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The Luzin Theorem for
Higher-Order Derivatives

Greg Francos

1. Introduction

In 1917, Luzin ([2]; see also [4]) proved a surprising result: For any Lebesgue mea-
surable function f : R → R there is a continuous a.e. differentiable function g

such that g ′ = f almost everywhere. This is surprising even for the function
f(x) = 1/x because the antiderivative of f is discontinuous and, in fact, un-
bounded at 0. In this case, we correct the antiderivative by adding continuous
functions that are differentiable almost everywhere with derivative equal to zero
but that are not constant (one example of such a function is a Cantor staircase).

The original proof due to Luzin is purely one-dimensional and offers no guid-
ance toward a proof in higher dimensions. However, in 2008 Moonens and Pfeffer
[3] proved the following generalization:

Let U be an open subset of R
N. Given any Lebesgue measurable func-

tion f : U → R
N, there is an a.e. differentiable function g ∈ C(RN)

such that ∇g = f almost everywhere.

The goal of this paper is to extend the results to include higher-order derivatives.
For an m-times differentiable function g defined in an open subset U ⊂ R

N, we
write

Dmg = (Dαg)|α|=m

to denote the collection of all partial derivatives of order m. Our main result reads
as follows.

Theorem 1.1. Let f = (f α)|α|=m be a Lebesgue measurable function defined
in an open set U ⊂ R

n. Then there is a function g ∈ Cm−1(Rn) that is m-times
differentiable a.e. and such that

Dmg = f a.e. in U ;
that is,

Dαg = f α a.e. in U for |α| = m.

Moreover, for any σ > 0, the function g may be chosen such that

‖Dγg‖∞ < σ for every |γ | < m.
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The outline of the proof is as follows. If f = (f α)|α|=m is continuous and bounded
on an open set U of finite measure, then we can find a function g ∈ Cm such that
Dmg approximates f on a large compact set. Using this approximation and a
suitable limiting process, we can find g ∈ Cm such that Dmg is equal to f on
a large compact set. We then show that the same holds more generally for the
class of Lebesgue measurable functions because such functions are continuous
and bounded when restricted to a large compact set. The final construction in-
volves piecing together approximations of f using a compact exhaustion of R

n,
taking care to avoid any overlap that would cause the resulting approximation to
lose its desired form. The proof requires careful estimates for the approximation,
which is the main difficulty.

I gratefully acknowledge Piotr Hajlasz for directing me to this topic and to the
work of Alberti, Moonens, and Pfeffer as well as for many helpful discussions.

2. Proofs of the Results

Throughout the paper, |U | denotes the N -dimensional Lebesgue measure of a
set U.

Given a continuous function f = (f α)|α|=m defined in an open set U ⊂ R
n

with |U | < ∞, our first task is to construct a compactly supported function u ∈
Cm

c (U) such that Dmu = f on a large compact subset of U. Toward this end we
need the following approximation result. (For the case m = 1, see [1].)

Lemma 2.1. Fix m ∈ N and let U ⊂ R
N be open with |U | < ∞. Let f =

(f α)|α|=m be a continuous and bounded function on U. Then, for any ε, η, σ > 0,
there exist a function u ∈ C∞

c (U) and a compact set K ⊂ U such that, for each
p ∈ [1, ∞], the following inequalities hold :

(i) |U\K| < ε;
(ii) |Dmu(x) − f(x)| < η for each x ∈K;

(iii) ‖Dmu‖p ≤ C(m, N)(ε/|U |)1/p−m‖f ‖p;
(iv) ‖Dγu‖∞ < σ for every |γ | < m.

Proof. Fix ε, η, σ > 0. By Q(x, r) we denote the closed cube centered at x with
side length r. Select a compact set K ′ ⊂ U such that |U\K ′| < ε/2. Choose
δ > 0 so small that

Q(x, 4δ) ⊂ U for all x ∈K ′

and

(Q(z, δ) ∩ K ′ �= ∅, (x, y)∈Q(z, δ)) �⇒ |f(x) − f(y)| < η. (2.1)

Cover R
N with a lattice of closed cubes of side length δ. Let {Ti}i∈I be the finite

subcollection of cubes whose intersection with K ′ is nonempty. Clearly,

K ′ ⊂
⋃
i∈I

Ti ⊂ U.

