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Excess Porteous, Coherent Porteous,
and the Hyperelliptic Locus in M3

Thomas Bleier

1. Introduction

In [HM, p. 162] the authors consider a family π : X → B of smooth curves of
genus 3, not all of which are hyperelliptic, and a map σ : E → F of vector bun-
dles (of ranks 3 and 2, respectively) on X. They show that this map fails to be
surjective exactly at the hyperelliptic Weierstrass points of hyperelliptic fibers of
π. They then use the Thom–Porteous formula for vector bundles to determine an
expression for the class of

D1(σ) = {x ∈X | rank(σx) ≤ 1}
in the Chow group of X. The authors then use this result to obtain an expression
in Picfun(M3) (the group of divisor classes on the moduli stack) for the class of
the locus of hyperelliptic curves.

One would like to extend this technique to determine an expression in Picfun(M3)

for the closure of the locus of hyperelliptic curves. Unfortunately, if one supposes
that π : X → B is a family of stable curves of genus 3, then F will fail to be lo-
cally free at singular points of singular fibers of π (see [HM, Sec. 3.F] for details).
Harris and Morrison are able to compute this class in Picfun(M3) using the method
of test curves, but one would still like to extend the original technique to compute
the class.

Diaz [D], by constructing a certain blow-up g : X ′ → X as well as a map
σ ′ : E ′ → F ′ of vector bundles on X ′ that is related to the original map σ, is able
to define the degeneracy class for a map of coherent sheaves. The author then ap-
plies this process in order to determine an expression in Picfun(M3) for the class
of the closure of the hyperelliptic locus in M3 \�1. Diaz points out that, at singu-
lar curves corresponding to general points of �1, not only will F fail to be locally
free at the singular points but also the map σ will have rank ≤ 1 at all points of the
elliptic component of the fiber. The author suggests that one could combine the
process for determining the degeneracy class of a map of coherent sheaves with
the excess Porteous formula found in [F, Exm. 14.4.7] to compute an expression
in Picfun(M3) for the class of the closure of the hyperelliptic locus in M3. We will
do so in this paper.

To this end, we consider a familyπ : X → B of smooth, nonhyperelliptic curves
degenerating to a general element of �1 and also consider the map σ ′ : E ′ → F ′
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mentioned previously. After determining the scheme structure of D1(σ
′) in Sec-

tions 2 and 3, we then, in Section 4, use the excess Porteous formula to determine
the number of times the standard Thom–Porteous formula counts a general ele-
ment of �1. Finally, in Section 5 we combine the result of Section 4 with that of
[D] to determine an expression in Picfun(M3) for the class of the closure of the
hyperelliptic locus in M3.

The author would like to thank Steven P. Diaz for introducing him to this prob-
lem and for the help he offered along the way. The author would also like to thank
the referee for many helpful suggestions.

2. The Rank of σ ′

Let π : X → B be a 1-parameter family of smooth, nonhyperelliptic curves of
genus 3 degenerating to a generic element of �1. In other words, Xb is a smooth,
nonhyperelliptic curve of genus 3 for b ∈ B \ {b0}, and Xb0 is the union of a
smooth elliptic curve E and a smooth curve C of genus 2 meeting transversely at
one point P that is not a hyperelliptic Weierstrass point of C.

Let ωX/B be the relative dualizing sheaf, X2 = X ×B X, p1 and p2 the projec-
tion maps, and � ⊂ X2 the diagonal with ideal sheaf I�. Let OX2 → OX2 /I 2

� be
the natural map. Tensoring both sides with p∗

2ωX/B and pushing down via p1, we
obtain

σ : (p1)∗(p∗
2ωX/B) → (p1)∗(p∗

2ωX/B ⊗ OX2 /I 2
�).

Let E be the domain and F the target. Whereas E is a vector bundle on all of
X, F fails to be locally free at P [HM, p. 169].

At a point Q on a fiber Xb, EQ is the space of sections H 0(Xb, ωb), where ωb

is the dualizing sheaf of Xb. If Q is a smooth point on Xb, then FQ is the space
of differentials in a neighborhood of Q in Xb modulo those vanishing to order 2
at Q. Thus, at a smooth point Q of a fiber Xb, σQ sends each global holomorphic
differential on Xb to its truncated Taylor series at Q [HM, p. 163].

