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A Classification of Factorial Surfaces
of Nongeneral Type

R. V. Gurjar & Shameek Paul

1. Introduction

In this paper we deal exclusively with complex algebraic varieties.
An important invariant for a normal affine variety V is the logarithmic Kodaira

dimension κ̄(V �) as defined by S. Iitaka, whereV � is the smooth locus of V. A rich
structure theory of smooth quasiprojective surfaces has been developed by S. Iitaka,
Y. Kawamata, T. Fujita, M. Miyanishi, T. Sugie, S. Tsunoda, R. Kobayashi, and
other Japanese mathematicians (for an excellent exposition, see [7]). We will use
this theory and standard algebraic topology to give a geometric description of all
2-dimensional affine UFDs (or, factorial)V such that κ̄(V �) is at most 1. Many of
the arguments in the proofs are by now standard (cf. [2, Sec. 3]).

This paper does not consider an algebraic description of the coordinate rings
�(V, O) of these unique factorization domains (UFDs). The multiplicative group
of units in this ring will be denoted by �(V, O)∗.

We will prove the following four theorems.

Theorem 1. Let V be a smooth, affine, factorial surface with �(V, O)∗ = C∗.
Then we have the following assertions.

• If κ̄(V ) = −∞, then V ∼= C2.

• If κ̄(V ) = 0, then these surfaces are classified in [3, Thm. 2] (see Section 3).
• If κ̄(V ) = 1, then these surfaces are described in [3] (see Section 3).

Remark. It is well known that any Z-homology plane is factorial and has only
trivial units.

Theorem 2. Let V be an affine, factorial surface with at least one singular point
and with �(V, O)∗ = C∗. Then we have the following assertions.

• If κ̄(V �) = −∞ then V ∼= C2/�, where � is the binary icosahedral group of
order 120; hence V is the affine E8-singularity {x 2 + y3 + z5 = 0}.

• If κ̄(V �) = 0, then V is obtained by one of the two constructions described in
Section 4.

• If κ̄(V �) = 1, then V has a unique singular point with a good C∗-action and
�(V, O) is a positively graded domain. These domains are all described by
Mori in [8] (see Section 4).
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Theorem 3. Let V be a smooth, affine, factorial surface with �(V, O)∗ �= C∗.
Then we have the following assertions.

• If κ̄(V ) = −∞, then V ∼= C × (C \ {at least one point}).
• If κ̄(V ) = 0, then V is one of the surfacesO(1,1,1) orO(4, 1) in Fujita’s table

in [1, Sec. 8.64] or is obtained from O(1,1,1) as described in Section 5.
• If κ̄(V ) = 1 then V is obtained from a smooth Z-homology plane with a C∗-

fibration by removing a certain number of regular fibers.

Theorem 4. Let V be an affine, factorial surface with �(V, O)∗ �= C∗. If
κ̄(V �) ≤ 1, then V has no singularities; hence V is one of the surfaces described
in Theorem 3.

In Section 7 we will use a result due to Parameswaran and Van Straten ([10];
see also [9]); this result states that any normal Gorenstein surface singularity can
occur on a suitable 2-dimensional affine factorial surface V. It is easy to make
sure that κ̄(V �) = 2. We can also give examples of affine factorial surfaces V
with κ̄(V �) = 2 such that V has an arbitrarily large number of singular points. In
view of these examples it seems impossible to classify factorial surfaces V with
κ̄(V �) = 2. This explains our basic assumption in Theorems 1–4.

Acknowledgment. The authors are grateful to the referee for carefully reading
the proofs and pointing out some serious mistakes in them. Some of the statements
of the main theorems were suggested by the referee’s comments.

2. Preliminaries

By an A1-fibration on a normal algebraic surface W we mean a morphism
f : W → B onto a smooth algebraic curve B such that a general fiber of f is
isomorphic to A1. Similarly, we can define a P1-fibration and a C∗-fibration. Here
C∗ denotes the curve A1 \ {one point}. Such a C∗-fibration is said to be untwisted
if it is a trivial bundle on a Zariski-open dense subset of B. This is equivalent to
the assertion that, in a suitable completion of W, there are two irreducible curves
at infinity that are cross-sections for the corresponding P1-fibration on the com-
pletion. Otherwise the fibration is said to be twisted.