For each i, let Qi be a closed cube concentric with Ti and side length
(
1− ε

2N |U |
)
δ.

Denote the center of the cube by ci . Then
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K =
⋃
i∈I

Qi

satisfies

|U\K| =
∣∣∣∣U ∖ ⋃

i∈I

Qi

∣∣∣∣ ≤ |U\K ′| +
∑
i

|Ti\Qi | ≤ ε

2
+ ε

2|U |
∑
i

|Ti | < ε.

If we define

aα
i =

∫
Ti

f α(y) dy, |α| = m,

then the function

gi(x) =
∑

|α|=m

aα
i

α!
(x − ci)

α

is a polynomial such that

Dαgi(x) = aα
i for |α| = m;

hence (2.1) yields that, for all x ∈ Ti and |α| = m,

|Dαgi(x) − f α(x)| ≤
∫

Ti

|f α(y) − f α(x)| dy < η.

Let #i ∈C∞
c (Ti) with #i ≡ 1 on Qi. If #i is a cut-off function, then

u =
∑
i∈I

#igi ∈C∞
c (U)

satisfies
|Dmu(x) − f(x)| < η for all x ∈K.

We need only choose #i carefully in order to guarantee the estimates (iii) and
(iv). Let

T =
[−1

2
,

1

2

]N

and Q =
[−1

2
+ ε

4|U |N ,
1

2
− ε

4|U |N
]N

;
in other words, Q is the cube concentric with T and with side length 1 − ε

2N |U | .
Let ζ ∈ C∞

c (BN(0, 1)) with ζ ≥ 0 and
∫

RN ζ = 1, and let ζε(x) := ε−Nζ(x/ε)

be a standard mollifier. For

Q̃ =
[−1

2
+ ε

8|U |N ,
1

2
− ε

8|U |N
]N

,

we define
# = χQ̃ ∗ ζ(ε/16|U |N).

Clearly #∈C∞
c (T ) with # = 1 on Q and

|Dα#(x)| ≤ C(m, N)(ε/|U |)−|α| for |α| ≤ m and x ∈ T.

Finally, we define

#i(x) = #

(
x − ci

δ

)
and u =

∑
i∈I

#igi .
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Observe that for x ∈ Ti and |β|, |γ | ≤ m we have

|Dβgi(x)| ≤ C(m, N)‖f ‖∞δm−|β|,

|Dγ#i(x)| ≤ C(m, N)(ε/|U |)−|γ |δ−|γ |.

Hence for any |α| ≤ m and x ∈Qi,

|Dαu(x)| = |Dα(gi#i)(x)|
≤

∑
β+γ=α

α!

β! γ !
|Dβgi(x)||Dγ#i(x)|

≤ C(m, N)‖f ‖∞(ε/|U |)−|α|δm−|α|.

Note that by choosing δ small enough we can ensure

C(m, N)‖f ‖∞ sup
|α|<m

δm−|α|(ε/|U |)−|α| < σ,

which proves (iv). Considering the case |γ | = m, we see that the proof of (iii) is
complete for the case p = ∞.

We are left with the case 1 ≤ p < ∞ of (iii). Observe that, for |γ | > 0,

supp Dγ#i ⊂ Ti\Qi

and
|Ti\Qi |

|Ti | = 1 −
(

1 − ε

2N |U |
)N

<
ε

2|U |
by Bernoulli’s inequality. Hence for |α| = m and x ∈ Ti we have

|Dαu(x)| = |Dα(gi#i)(x)|
≤ |Dαgi(x)||#i(x)| + C

∑
β+γ=α
|γ |>0

|Dβgi(x)||Dγ#i(x)|

≤
(∫

Ti

|f |
)
χTi

(x) + C
∑

β+γ=α
|γ |>0

(∫
Ti

|f |
)
δm−|β|

(
ε

|U |
)−|γ |

δ−|γ |χ
Ti\Qi

(x)

≤
(∫

Ti

|f |p
)1/p

|Ti |−1/pχTi
(x)

+ C

(
ε

|U |
)−m(∫

Ti

|f |p
)1/p

|Ti |−1/pχ
Ti\Qi

(x).

Therefore,

‖Dαu‖p ≤ ‖f ‖p + C(ε/|U |)−m

(∑
i∈I

(∫
Ti

|f |p
) |Ti\Qi |

|Ti |
)1/p

≤ ‖f ‖p(1 + C(ε/|U |)1/p−m) ≤ C ′‖f ‖p(ε/|U |)1/p−m.