The following three propositions give the rank of σQ when Q is a smooth point
of a fiber of π.

Proposition 2.1. Let Q be a closed point of Xb for b ∈ B \ {b0}. Then σQ is
surjective.

Proof. Let ωb be the canonical bundle on Xb. Since ωb is base point free, the
foregoing description of σ shows that σQ will fail to be surjective if and only if
h0(ωb(−Q)) = h0(ωb(−2Q))—that is, iff Q is a hyperelliptic Weierstrass point.
But by assumption, Xb is not hyperelliptic.

Proposition 2.2. Suppose Q is a closed point of E − P. Then rank(σQ) = 1.

Proof. Let ωb0 , ω1, and ω2 be the respective dualizing sheaves on Xb0 , E, and
C. Again we see that σQ fails to be surjective iff h0(ωb0(−2Q)) = h0(ωb0(−Q)).

Moreover, since ωb0 is base point free away from P, the rank of σQ is always pos-
itive. Let Pi be the point on the curve of genus i lying over P in the normalization
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X̃b0 , i = 1, 2. Using the description of the dualizing sheaf of Xb0 given in [HM,
p. 82], we have

H 0(ωb0(−Q)) = H 0(ω1(−Q + P1)) ⊕ H 0(ω2(P2))

and
H 0(ωb0(−2Q)) = H 0(ω1(−2Q + P1)) ⊕ H 0(ω2(P2)).

Since sections of ω1(P1) are simply constants, if a section vanishes at Q then it
vanishes to infinite order. Thus H 0(ω1(−Q + P1)) = H 0(ω1(−2Q + P1)).

Proposition 2.3. Suppose Q is a closed point of C − P. Then rank(σQ) = 1 if
and only if Q is a hyperelliptic Weierstrass point of C; otherwise, σQ is surjective.

Proof. With notation as before, we again see that, since ωb0 is base point free
away from P, it follows that σQ will always have positive rank and that σQ will
fail to be surjective iff h0(ωb0(−2Q)) = h0(ωb0(−Q)). We have

H 0(ωb0(−2Q)) = H 0(ω1(P1)) ⊕ H 0(ω2(−2Q + P2))

and
H 0(ωb0(−Q)) = H 0(ω1(P1)) ⊕ H 0(ω2(−Q + P2)).

Thus σQ will fail to be surjective if and only if

h0(ω2(−2Q + P2)) = h0(ω2(−Q + P2)).

Since H 0(ω2(P2)) = H 0(ω2), the preceding equality holds if and only if

h0(ω2(−2Q)) = h0(ω2(−Q));
that is, it holds iff Q is a hyperelliptic Weierstrass point of C.

We would now like to determine the behavior of σ at P. Because F fails to be
locally free at P, we apply the process of [D] as follows.

The proof of [D, Lemma 2] trivially generalizes to show that the smallest
nonzero Fitting ideal of F is the maximal ideal of P, which shows that F is
not locally free at P. Let g : X ′ → X be the blow-up of X at P. By a slight abuse
of notation we will continue to use E and C to represent the proper transforms in
X ′ of the elliptic and genus-2 curves, respectively. We let E0 be the exceptional
divisor of the blow-up and Pi the point where the curve of genus i meets E0, i =
1, 2. As described in [D], we pull back E , F, and σ and then take the double dual.
Let E ′ = (g∗E )∗∗, F ′ = (g∗F )∗∗, and σ ′ = (g∗σ)∗∗. By [D, Thm. 1], σ ′ is a map
of vector bundles.

Since g is an isomorphism away from P, we see that rank(σ ′
Q) = 1 for Q a point

of E − P1 or a hyperelliptic Weierstrass point of C and that rank(σ ′
Q) = 2 for all

other points of X ′ − E0. The following proposition describes the behavior of σ ′
along E0.

Proposition 2.4. If Q is a closed point of E0, then rank(σ ′
Q) = 1.

Proof. Choose local coordinates x and y on X centered at P so that the map π is
given locally by xy = t, where t is a local coordinate on B centered at b0. At P,



362 Thomas Bleier

F is simply the linearizations of differentials in a neighborhood of P. Locally,
then, F is generated by 1, dx, and dy; however, since these are relative differen-
tials, we have the nontrivial relation dt = 0. That is,

d(xy) = y dx + x dy = 0.