By a (−n)-curve on a smooth algebraic surface we mean a smooth, projective,
irreducible, rational curve C with C2 = −n. For a possibly reducible curve C,
by a component of C we mean an irreducible component of C. A simple normal
crossing divisor on a smooth algebraic surface is called an SNC divisor. An SNC
divisorD is said to be minimal normal crossing (MNC) if, for every (−1)-curveE
inD, either (a) E.(D−E) ≥ 3 or (b) E.(D−E) = 2 and E meets a unique irre-
ducible component of D − E. By a factorial surface we mean an affine surface
whose coordinate ring is a UFD.

Let X be a smooth projective surface. By Castelnuovo’s criterion of rational-
ity, X is rational if the linear system |nKX| = ∅ for n ≥ 1 and the irregularity
qX = 0. Let V be a normal affine surface with κ̄(V �) ≤ 1. Let X be a smooth
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projective completion of V � such thatX \V � = D∪E1 ∪E2 ∪ · · · is a simple nor-
mal crossing divisor; here D is the divisor at infinity for the affine surface V and
the Ei are the exceptional divisors for the resolution of singularities of V. Then
dim|n(K +D+E1 +E2 + · · · )| grows at most linearly with n ≥ 1. SinceD sup-
ports a big and nef (numerically effective) divisor for X, it follows that |nK| = ∅
for n ≥ 1. Therefore, X is birationally a ruled surface (it is actually ruled unless
X ∼= P2). Suppose further that V is factorial. Then the irreducible components
of D ∪ E1 ∪ E2 ∪ · · · generate the divisor class group of X. As a consequence,
qX = 0. Combining these observations yields the following useful result, which
will be used often in later arguments.

Lemma 1. Let V be a 2-dimensional affine factorial surface with κ̄(V �) ≤ 1.
Then V is rational.

We will use some standard terminology (e.g., branch point, rod, twig, tip) about
dual graphs of SNC divisors on a smooth algebraic surface and then structure re-
sults for noncomplete algebraic surfaces (cf. [7, Chap. 2, Sec. 3]).

Lemma 2. Let W be a normal affine surface. Then we have the following
assertions.

(1) If κ̄(W �) = −∞, then either : (a) there is an A1-fibration f : W � → B, where
B is a smooth curve; or (b)W � contains a Zariski-open subset U isomorphic
to (C2/�)�, where � is a finite noncyclic subgroup of GL(2, C) without non-
trivial pseudo-reflections and W � \U is a disjoint union of curves isomorphic
to A1.

(2) If κ̄(W �) = 1, then there is a C∗-fibration f : W � → B onto a smooth curveB.

The following properties of a singular fiber of a P1-fibration on a smooth algebraic
surface will be used later on.

Lemma 3. Let f : W → B be a P1-fibration on a smooth projective surfaceW,
and let F0 be a scheme-theoretic singular fiber of f. Then we have the following
assertions.

(1) F0 is an SNC divisor of smooth rational curves that is a tree.
(2) F0 contains at least one (−1)-curve.
(3) If a (−1)-curve inF0 occurs with coefficient 1, thenF0 contains another (−1)-

curve.

In particular, by successively contracting (−1)-curves, F0 can be contracted to a
regular fiber of a P1-fibration on the new surface.

Now assume thatW is a normal affine surface such that κ̄(W �) = 0. We will use
some important results due to Fujita.

LetY be a smooth completion ofW � such that� := Y \W � is an MNC divisor.
Recall that there is a Zariski–Fujita decompositionK +� ≈ P +N, where ≈ de-
notes numerical equivalence, P andN are Q-divisors, P is nef,N is effective, and
P.�i = 0 for every irreducible curve �i in supp N. The intersection form on the
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irreducible components of suppN is negative definite. By Kawamata’s result [5],
P ≈ 0. If N is supported on � then we say that (Y,�) is NC-minimal.

Remark. In [1, Sec. 8.9], the definition of NC-minimality involves one more
condition—namely, that any (−1)-curve on Y that does not occur in � must meet
� in at least two points counted properly. When we use Fujita’s classification from
[1, Sec. 8.64] in the proof of Theorem 3 we will employ this more restrictive def-
inition, but otherwise NC-minimal will have the meaning just defined.

Assume now that κ̄(W �) = 0 and (Y,�) is NC-minimal. Then the dual graph
of any connected component of � is restricted by the following useful result [1,
Cor. 8.8].