Let V ⊂ R
n be open with |V | < ∞. Recall that if ui ∈Cm

c (V ) satisfies both
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u =
∞∑
i=1

ui converges uniformly in V

and ∞∑
i=1

‖Dmui‖∞ < ∞,

then u∈Cm(V ).

In the next lemma we will exhaust U by compact sets Ki and build a series ui ∈
Cm

c (U),

u =
∞∑
i=1

ui ∈Cm
c (U).

The functions ui will be constructed with the help of Lemma 2.1, so the par-
tial sums of the series Dmui will approximate a given continuous function f =
(f α)|α|=m on U. Then, for the limiting function u, Dmu will coincide with f on
a large compact set.

Lemma 2.2. Fix m ∈ N and let U ⊂ R
N be open with |U | < ∞. Let f =

(f α)|α|=m be a continuous and bounded function on U. For any ε, σ > 0, there
exist a function u ∈ Cm

c (U) and a compact set K ⊂ U such that the following
statements hold :

(i) |U\K| < ε;
(ii) Dmu(x) = f(x) for each x ∈K;

(iii) ‖Dmu‖p ≤ C(m, N)(ε/|U |)1/p−m‖f ‖p for all 1 ≤ p ≤ ∞;
(iv) ‖Dγu‖∞ < σ for |γ | < m.

Proof. We can assume that f �= 0. Then the function

ϕ(p) = |U |1/p‖f ‖−1
p , p ∈ [1, ∞),

is continuous and ϕ(p) → ‖f ‖−1∞ as p → ∞, so ϕ is bounded and hence

0 < A := sup
1≤p<∞

|U |1/p‖f ‖−1
p < ∞.

Let η0 = ‖f ‖∞ and ηi = 2−(m+1)iA−1, i = 1, 2, . . . . Then
∞∑
i=1

2miηi = A−1.

Let V ⊂⊂ U be open with |U\V | < ε/2. Let f1 = f |V . Applying Lemma 2.1,
we select a compact subset K1 of V and u1 ∈Cm

c (V ) such that

|V \K1| < 2−2ε,

|Dmu1(x) − f1(x)| < η1 for x ∈K1,

‖Dmu1‖p ≤ C(m, N)(ε/|U |)1/p−m‖f1‖p,

‖Dγu1‖∞ < 2−1σ for |γ | < m.
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We will recursively construct sequences fn, Kn ⊂ U compact, and un ∈Cm
c (V )

such that

(I) |V \Kn| < 2−(n+1)ε,
(II) |Dmun(x) − fn(x)| < ηn for each x ∈Kn,

(III) ‖Dmun‖p ≤ C(m, N)(2−nε/|U |)1/p−m‖fn‖p, and
(IV) ‖Dγun‖∞ < 2−nσ for |γ | < m.

Assume that fn−1, Kn−1, and un−1 have been selected to satisfy (I)–(IV). Define
a function f̃n by

f̃n(x) = fn−1(x) − Dmun−1(x), x ∈
n−1⋂
i=1

Ki.

Applying the Teizte extension theorem to f̃n yields a continuous function fn on U,
which by (II) satisfies

‖fn‖∞ ≤ ηn−1.

By Lemma 2.1, there is a compact set Kn and a un ∈Cm
c (V ) satisfying (I)–(IV).

Define K = ⋂∞
i=1 Ki. Clearly K is compact and

|U\K| ≤ |U\V | + |V \K| < ε.

Define u = ∑∞
i=1 ui. To show (iii), for p ∈ [1, ∞) we estimate

∞∑
i=1

‖Dmui‖p ≤ C(m, N)(ε/|U |)1/p−m

∞∑
i=1

(2m−1/p)i‖fi‖p

≤ 2mC(m, N)(ε/|U |)1/p−m‖f ‖p

(
1 + ‖f ‖−1

p

∞∑
i=2

2m(i−1)‖fi‖p

)

≤ 2mC(m, N)(ε/|U |)1/p−m‖f ‖p

(
1 + |U |1/p

‖f ‖p

∞∑
i=2

2m(i−1)‖fi‖∞
)

≤ 2mC(m, N)(ε/|U |)1/p−m‖f ‖p

(
1 + A

∞∑
i=2

(2m)i−1ηi−1

)

≤ 2m+1C(m, N)(ε/|U |)1/p−m‖f ‖p. (2.2)

Now we claim that u∈Cm
c (U). By (IV), for |γ | < m we have

∞∑
i=1

‖Dγui‖∞ < σ,

which implies the uniform convergence of the series in U. Moreover, note that
since |U | < ∞ we can let p → ∞ in (2.2); therefore,

∞∑
i=1

‖Dmui‖∞ ≤ C ′(m, N)(ε/|U |)−m‖f ‖∞.