Thus we have the local presentation

F1
[0 y x]

�� F0
�� FP

�� 0

for F0 the free module generated by {1, dx, dy}. We can define a map EP → F0

by sending a differential to its linearization. Moreover, it is clear that σP factors
through this map. Thus we have the following commutative diagram:

EP

��

σP

����������

F1
[0 y x]

�� F0
�� FP

�� 0.

Let g : X ′ → X be the blow-up of X at P. Pulling back this diagram gives

g∗EP

��

g∗σP

�����������

g∗F1
[0 xy x]

�� g∗F0
�� g∗FP

�� 0

on one patch, and taking the dual then yields

(g∗EP)
∗

0 �� (g∗FP)
∗ ��

(g∗σP )∗
������������
(g∗F0)

∗

[
0
xy

x

]
��

��

(g∗F1)
∗.

But since x is a nonzero divisor on (g∗F1)
∗, the bottom row of the following dia-

gram is exact:

(g∗EP)
∗

0 �� (g∗FP)
∗ ��

(g∗σP )∗
������������
(g∗F0)

∗

[
0
y

1

]
��

��

(g∗F1)
∗ �� 0.

Again taking the dual gives

(g∗EP)
∗∗

��

(g∗σP )∗∗

�������������

0 �� (g∗F1)
∗∗ [0 y 1]

�� (g∗F0)
∗∗ �� (g∗FP)

∗∗ �� 0,

where the bottom row is exact.
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Thus we see that (g∗FP)
∗∗ is generated by {1, dx, dy} with the relation

y dx + dy = 0. Furthermore, the map (g∗σP)∗∗ is given by sending a differ-
ential to its linearization and then substituting the relation dy = −y dx. Similarly,
on the other patch of this blow-up, we have the relation dx + x dy = 0 and the
map is given analogously.

Choose {α1, α2, α3} as a basis for H 0(ωb0) (with ωb0 as before), where α1 is a
nonzero constant function on E, α2 is a regular differential on C that does not van-
ish at P2, and α3 is a regular differential on C vanishing to order 1 at P2. After all
the α are multiplied by suitable constants, the map becomes

σ ′(α1) = 0(1) + 1dx + 0 dy,

σ ′(α2) = 0(1) + 0 dx + 1dy,

σ ′(α3) = 0(1) + 0 dx + 0 dy.

In summary, we have proved the following result.

Theorem 2.5. The map σ ′ : E ′ → F ′ fails to be surjective at every point of E,
E0, and at the hyperelliptic Weierstrass points of C. Moreover, σ ′ has rank 1 at
such points but has rank 2 at all other points of X ′.

3. The Scheme Structure of D1(σ
′)

Definition 3.1. Let σ : E → F be a homomorphism of vector bundles of ranks
e and f on a variety X, and let k ≤ min(e, f ). Then

Dk(σ) := {x ∈X | rank(σx) ≤ k}.
In the present context, σ ′ : E ′ → F ′ is a map of vector bundles of ranks 3 and 2
on the variety X ′. By (2.5) we see that, as a set,

D1(σ
′) = E ∪ E0 ∪

( 6⋃
i=1

Qi

)
,

where Q1, . . . , Q6 are the hyperelliptic Weierstrass points of C.

If Spec A is an open set over which E ′ and F ′ are both trivial then, over this
open set, σ ′ is given by a 2×3 matrix with coefficients in A. Hence locally D1(σ

′)
is given by the ideal I generated by the 2 × 2 minor determinants of this matrix.
These local pictures patch together to give an ideal sheaf I. Thus D1(σ

′) has a nat-
ural scheme structure given by I. As a first step toward determining this structure,
we prove the following statement.

Proposition 3.2. D1(σ
′) is reduced at the hyperelliptic Weierstrass points of C.