Lemma 4. With assumptions as before, any connected component �i of � is of
one of the following six types.

(Type I) �i is the exceptional divisor of a minimal resolution of a quotient sin-
gular point.

(Type O) �i is a simple loop of smooth rational curves.
(Type H) �i is an SNC divisor of smooth rational curves with exactly two branch

points; there are exactly two twigs at each of the branch points that are
single (−2)-curves.

(Type Y) �i is a tree of smooth rational curves and has exactly one branch point ;
there are exactly three twigs meeting the branch point and they are all
admissible. The absolute values of the determinants dj of the three
twigs satisfy

∑ 1
dj

= 1.
(Type X) �i is a tree of smooth rational curves with exactly one branch point

and with four twigs meeting the branch point such that each twig is a
single (−2)-curve.

(Type �) �i is a smooth elliptic curve.

Now assume that (Y,�) is MNC but not NC-minimal. Then we have the follow-
ing useful result [1, Lemma 6.20].

Lemma 5. There exists a (−1)-curve L in suppN that is not in � and satisfies
one of the following conditions.

(1) L ∩� = ∅.
(2) L.� = 1 and L meets a twig of �.
(3) L.� = 2 and L meets two connected components of �, one of which is a tip

of a negative definite linear chain of smooth rational curves (i.e., a rod ) while
the other is an admissible rational twig of D.

Furthermore, in this case κ̄(Y \ (� ∪ L)) = 0.

The next result is well known to experts in the field. It uses standard properties of
the Zariski–Fujita decomposition (called “theory of peeling” in [7, Chap. 2]).
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Lemma 6. LetW be a normal affine surface with at worst rational double points
as singularities. Then, for a resolution of singularities W̃ of W, we have κ̄(W �) =
κ̄(W̃ ).

Recall that, for a normal affine varietyV, the group UV := �(V, O)∗/C∗ is finitely
generated because any nonconstant unit in the coordinate ring of V gives rise to
a relation a1D1 + · · · + anDn ∼ 0, where D1, . . . ,Dn are the irreducible compo-
nents at infinity in a normal projective completion of V and the ai are integers.
The next result will be needed later in the proofs.

Lemma 7. Let V be a normal affine factorial variety. Then, for any irreducible
divisor D in V, we have rankUV < rankUV−D.

We omit the easy proof.
The next result is probably well known to experts. However, we include it here

for completeness.

Lemma 8. LetV be a smooth affine factorial surface with a C∗-fibration f : V →
B. Then f is trivial on a nonempty Zariski-open subset of B.

According to Lemma 8, the C∗-fibration is untwisted.

Proof of Lemma 8. We briefly sketch the argument. The irregularity of V is zero,
so the curve B is rational. Let V ⊂ X be a smooth completion with a P1-fibration
# : X → B̄, where B̄ is a smooth completion of B. Suppose the result is not true.
ThenX−V contains a unique componentDh that is horizontal for#. By removing
all the irreducible components of all the singular fibers of f fromV, we obtain an
affine factorial open subvarietyV0 ⊂V such thatX−V0 =Dh∪F1∪F2 ∪· · ·∪Fm,
where the Fi are full fibers of #. After changing the compactification of V0 (via
Lemma 3), we may assume that the Fi are regular fibers of #. Since any two
fibers of# are rationally equivalent, it follows that the curvesDh and F1 generate
Pic(X) freely. However, it is easy to see that the intersection form of these two
curves is not unimodular (see Remark (1) to follow). This contradiction proves
the result.

Remarks. (1) For a smooth, projective, rational surface X, the cohomology
groupH 2(X; Z) is generated by finitely many cohomology classes corresponding
to irreducible curves C1,C2, . . . . If these classes are independent, then the inter-
section matrix (Ci.Cj ) is unimodular by Poincaré duality. Even if these classes are
dependent, we can find finitely many integral linear combinations of these classes
that generate H 2(X; Z) freely.

(2) Let V be a factorial affine surface. Then the canonical divisor of V is prin-
cipal. Since a normal surface is Cohen–Macaulay, it follows that V has Goren-
stein singularities. If, in addition, V has at most rational singularities, then these
singularities are all rational double points. The only unimodular rational singular-
ity is E8.