As we remarked previously, this implies u ∈ Cm(U). Since each ui is supported
in V and since V ⊂⊂ U, we have u∈Cm

c (U). Hence (iii) and (iv) follow.
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We are left with the proof of (ii). Fix x ∈ K. An easy inductive argument
shows that

fn(x) = f(x) −
n−1∑
i=1

Dmui(x).

Hence, for every n,
∣∣∣∣f(x) −

n∑
i=1

Dmui(x)

∣∣∣∣ = |fn(x) − Dmun(x)| < ηn.

Thus

|f(x) − Dmu(x)| ≤
∣∣∣∣f(x) −

n∑
i=1

Dmui(x)

∣∣∣∣ +
∞∑

i=n+1

‖Dmui‖∞

≤ ηn +
∞∑

i=n+1

‖Dmui‖∞ → 0 as n → ∞.

Any Lebesgue measurable function on a set U ⊂ R
n with |U | < ∞ is continuous

and bounded outside a set of small measure. This fact allows us to prove a result
similar to Lemma 2.2 without the restrictions that f be bounded or continuous.
We simply isolate the region where f is badly behaved.

Lemma 2.3. Let f be a Lebesgue measurable function on an open set U ⊂ R
N

with |U | < ∞. Then, for any ε > 0, there exist a compact set K ⊂ U and a con-
tinuous, bounded function f̃ on U such that

(i) |U\K| < ε,
(ii) f = f̃ on K, and

(iii) ‖f̃ ‖p ≤ 2‖f ‖p for all p ∈ [1, ∞].

Proof. Fix ε > 0. Suppose first that f is essentially unbounded. Then there exists
an R > 0 such that

0 < |{|f | > R}| < ε/2.

Let K ⊂ {|f | ≤ R} be a compact set such that f |K is continuous and

|{|f | ≤ R}\K| < |{|f | > R}| < ε/2.

Let f̃ be the Tietze extension of f |K. Clearly ‖f̃ ‖∞ ≤ R. We have

U\K ⊂ ({|f | ≤ R}\K) ∪ {|f | > R}.
Hence |U\K| < ε. Also f̃ = f on K. We are left with the estimate for the Lp

norm: ∫
U

|f̃ |p ≤
∫
K

|f |p +
∫

{|f |≤R}\K
Rp +

∫
{|f |>R}

Rp

≤
∫
K

|f |p + 2
∫

{|f |>R}
Rp ≤ 2

∫
U

|f |p.
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Now suppose that f is essentially bounded—say, ‖f ‖∞ = M > 0. If
|{|f | = M}| = 0, then the proof follows from the previous argument because
we can find 0 < R < M with

0 < |{|f | > R}| < ε/2.

Thus we may suppose that |{|f | = M}| > 0. Let K ⊂ U be compact such that
f |K is continuous and

|U\K| < min{ε, |{|f | = M}|}.
Let f̃ be the Tietze extension of f |K. Clearly ‖f̃ ‖∞ ≤ M.

As before, we estimate the Lp norm:∫
U

|f̃ |p ≤
∫
K

|f |p +
∫
U\K

Mp

≤
∫
K

|f |p +
∫

{|f |=M}
Mp

=
∫
K

|f |p +
∫

{|f |=M}
|f |p ≤ 2

∫
U

|f |p.

As a consequence we have the following immediate result.

Theorem 2.4. Fix m ∈ N and let U ⊂ R
n be open with |U | < ∞. Let f =

(f α)|α|=m be Borel. Then for any ε, σ > 0 there is a function u ∈ Cm
c (U) and a

compact set K ⊂ U such that, for each p ∈ [1, ∞], the following hold :

(i) |U\K| < ε;
(ii) Dmu(x) = f(x) for each x ∈K;

(iii) ‖Dmu‖p ≤ C(m, N)(ε/|U |)1/p−m‖f ‖p;
(iv) ‖Dγu‖∞ < σ for |γ | < m.