Proof. Let π : X → B be a1-parameter family of smooth, nonhyperelliptic curves
of genus 3 degenerating to a general member of �1, where both X and B are
smooth. Let Xb0 = E ∪ C denote the special fiber of this family and let ωX/B be
the relative dualizing sheaf, with ωX/B(E) := ωX/B ⊗ OX(E). On smooth fibers,
ωX/B(E) restricts to the canonical bundle; however, on the special fiber we see
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that ωX/B(E) restricts to ω2(2P) on C and to the trivial bundle on E, where ω2 is
the canonical bundle on C and P = E ∩C. Since Xb0 is a general member of �1,
we can assume that P is not a hyperelliptic Weierstrass point of C. Thus ωX/B(E)

determines a map
ϕ : X → P

2 × B

that embeds each of the smooth fibers as a planar quartic and maps the special
fiber to a cuspidal quartic whose normalization is C. The transform E is collapsed
to the cusp.

Since the proposition is clearly local on B, we can assume B = Spec A for some
1-dimensional ring A; in addition, we can shrink B to a smaller affine open set if
necessary and will do so without comment. Let t be a local parameter at b ∈B.

Then ϕ maps X to P
2
A , and we can choose homogeneous coordinates so that the

image of X has the form

Y 2Z2 + Z
∑

i+j=3

αi,jX
iY j +

∑
i+j=4

βi,jX
iY j + tG(X, Y, Z) = 0,

where G is a homogenous polynomial of degree 4 in A[X, Y, Z].
Since we are interested in the behavior of σ ′ at the hyperelliptic Weierstrass

points of C and since ϕ is an embedding away from E, it is enough to determine
the behavior of σ ′ on ϕ(X). Moreover, it is clear by the construction of σ ′ that
D1(σ

′) will be reduced at Q1, . . . , Q6 if and only if D1(σ) is. Thus we will con-
sider σ : E → F on ϕ(X).

Let sX, sY , and sZ be as in Lemma 3.4 (to follow). In order to give the map σ

in local coordinates at a smooth point x of a fiber of π, we simply determine lo-
cal equations for sX, sY , and sZ in a neighborhood of x and then consider their
linearizations. Presently we are interested in hyperelliptic Weierstrass points of
C. Since Xb0 is a general point of �1, we can assume that P is not such a point.
Because the family remains unchanged away from E under ϕ, we can make our
computations on ϕ(X).

The hyperelliptic Weierstrass points of C can be determined by looking at lines
through the cusp of ϕ(C). A point of ϕ(C) whose tangent line passes through the
cusp is a hyperelliptic Weierstrass point. Since the line given by Y = 0 intersects
the cusp with multiplicity 3, we see that no hyperelliptic Weierstrass points lie
along this line. Hence it is enough to consider the affine open set of ϕ(X) given
by Y �= 0. The total space of our family on this open set is given in affine coordi-
nates by

z2 + z
∑

i+j=3

αi,j x
i +

∑
i+j=4

βi,j x
i + tG(x,1, z) = 0.

On this open set, the local equations for sX, sY , and sZ are x, 1, and zt, respectively.
The linearizations of these sections at a point (x0, z0, t0) are

x = x0 + dx,

1 = 1,

zt = z0 t0 + t0 dz + z0 dt.
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Since the family is parameterized by t, we must have dt = 0. But then we
also have

0 = d

(
z2 + z

∑
i+j=3

αi,j x
i +

∑
i+j=4

βi,j x
i + tG(x,1, z)

)

=
(

2z +
∑

i+j=3

αi,j x
i + t

∂

∂z
G(x,1, z)

)
dz

+
(
z

∑
i+j=3

iαi,j x
i−1 +

∑
i+j=4

iβi,j x
i−1 + t

∂

∂x
G(x,1, z)

)
dx.

Suppose (x0, z0, 0) is a point on ϕ(C) such that

z0

∑
i+j=3

iαi,j x
i−1
0 +

∑
i+j=4

iβi,j x
i−1
0 = 0.

Then the tangent line toϕ(C) at this point is given by z−z0 = 0 or, in homogeneous
coordinates, Z−z0Y = 0. But this line does not pass through the cusp of ϕ(C), so
(x0, z0, 0) cannot be a hyperelliptic Weierstrass point. Thus it suffices to consider
the open set given by z

∑
i+j=3 iαi,j x

i−1 + ∑
i+j=4 iβi,j x

i−1 + t ∂
∂z
G(x,1, z) �=

0, in which case we have

dx = −(
2z + ∑

i+j=3 αi,j x
i + t ∂

∂z
G(x,1, z)

)
z
∑

i+j=3 iαi,j x
i−1 + ∑

i+j=4 iβi,j x
i−1 + t ∂

∂x
G(x,1, z)

dz.