522 R. V. Gurjar & Shameek Paul

3. Proof of Theorem 1: V Is Smooth and
�(V, O) Has No Nonconstant Units

Case 1: κ̄(V ) = −∞. By Lemma 2, we have an A1-fibration onV. Now, by the
well-known Fujita–Miyanishi–Sugie result (see [7, Chap. 4, Thm. 2.2]), V ∼= C2.

Case 2: κ̄(V ) = 0. We will describe the two possible surfaces in this case (as
proved in [3]).

(1) Let L1,L2,L3 be three lines in P2 that do not pass through a common point,
and let p1 ∈L1 and p2 ∈L2 be points that do not lie on the other Li. Let X → P2

be the blow-up at p1,p2. Then V := X − (L′
1 ∪ L′

2 ∪ L′
3) is a simply connected,

factorial surface with κ̄(V ) = 0. Here L′
i is the proper transform of Li.

(2) LetC be a smooth conic andL a line meetingC transversally in P2. Letp∈C
be a general point, and letX be the blow-up of P2 at p. ThenV := X− (C ′ ∪L′)
is a simply connected, factorial surface with κ̄(V ) = 0.

It is easy to see that a simply connected normal affine variety cannot have non-
constant regular invertible functions.

Case 3: κ̄(V ) = 1. By Lemma 2, there is a C∗-fibration f : V → B. Since V
is factorial, it follows from Lemma 8 that this is an untwisted fibration. The base
B ∼= P1 or A1. All such surfaces have been described in [3, Thm. 3, Thm. 4].

This completes the proof of Theorem 1.

4. Proof of Theorem 2: V Is Nonsmooth and Factorial
with No Nonconstant Units

As before, let V � = V \ SingV.
LetX be a suitable smooth compactification of V � such thatX \V � = D∪E for

D an MNC divisor of V at infinity and E = ⊔
Ei, where the Ei are the MNC ex-

ceptional divisors of the resolutions of singularities of V. The divisor class group
of V � is also trivial and hence each singular point of V is unimodular—that is, the
intersection form on each Ei is unimodular.

Case 1: κ̄(V �) = −∞.

Subcase 1a: There exists an A1-fibration ϕ : V � → B. Suppose first that ϕ ex-
tends to an A1-fibration onV. Then, by [7, Chap. 3, Lemma1.4.4], every singularity
of V is a cyclic quotient singularity. Yet because cyclic quotient singularities are
not unimodular, there cannot be any singularities in this case.

Now suppose that ϕ does not extend to a morphism on V. Then one of the sin-
gular points of V is a base point. This cannot happen, since the closure of an A1

is a complete curve and V is affine.

Subcase 1b: There exists no A1-fibration on V �. By Lemma 2, in this case V �
contains an open subset U isomorphic to C2/� \{p}, where � is a finite subgroup
of automorphisms of C2 such that p is the singular point. Furthermore, V � \U is
a disjoint union of A1s.
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Suppose U �= V �, and let C ∼= A1 ⊂ V � \U. We know that C is a closed curve
in V and, since V is factorial, that the prime ideal corresponding to C is principal
(i.e., C = (f )). Because f is a regular function on V, its restriction to U is a unit
that can be pulled back to a unit on C2 via the morphism C2 → C2/�. But C2 has
no nonconstant units. Hence f is constant on U and thus is also constant on V.
This gives us a contradiction. Hence V � = U = C2/� \ {p} and so V = C2/�.

Because V is factorial, � is the binary icosahedral group.

Case 2: κ̄(V �) = 0. We have the Zariski–Fujita decomposition ofK+D+E ∼
P +N. Since κ̄(V �) = 0, it follows that P = 0.

Subcase 2a: N is supported on the rational admissible twigs of D + E (NC-
minimal case). By Lemma 4 and unimodularity, it is clear that the connected
components ofD andE can be an elliptic curve, a loop of P1s, or a quotient singu-
larity (which, because of unimodularity, must be E8). SinceD supports an ample
divisor, it can only be an elliptic curve or a loop of P1s.

(1) Suppose first that D is an elliptic curve. Then, by unimodularity, D2 = 1.
Using this equality and that the surface is rational, by an easy application of the
Riemann–Roch theorem we obtain H 0(X, O(D)) = 2. Since D is smooth and
irreducible, a general member of the linear system |D| is smooth and irreducible
and thus is an elliptic curve. This linear system has a base point because D2 = 1.