To prove Theorem 2.4 we simply observe that, by Lemma 2.3, we can replace f

with f̃ (which is bounded and continuous) and then apply Lemma 2.2, noting that
f̃ = f on a large compact set and that ‖f̃ ‖p ≤ 2‖f ‖p.

3. The Luzin Theorem for Higher-Order Derivatives

Now we come to the main result. We no longer require that the open set U have
finite measure.

Theorem 3.1. Let U be open in R
n and let f = (f α)|α|=m be a Lebesgue mea-

surable function defined on U. Then, for any σ > 0, there is a u∈Cm−1(Rn) that
is m-times differentiable almost everywhere and such that

Dmu(x) = f(x) for a.e. x ∈U,

‖Dγu‖∞ ≤ σ for each |γ | < m.

Proof. Let U1 = U ∩ B(0, 1). We claim that there exist a compact set K1 ⊂ U1

and u1 ∈Cm
c (U1) such that
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Dmu1(x) = f(x) for x ∈K1,

|U1\K1| < 2−1,

|Dγu1(x)| < 2−1σ min{1, dist2(x, Uc
1 )}, x ∈ R

N, |γ | < m. (3.1)

Indeed, let V1 ⊂⊂ U1 with |U1\V1| < 1/4. According to Theorem 2.4, for any
η > 0 there exist a compact set K1 ⊂ V1 and u1 ∈Cm

c (V1) such that

|V1\K1| < 1/4 (and hence |U1\K1| < 1/2),

Dmu1f(x) = f(x) for x ∈K1,

|Dγu1(x)| < η, x ∈ R
N, |γ | < m. (3.2)

Since dist(V̄1, U1) > 0, if we take η small enough then (3.2) implies (3.1).
Next we construct a sequence of compact sets Kn and functions un by induc-

tion. Suppose that K1, . . . , Kn−1 and u1, . . . , un−1 have been defined. Let Un =
U ∩ B(0, n)\(K1 ∪ · · · ∪ Kn−1). Using a similar argument as before, we may find
a compact set Kn ⊂ Un and a un ∈Cm

c (Un) such that

Dmun(x) = f(x) −
n−1∑
i=1

Dmui(x) for x ∈Kn, (3.3)

|Un\Kn| < 2−n,

|Dγun(x)| < 2−n min{1, dist2(x, Uc
n )}, x ∈ R

N, |γ | < m.

Now let C = ⋃∞
n=1 Kn. It is easy to see that |U\C| = 0. We will show that

u =
∞∑
n=1

un

satisfies the claim of the theorem.
First, note that clearly supp(u) ⊂ Ū. Since for |γ | < m we have

∞∑
n=1

‖Dγun‖∞ < σ,

it follows that u∈Cm−1(Rn) and

‖Dγu‖∞ ≤ σ for |γ | < m.

It remains to show that, for x ∈C, u is m-times differentiable at x and Dmu(x) =
f(x).

Let x ∈C. Then x ∈Kn for some n. Observe that (3.3) implies that
n∑

j=1

Dmuj(x) = f(x).

Thus it remains to show that the function∑
j>n

uj (3.4)
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is m-times differentiable at x and that the mth derivative at x is 0. The func-
tion (3.4) is clearly of class Cm−1; hence it suffices to show that, for |γ | = m −1,

Dg(x) := D

(∑
j>n

Dγuj

)
(x) = 0.

Since the functions Dγuj are supported in Uj and since x /∈ Uj for j > n,
we have

g(x) =
∑
j>n

Dγuj(x) = 0.

Let h∈ R
N. If x + h /∈Uj , then |Dγuj(x + h)| = 0. On the other hand, if x + h∈

Uj then, since x /∈Uj for j > n,

|Dγuj(x + h)| < 2−jσ min{1, dist2(x + h, Uc
j )} ≤ 2−jσ|h|2.

Therefore,

|g(x + h) − g(x)| = |g(x + h)|
≤

∑
j>n

|Dγuj(x + h)|

≤ σ|h|2
∑
j>n

2−j < σ|h|2.

Hence Dg(x) = 0, which completes the proof.
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