The linearizations of our sections at a point (x0, z0, t0) of the open set being con-
sidered are then

x = x0 + −(
2z0 + ∑

i+j=3 αi,j x
i
0 + t0

∂
∂z
G(x0,1, z0)

)
z0

∑
i+j=3 iαi,j x

i−1
0 + ∑

i+j=4 iβi,j x
i−1
0 + t0

∂
∂x

G(x0,1, z0)
dz,

1 = 1,

zt = z0 t0 + t0 dz.

We have thus shown that, in local coordinates, at a point of this open set the
map σ : E → F is given by the matrix


x 1 zt

−(
2z + ∑

i+j=3 αi,j x
i + t ∂

∂z
G(x,1, z)

)
z
∑

i+j=3 iαi,j x
i−1 + ∑

i+j=4 iβi,j x
i−1 + t ∂

∂x
G(x,1, z)

0 t


.

The ideal generated by the 2 × 2 minors of this matrix is

I =
(
t, 2z +

∑
i+j=3

αi,j x
i

)

⊂ A[x, z](
z2 + z

∑
i+j=3 αi,j x

i + ∑
i+j=4 βi,j x

i + tG(x,1, z)
)

or, equivalently,
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I =
(

2z +
∑

i+j=3

αi,j x
i, z2 + z

∑
i+j=3

αi,j x
i +

∑
i+j=4

βi,j x
i

)
⊂ C[x, z].

Substituting z = − 1
2

∑
i+j=3 αi,j x

i into the second equation gives

I =
(

2z +
∑

i+j=3

αi,j x
i, h(x)

)
⊂ C[x, z],

where h(x) is a polynomial of degree 6. Since there are six hyperelliptic Weier-
strass points on C, we see that h(x) must have distinct roots and so I is the ideal
of these six points. This shows that D1(σ

′) is reduced at these points.

The following construction was used implicitly in the preceding proof.
Consider the divisors {X = 0}, {Y = 0}, and {Z = 0} onϕ(X). Since the canon-

ical bundle on a smooth planar quartic is O(1), these will restrict to the canonical
divisor on each smooth fiber; moreover, the associated sections will give a basis
for the space of sections of the canonical bundle on a smooth fiber.

We consider the pull-backs of these divisors to X. Since {Z = 0} does not pass
through the cusp of the central fiber, it pulls back isomorphically to a divisor that
we will call DZ. Also, ϕ∗{X = 0} is supported on E and on an irreducible curve
that we call DX; with this notation we have ϕ∗{X = 0} = DX + 2E. Similarly,
ϕ∗{Y = 0} is supported on E and on an irreducible curve that we call DY ; we then
have ϕ∗ = DY + 3E. Clearly, these pull-backs still restrict to the canonical bun-
dle on smooth fibers of π. Yet because the map on the special fiber to P

2 is given
by KC + 2P, we see that these pull-backs must restrict to KC + 2P on C and are
linearly equivalent to 0 on E.

Since E.(E + C) ∼ 0, C.(E + C) ∼ 0, and E.C ∼ P, it follows that E.E ∼
−P and C.C ∼ −P. Thus we have the following lemma.

Lemma 3.3. The divisors DX + E, DY + 2E, and DZ + C restrict to (divisor
classes linearly equivalent to) the canonical divisor on smooth fibers of π, to P

on E, and to KC + P on C, respectively.

By the description of the dualizing sheaf given in [HM, p. 82], the invertible sheaf
associated to such divisors will be ωX/B. The hope is that the global sections as-
sociated to these divisors will restrict to the desired basis on each fiber. Our next
lemma, which was used in the proof of Proposition 3.2, states this claim formally.

Lemma 3.4. Let sX, sY , and sZ be the sections of ωX/B associated to DX + E,
DY + 2E, and DZ +C, respectively. Then, on each fiber of π, the sections sX, sY ,
and sZ restrict to a basis for the space of global sections of the dualizing sheaf.