Now consider the compactification Y of the normal factorial surface V by con-
tracting E on X to normal singular points. Blowing up at the base point yields an
elliptic fibration on the blown-up surfaceX1. Also,V = X \D has a fibration over
A1 whose general fiber F is an elliptic curve with one point missing. Therefore,
any singular point of V lies in a fiber of the elliptic fibration on X1. Let D1 :=
D ′ ∪ L, where L is the exceptional curve (which is a cross section of the ellip-
tic fibration). Then the components of D1 generate the divisor class group of X1

freely, which implies that the fibration is relatively minimal.
In particular, we can use Kodaira classification of singular fibers of an elliptic

fibration to show that any singular point of V is a rational double point. By uni-
modularity, any such point is analytically the E8-singularity, which gives a fiber
of type II ∗ in a relatively minimal elliptic fibration on a smooth surface.

Now we use the long exact sequence of cohomology for calculating the Eu-
ler characteristic of X1, as in the smooth case. Since H1(D1; Z) = Z2 and
H 2(X1, Z) ∼= H 2(D1, Z), we have χ(X1) = 4. Note that, since V is affine, it
does not contain any complete curves. Because the fibration on X1 has a cross
section, every singular fiber of this fibration is irreducible.

From Persson’s [11] classification of the possible singular fibers of an elliptic fi-
bration on a smooth rational surface, we see that there are two possibilities–namely,
(II, II ∗) and (I1, I1, II ∗)—for the configuration of singular fibers on the minimal
resolution of X1. To get back the surface V : contract the E8 configuration in the
fiber (II ∗); contract the exceptional curve, which is a cross section of the elliptic
fibration to the base point; and remove D. Thus, when D is an elliptic curve, we
have only one singularity (which is E8) and V is obtained as just described.
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(2) Now suppose that D is a loop of P1s.
We can assume that D is MNC. If some irreducible component of D is a (−1)-

curve, thenD has exactly two irreducible components (say, D1 andD2) such that
D2

1 = −1. By unimodularity,D2
2 = −3. LetX1 be obtained fromX by contracting

D1 to a smooth point. Now the image ofD2 inX1 (say,�2) is an irreducible ratio-
nal curve with exactly one singular point—which is an ordinary double point—and
�2

2 = 1. We can argue as in the previous case. The linear system |�2| has dimen-
sion 1 and one base point. Blowing up this base point yields an elliptic fibration,
and we conclude as before thatV has exactly one singularity (which is ofE8-type).
In this case, the only possible configuration of singular fibers (on the minimal res-
olution of the blown-up surface) is of type (I1, I1, II ∗).

Now assume that no irreducible component of D is a (−1)-curve. Because D
supports a divisor with strictly positive intersection form, D2

i ≥ 0 for some i. By
blowing up at suitable points in Di, if necessary, we assume that D2

i = 0. Then
|Di | defines a P1-fibration ϕ on X, and the two components of D meeting Di are
cross sections for ϕ. It follows that E is contained in a finite union of singular
fibers of ϕ. Hence E contracts to finitely many rational singular points, which (by
unimodularity) are all E8 singularities. Using Lemma 3, it is not difficult to see
that E8 cannot be a subgraph of a singular fiber of a P1-fibration. So in this case
there are no singular points in V, which is a contradiction.

Subcase 2b:N is not supported on the rational admissible twigs ofD+E (non–
NC-minimal case). Since κ̄(V �) = 0, by Lemma 5 there exists a (−1)-curve L
on X that occurs in N, meets a rational twig ofD transversally (and possibly a ra-
tional rod in E), and satisfies κ̄(V � − L) = κ̄(V �) = 0. By unimodularity of the
connected components of E there cannot be a rational rod in E. Therefore, L �
D + E and L.D = 1.

Let Y be a suitable completion of V obtained from X by contracting E to nor-
mal singular points. Then Y = V �D. Since V is factorial, the class group of Y
is freely generated by the components of D. Let the component of D that L in-
tersects be D1, and write L ∼ a1D1 + a2D2 + · · · . Since L.D1 = L.D = 1, it
follows that L ∼ −D1 + a2D2 + · · · + arDr in Y.

Let Ȳ be obtained from Y by contracting L, and let C̄ denote the image in Ȳ of
a curve C in Y. On Ȳ we have D̄1 ∼ a2D̄2 + · · · + arD̄r , so D̄2, . . . , D̄r generate
the class group of Ȳ freely. Thus,V1 := Ȳ \(D̄2 ∪ · · · ∪ D̄r) is also factorial. Now
V1\ D̄1

∼= V \ L, from which it follows that 0 = κ̄(V � \ L) = κ̄(V ◦
1 \ D̄1).

