/B is a homogeneous B-regular
variety. Consequently, the T-weights on Te(Xw) form a string of even negative
integers −2 ≥ −4 ≥ · · · ≥ −2kw. Furthermore, recalling that Pw(t) = P(Xw, t),
we have

Pw(t) =
kw∏
i=1

(1 + t 2 + · · · + t 2i )dw,i . (16)

In particular, since hw = dw,kw ≥ 1, (1 + t 2 + · · · + t 2kw )hw is a nontrivial factor
of Pw(t). Moreover,

χw = |[e,w]| =
kw∏
i=1

(i + 1)dw,i . (17)

Because b2(Xw) = dimM(w)2 is the number of simple reflections in [e,w], it
follows that χw is a product of b2(Xw) integers between 2 and (kw + 1)hw .

One can infer a little more information about χw from Theorem 4 as follows.

Corollary 2. If Xw is smooth and m denotes the number of reflections t ≤ w

such that 	(t) = 3, then b2(Xw)−m ≤ d1 and so 2(b2(Xw)−m) divides |[e,w]|.
Proof. This follows from the claim that a root α of height 2 gives a reflection rα
of length 3 (but not conversely), which can be verified by a direct check. Alterna-
tively, one can note that in a root system with simple roots α and β such that α+β
is a root, either 〈α,β〉 or 〈β,α〉 = −1, where, as usual, 〈α,β〉 = 2(α · β)/(β · β).

The expression (17) for |[e,w]| provides an easy-to-check but remarkably effec-
tive necessary condition for the smoothness of Xw because all it requires know-
ing is the height of each element of �+(w) and the Euler number |[e,w]|. These
issues can be dealt with using a reduced expression for w. Consider the following
example.

Example 1. Consider C3/B and let 1, 2, and 3 denote the simple reflections r1,
r2, and r3 and α1, α2, and α3 the corresponding simple roots. Here we assume α1

is the long root. We claim w = 21232 is singular. Indeed, by the useful tables
compiled by Goresky [11], one sees that χw = 18. The reflections t such that
t ≤ w are 1, 2, 3, 212, and 232. In C3, 212 corresponds to the root α1 + 2α2 of
height 3 while 232 corresponds to the root α2 + α3 of height 2. Hence, hw,1 = 3
and hw,2 = hw,3 = 1. If Xw is smooth, then Theorem 4 implies χw is divisible
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by 4. But χw = 18 [11], so Xw is singular. Similarly, if v = 12132123 then χv =
44. But the highest root α1 + 2α2 + 2α3 in �(C3) lies in �+(v) since its reflec-
tion t = 32123 satisfies t ≤ v. Consequently, similar reasoning says Xv is also
singular.

One can also find a lower bound on χw in terms of�+(w). Let�+(w)1 denote the
number of simple roots in �+(w).

Theorem 5. If Xw is smooth then χw ≥ |�+(w)1|(|�+(w)|−1)+2, with equal-
ity if and only if 	(w) = 1.

Proof. Since Xw is smooth projective and has vanishing odd Betti numbers, the
hard Lefschetz property implies the inequality

χw ≥ b2(Xw)(dimXw − 1)+ 2.

Equating b2(Xw) with |�+(w)1| and dimXw with |�+(w)| gives the inequality
stated in the theorem. Now suppose equality holds. Then it follows that b2i(Xw) =
b2(Xw) for each i with 1 ≤ i ≤ dimXw. The only possibility for this is that
Pw(t) = 1 + t 2 + · · · + t 2	(w). But then we see that b2(Xw) = 1, so |�+(w)1| =
1 as well; hence |�+(w)| = 1. Conversely, if |�+(w)| = 1 then equality clearly
holds.

The estimate of Theorem 4 improves a well-known result for a projective varietyX
with a torus action having isolated fixed points, which says χ(X) ≥ dimX+1 [4,
Prop. 13.5]. According to a result of Björner and Ekedahl [3], the inequality χw ≥
b2(Xw)(dimXw − 1)+ 2 holds for arbitrary Schubert varieties as long as 	(w) is
sufficiently large. Since χw = |[e,w]|, this amounts to a lower bound on the size
of a Bruhat interval starting at the identity with the length proviso. Notice that, in
Example 1, if w = 21232 then the estimate says χw = 18 ≥ 3(5 − 1) + 2 = 14;
however, if v = 12132123 then it says χv = 44 ≥ 3(8 − 1)+ 2 = 23.