Proof. Since X, Y, and Z give a basis for O(1) on P
2, the statement is clear for

smooth fibers of π. We therefore consider the restrictions of sX, sY , and sZ to
Xb0 . Because these sections have different vanishing orders along E, they are lin-
early independent. Moreover, the space of global sections of the dualizing sheaf
of C ∪ E has rank 3. This completes the proof.



Excess Porteous, Coherent Porteous, and the Hyperelliptic Locus in M3 367

To determine the remaining scheme structure of D1(σ
′), we explicitly construct

a family of smooth nonhyperelliptic curves of genus 3 degenerating to a general
member of �1. Using the proof of Proposition 3.2 as a guide, we begin with a
family of smooth planar quartics over (an open subset of ) A

1
t degenerating to a

cuspidal quartic. We then explicitly compute the stable reduction of such a family.
To begin, let

F(X, Y, Z) = Y 2Z2 + Z
∑

i+j=3

αi,jX
iY j +

∑
i+j=4

βi,jX
iY j,

where the αi,j and βi,j are such that F(X, Y, Z) = 0 is nonsingular away from
[0, 0,1]. Observe that, if the coordinates are chosen properly, then any cuspidal
quartic can be given by such an equation. Moreover, we will assume that α3,0 =
−1. Let Ct be the family of curves parameterized by t ∈ C and given by

F(X, Y, Z) − at 2XZ3 − bt 3Z 4 = 0,

where a, b ∈ C are such that a, b �= 0 and 4a3 + 27b2 �= 0. The special fiber C0

is the cuspidal quartic given by F(X, Y, Z) = 0.
If we consider the specific planar curve given by

Y 2Z2 − X3Z + Y 4 − XZ3 − Z 4 = 0,

then one easily checks that this curve is nonsingular. For general choices of αi,j ,
βi,j , a, b, and t, such a curve is nonsingular; thus, for general choices of αi,j , βi,j ,
a, and b, all but finitely many fibers of the family Ct will be smooth. So we will
assume that we have chosen αi,j , βi,j , a, and b in such a manner. By restricting
t to an open neighborhood of t = 0, we can also assume that all fibers other than
C0 are smooth.

The astute reader may well wonder why we have chosen to consider such a gen-
eral family rather than a simple pencil, like the one considered in [HM, pp. 122–
128]. The answer is a practical one. It will turn out that D1(σ

′) contains nonre-
duced points on a general member of �1. Since the member of �1 resulting from
the stable reduction of a pencil of smooth quartics degenerating to a cuspidal quar-
tic will always have an elliptic tail with j -invariant equal to 0, it is not enough to
show that D1(σ

′) contains these nonreduced points on such a family.
The elliptic curve that will appear in the stable limit will lie over the cusp of

F(X, Y, Z) = 0. As a result, for our purposes it will suffice to consider the family
f(x, y) − at 2x − bt 3 = 0, where f(x, y) = F(x, y, 1).

By [Ha, III.10.1(c)], the total space of our family is smooth away from the sin-
gular point of C0. However, the total space of this family does have a singularity
at the origin. We will simultaneously resolve the singularity in the total space and
the cusp in the central fiber with four successive blow-ups.

First Blow-up. First, we blow up along the linear subspace x = y = 0 in A
3
(x,y,t)

and take the proper transform of our family. This gives us two patches to consider
as follows.

On the first patch (which we will call (P1)), we make the substitution y =
xy. The exceptional divisor (by which we will always mean the exceptional divi-
sor in the ambient affine space restricted to the total space of our family), which
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we call E1, is then given by x = 0, and the proper transform of Ct is given by
f(x, xy) − at 2x − bt 3 = 0. (We will continue to call this Ct .)

On the second patch (P2), we make the substitution x = xy. Here E1 is given
by y = 0 and the proper transform of Ct is given by f(xy, y)− at 2xy − bt 3 = 0.

On both patches, the special fiber consists of the union of C (the normalization
of f(x, y) = 0) and E1, which has multiplicity 2. On the first patch, these two
components are tangent at x = y = 0. (They are disjoint on the second.) Both
patches contain a codimension-1 singularity along E1.

Second Blow-up. Next, we blow up (P1) along x = y = t = 0. This action
yields three patches to consider.