If D1 is not a tip of D, then we have a linear chain (viz., a rod) as a connected
component in the infinity of V1. Because V1 is factorial, this chain must be uni-
modular. However, since this is not possible, we see that D1 is a tip of D and
hence D�

1 := D̄1\ D̄2 is an A1 in the smooth part of V1.

Since V1 is factorial, we have D�
1 = (f ). Consider the map f : V1\D�

1 → C∗.
Using Kawamata’s inequality [7, Chap. 2, Lemma 1.14.1] and the equality
κ̄(V ◦

1 \ D�
1) = 0, we deduce that this map is a C∗-fibration. However, V1 has

a singularity that must lie on some fiber and so must be E8. As mentioned previ-
ously, by Lemma 3 this is not possible. Thus, we have a contradiction.
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Case 3: κ̄(V �) = 1. By [7, Chap. 2, Thm. 6.1.5] there exists a C∗-fibration
π : V � → B. Since V � is rational, B ∼= A1 or P1.

Subcase 3a: π extends to a C∗-fibration onV. Since any singularity of V must
lie on a fiber, it has to be both unimodular and a rational singular point (i.e., an
E8-singularity). As already shown, in this case V is smooth—a contradiction.

Subcase 3b: π does not extend to a C∗-fibration onV. Then π has a base point
at a singular point, say p, of V. In this case, the connected components of D ∪E
are each unimodular and hence are trees of smooth rational curves. Furthermore,
the base B of the C∗-fibration is isomorphic to P1.

We have the long exact sequence

H1(X; Z) → H1(D ∪ E; Z) → H 2(X,D ∪ E; Z) → H 2(X; Z)

→ H 2(D ∪ E; Z) → H 3(X,D ∪ E; Z) → H 3(X; Z).

Because H 3(X; Z) = 0 and H 2(X; Z) ∼= H 2(D ∪ E; Z) (since Pic(V ) = 0 and
V has only trivial units), we getH1(V

�; Z) = H 3(X,D ∪E; Z) = 0. Also, since
H1(X; Z) = 0, we getH1(D∪E; Z) ∼= H 2(X,D∪E; Z). ThenH1(D∪E; Z) =
0 becauseD∪E is a tree of P1s. Therefore,H2(V

�; Z) = H 2(X,D ∪ E; Z) = 0.
Now, since E is a unimodular tree of P1s, an easy application of the Mayer–

Vietoris sequence yields H1(V ; Z) = 0 and H2(V ; Z) = 0. Since V is affine,
H3(V ; Z) = 0; since V is open, H4(V ; Z) = 0. Thus, V is a Z-homology plane
and hence χ(V ) = 1.

We have already seen that V has only one singular point (namely, p) and that
V � = V \{p}, so χ(V �) = 0. Then, by the Suzuki–Zaidenberg formula, all the sin-
gular fibers of the C∗-fibration π : V � → B have Euler characteristic 0 and hence
are irreducible.

It is proved in [4, Lemma 4.4] that there is a C∗-action on the fibers of π giving
rise to a C∗-action onV. This action has p as the only fixed point, and the closure
of every orbit passes through p. This can be seen as follows. Since κ̄(V �) = 1,
it follows that π restricted to V � has at least three singular fibers that are multiple
C∗s (otherwise, C∗ × C∗ is contained in V �). By taking a suitable ramified cover
B̃ → B of B with prescribed ramification and normalized fiber product, we ob-
tain a smooth surface Ṽ � with a C∗-bundle Ṽ � → B̃. The C∗-action on V � lifts to
an action on Ṽ �, which can be seen is fixed point free.

In short: the C∗ action on V has a unique closed orbit, which is a point. It fol-
lows that�(V, O) is a positively graded, 2-dimensional UFD. These domains have
been classified by Mori [8] as complete intersections of hypersurfaces of the form
{Xa1

1 + b2X
a2
2 + · · · + bnX

an
n = 0}.

This completes the proof of Theorem 2.