Finally, the assertion about conjugate partitions from Lemma 1 translates into
Schubert variety terms as follows.

Corollary 3. Suppose Xw is smooth. Then the partition hw,1 ≥ hw,2 ≥ · · · ≥
hw of 	(w) is dual to the partition (11) where each i, 1 ≤ i ≤ kw, is repeated
dw,i times.

This suggests that the conjugate partition for a smooth Schubert variety Xw may
have a geometric interpretation analogous to the relation between the heights of
roots and exponents.

4. Palindromicity of Pw(t) and the
Inversion Arrangement

Palindromicity of the Poincaré polynomial of a Schubert variety is a necessary
condition for smoothness. Surprisingly, however, it turns out by a theorem of
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Peterson that, for Schubert varieties in the flag variety of a simply laced groupG,
the converse is also true: X(w) is smooth if and only if Pw(t) is palindromic (see
[9] for a proof ). Thus the product formula (16) holds in the simply laced setting as
long as Pw(t) is palindromic. The following example shows that palindromicity
doesn’t guarantee that (16) holds in general, however.

Example 2. Let �(B2) be the root system of type B2 with two simple roots α
and β, where α is long and β is short, and with positive roots α, β, α + β, and
α + 2β. All Schubert varieties in B2/B have the palindromicity property, but the
Schubert varietyXw corresponding tow = rβrαrβ = rα+2β is singular. This is ob-
vious since �+(w) = {α, β, α + 2β}, so hw,2 = 0. Here, the right-hand side of
product formula (16) is

(1 + t 2)(1 + t 2)(1 − t 8)

(1 − t 6)
,

which isn’t even a polynomial. The product factorization of [2] is

Pw(t) = 1 + 2t 2 + 2t 4 + t 6 = (1 + t 2)(1 + t 2 + t 4).

The following result classifies which Schubert varieties in G/B with the palin-
dromicity property are smooth.

Theorem 6. Suppose G is semi-simple and doesn’t contain G2-factors, and let
Xw be a Schubert variety in G/B with the palindromicity property (cf. [7]). Then
Xw is smooth if and only if �+(w) has the following property: if α ∈�+(w) and
β ∈�+ are such that α − β ∈�+, then α − β ∈�+(w). This is equivalent to the
condition that ∑

α∈�+(w)
Ce−α

is a B-submodule of Te(Xw).

It seems to be an interesting question whether a Schubert variety X(w) in G/B
for which the product formula (16) holds is smooth. Unfortunately, the following
counterexample shows this isn’t true in general.

Example 3. Let α and β denote (respectively) the long and short simple roots
forG2 corresponding to B, and let r = rα and s = rβ be the corresponding reflec-
tions. Let w = srsrs. Then

�+(w) = {α,β,α + β,α + 2β,α + 3β}.
The heights in �+(w) are 1, 2, 3, and 4, and the defects are d1 = 1, d2 = d3 = 0,
and d4 = 1. Thus, the right-hand side of (16) is

(1 + t 2)(1 + t 2 + t 4 + t 6 + t 8),

which is indeed Pw(t). But it is well known that Xw is singular. In fact, Xw is
a counterexample to Theorem 6 if one eliminates the G2 hypothesis. It would be
interesting to know whether any such examples occur in types B or C.
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We will now make some comments about the inversion arrangement. Letw ∈W,
and recall that the inversion set for w is the set I(w) consisting of the positive
roots α for whichw−1(α) < 0. The hyperplanes α = 0 in the R-span of � in t∗ are
called the inversion hyperplanes, and the associated hyperplane arrangement Aw

is called the inversion arrangement. The wall-crossing polynomial Rw(t) associ-
ated to Aw is defined as follows: after fixing an arbitrary chamber C0 of Aw, put

Rw(t) =
∑
C

t 2d(C,C0),

where the sum is over all chambers C of Aw and n(C,C0) is the number of walls
of Aw that must be crossed when going from C0 to C. The polynomial Rw(t) is
palindromic for all w, and by [15], when w ∈ Sn, Pw(t) is palindromic if and only
if Pw(t) = Rw(t). This result says that one can determine in terms of I(w) alone
when Pw(t) is palindromic.

Problem. Using I(w) alone, determine a necessary and sufficient condition for
Pw(t) to be palindromic. Similarly, determine a necessary and sufficient condition
for Xw to be smooth.
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