5. Proof of Theorem 3: V Is Affine, Smooth, and
Factorial with Nonconstant Units

Case 1: κ̄(V ) = −∞. Let u ∈ �(V, O)∗ \ C∗. Then u gives a dominant map
u : V → C∗. Let ϕ : V → B be the Stein factorization of this map.
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Since we have a dominant map B → C∗, it follows that κ̄(B) ≥ κ̄(C∗) = 0 and
so B ∼= C \ {at least one point}. Since ϕ has irreducible general fibers, applying
Kawamata’s inequality to ϕ yields κ̄(V ) ≥ κ̄(B) + κ̄(F ), where F is a general
fiber. Since κ̄(V ) = −∞ and κ̄(B) ≥ 0, we have κ̄(F ) = −∞. Thus, ϕ is an
A1-fibration.

The rest of the argument is well known, so we cover it only briefly. Let X be
a suitable smooth compactification of V such that ϕ extends to a P1-fibration #
on X, and let D = X \V. Over Z , the generators of Pic(X) are obtained by tak-
ing one cross section, one general fiber, and all components of the singular fibers
except any component of multiplicity 1. The factoriality of V now shows us that
ϕ has all reduced and irreducible fibers, so V is a trivial A1-bundle over B. In this
case, then, V ∼= C × C \ {at least one point}.

Case 2: κ̄(V ) = 0.

Subcase 2a. Suppose thatV has an NC-minimal compactification (X,D) in Fu-
jita’s sense (see the Remark preceding Lemma 4). In this case we can use Fujita’s
result in [1, Sec. 8.64] to show that V is one of the surfaces O(1,1,1), O(4, 1).

The surface O(1,1,1) is the complement of the union of three general lines in
P2; the surface O(4, 1) is the complement of the union of a smooth conic and a
general line in P2. On the former surface,V has two independent units modulo C∗.
On the latter surface,V has one nonconstant unit that generates the group of units
modulo C∗.

Subcase 2b. Suppose that X is a smooth MNC completion of V and that D =
X − V. Assume that (X,D) is not NC-minimal in Fujita’s sense. Then (i) there
is a (−1)-curve L in X such that L is not contained in suppD or in suppN and
L ·D = 1; or (ii) by Lemma 5 there is a (−1)-curve L in X that is in suppN but
not in D and that meets a twig of D and satisfies L.D = 1.

Now the surfaceV −L∩V is also factorial and has one new unit by Lemma 7.
We get an NC-minimal open affine subvariety V0 of V (in Fujita’s sense) by suc-
cessively removing such curves L from V. This NC-minimal subset V0 is one of
the surfaces in Subcase 2a.

Since V has a nonconstant unit, by Lemma 7 and Kojima’s result [6, Thm. 3.1]
we know that V0 is O(1,1,1) (i.e., V0

∼= C∗ × C∗). We see that V0 is obtained by
removing exactly one such curve L fromV. The MNC completion of V0 is P2 and
the infinity is the union of three lines {Di : 1 ≤ i ≤ 3}.

If L does not occur in N, then L does not meet a twig ofD. First we blow up at
a point p on one of the lines, say D1. If p does not lie on D2,D3, then we obtain
X and L is the exceptional curve. If p ∈ D1 ∩ D2 then let E be the exceptional
curve obtained by blowing up p. In this case X is obtained by blowing up at a
point in E that does not lie on the proper transforms of D1,D2 and L is the new
exceptional curve.

If L does occur in N, then L meets a twig of D and X is obtained by blow-
ing up at a point in, say, D1 and then successively blowing up with centers on the
previous (−1)-curve at a point that does not lie on any proper transform of the
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previous exceptional curves. The curve L is the final (−1)-curve in this sequence
of blow-ups.

No subsequent blow-up is allowed on any point of intersection; otherwise, the
(−1)-curveLwould satisfyD1 ∼ D2 +∑

j>2 ajDj +2L, where {Dj : j > 2} are
the proper transforms of the exceptional curves occuring before L. This implies
that L is not linearly equivalent to a divisor on D, which violates the factoriality
of V.

Every blow-up has center on the previous (−1)-curve becauseD is MNC. There-
fore,D is a union of the proper transforms ofD1,D2,D3 (and possibly the proper
transform of the first exceptional curve) and a linear chain of (−2)-curves with
one end intersecting D1 (or a (−2)-curve if the first blow-up was a point of inter-
section of D1 with either D2 or D3). The (−1)-curve L intersects the other tip of
the chain.

Case 3: κ̄(V ) = 1. In this case there exists a C∗-fibration ϕ : V → B. By
Lemma 8 this fibration has two cross sections—in other words, it is untwisted.

LetX be a suitable smooth compactification ofV such thatX has a P1-fibration#
extending ϕ, and letD = X \V. Over Z , the generators of Pic(X) are obtained by
taking one cross section, one general fiber, and all the components of the singular
fibers except one component of multiplicity 1. We claim that at least one full fiber
of # is contained in D. If not, then the number of irreducible components of D
would be equal to the rank Pic(X). But thenV could not have a nonconstant unit.
A similar argument shows that every fiber of ϕ is irreducible.

Let F1,F2, . . . ,Fr be the complete fibers of # that are contained in D. We can
assume (by Lemma 3, if necessary) that each Fi is a regular fiber of #. Let D ′
be the union of all the irreducible components of D except F2, . . . ,Fr. Then D ′
is connected and the irreducible components of D ′ generate Pic(X) freely. It fol-
lows that X−D ′ is a Z-homology plane. The surfaceV is obtained from X−D ′
by removing the regular fibers F2, . . . ,Fr.

This completes the proof of Theorem 3.

6. Proof of Theorem 4: V Is Nonsmooth and Factorial
with Nonconstant Units

We shall demonstrate that this combination cannot occur.

Case 1: κ̄(V �) = −∞. We showed in the proof of Theorem 3 that, since V
has nonconstant units, Kawamata’s inequality implies that V has an A1-fibration
ϕ : V → B. Hence, by Miyanishi’s result used earlier, V has only cyclic quotient
singularities. Yet this is impossible because cyclic quotient singularities are not
unimodular.

Case 2: κ̄(V �) = 0. By Kawamata’s inequality, a similar argument as in Case 1
of the proof of Theorem 3 shows that there is a C∗-fibration ϕ : V � → B.

Subcase 2a: ϕ does extend to a C∗-fibration on V. Arguing as in Case 1, we see
that the singularities must be unimodular as well as cyclic quotients. This gives
us a contradiction.
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Subcase 2b: ϕ does not extend to a C∗-fibration on V. Then there is a singu-
lar point (say, p) of V through which closures of the general fibers pass—that is,
a base point for the fibration. Any unit of V must be constant on the closures of
these fibers (since their normalizations are A1s). Because the closures of general
fibers meet at p, we see that V has only constant units.

Case 3: κ̄(V �) = 1. In this case V � has a C∗-fibration and so, as in Case 2, V
has only constant units.

This completes the proof of Theorem 4.

7. Examples

(1) Let (W, q) be a germ of a Gorenstein normal surface singularity. In [10] it is
proved that there exists an affine factorial surface V with a unique singular point
p such that the germ (V,p) is analytically isomorphic to (W, q). The proof also
shows that we can ensure κ̄(V \ {p}) = 2. (For complete intersection singulari-
ties, see [9].)

(2) We shall construct affine factorial surfaces V such that κ̄(V �) = 2 and V
can have arbitrarily large number of singular points.

As in the proof of Theorem 2 when κ̄(V �) = 0, let ϕ : X → P1 be an elliptic
fibration on a smooth projective rational surface that has only two singular fibers
(of type II and II ∗). Then there is a cross section S for ϕ with S 2 = −1. Let
F1,F2, . . . ,Fr be r general fibers of ϕ. Blow up the r points Fi ∩ S, and let F ′

i

be the proper transform of Fi in the new surface. We can show that all the F ′
i

can be contracted to normal singular points on a projective surface Y. Let S0 and
II ∗

0 be (respectively) the images of S and II ∗ in Y. Then we can show that V :=
Y \(S0 ∪ II ∗

0 ) is affine and factorial with r singular points and that κ̄(V �) = 2 (cf.
[2, Prop. 3.10]).

(3) We list some examples of smooth factorial surfaces with κ̄ = 2.

• Any smooth Z-homology plane V with κ̄(V ) = 2 is factorial with trivial units.
• LetX be a general hypersurface of degree ≥ 5 in P3, and letH be a hyperplane

section of X; then V := X \H is factorial with κ̄ = 2.
• More generally, from any smooth projective surface X with H1(X, O) = (0)

we can obtain a factorial surface by taking the complement of a union of finitely
many irreducible curves that generate PicX.

In view of these examples, a classification of factorial surfaces with κ̄ = 2 does
not appear to be possible.
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