On the first patch (P1-1), we make the substitutions y = xy and t = xt. The ex-
ceptional divisor E2 is given by x = 0, and the proper transform of Ct is given by
1
x3 f(x, x 2y) − at 2 − bt 3 = 0. The special fiber is given by xt = 0 and consists
of the union of C and E2, which do not meet on this patch. The total space of the
family on this patch is nonsingular.

On the second patch (P1-2), we make the substitutions x = xy and t =
yt. Here E2 is given by y = 0, and the proper transform of Ct is given by
1
y3 f(xy, xy2)− at 2x − bt 3 = 0. The special fiber is given by yt = 0 and consists
of the union of C, E1 (which appears with multiplicity 2), and E2. The total space
of the family is still singular along E1.

On the third patch (P1-3), we make the substitutions x = xt and y = yt; now
E2 is given by t = 0, and the proper transform of Ct is given by 1

t 3 f(xt, xyt 2) −
ax − b = 0. Since x �= 0 on this patch, we see that it is contained in (P1-1); thus
we can ignore it.

Note that E2 is the union of three rational curves (which are distinct by the re-
strictions placed on a, b) meeting at one point (contained in (P1-2)).

Third Blow-up. Next, in an effort to obtain a special fiber that is supported on
a nodal curve, we will blow up the point in (P1-2) where E1, E2, and C all meet.
Again we have three patches to consider.

On the first patch (P1-2-1), we make the substitutions y = xy and t = xt. The
exceptional divisor E3 is given by x = 0, and the proper transform of Ct is given
by 1

x6y3 f(x 2y, x3y2)− at 2 − bt 3 = 0. The special fiber is given by x 2yt = 0 and

consists of the union of C, E2 (which is now the disjoint union of three rational
curves that we call E ′

2, E ′′
2 , and E ′′′

2 ), and E3 (which appears with multiplicity 2).
The total space of the family is nonsingular on this patch.

On the second patch (P1-2-2), we make the substitutions x = xy and t =
yt. Here E3 is given by y = 0, and the proper transform of Ct is given by
1
y6 f(xy2, xy3) − at 2x − bt 3 = 0. The special fiber is given by y2 t = 0 and con-
sists of the union of C, E1 (which appears with multiplicity 2), and E3 (which also
appears with multiplicity 2). The total space of the family is still singular along E1.

On the third patch (P1-2-3), we make the substitutions x = xt and y =
yt; now E3 is given by t = 0, and the proper transform of Ct is given by

1
y3t 6 f(xyt 2, xy2 t 3) − ax − b = 0. Since x �= 0 on this patch, it is contained

in (P1-2-1); hence we can ignore it.
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Fourth Blow-up. Finally, we resolve the singularity in the total space by blow-
ing up along E1. Points of E1 occur only in (P2) and (P1-2-2), so we need only
blow up these two patches. We blow up (P2) first, which we do by blowing up
A

3 along y = t = 0 and then taking the proper transform of Ct . There are two
patches to consider as follows.

On the first patch (P2-1), we make the substitution y = yt. The exceptional di-
visorE4 is given by t = 0 and the proper transform ofCt is given by 1

t 2 f(xyt, yt)−
atxy − bt = 0. The special fiber is given by t = 0 and consists only of E4 (which
appears with multiplicity 2). The total space is nonsingular on this patch.

On the second patch (P2-2), we make the substitution t = yt. Here E4 is given
by y = 0 and the proper transform of Ct is given by 1

y2 f(xy, y)−at 2xy −bt 3y =
0. The special fiber is given by yt = 0 and consists only of C. Again, the total
space is nonsingular.

Fifth Blow-up. Next we blow up (P1-2-2). Again this is done by blowing up A
3

along x = t = 0 and taking the proper transform of Ct . There are two patches to
consider.

On the first patch (P1-2-2-1), we make the substitution t = xt. The exceptional
divisor E4 is given by x = 0, which does not meet this patch, and the proper trans-
form of Ct is given by 1

x 2y6 f(xy2, xy3) − at 2x − bt 3x = 0. The special fiber is
given by xy2 t = 0 and consists of the union of C and E3 (which appears with
multiplicity 2). The total space of the family is nonsingular on this patch.

On the second patch (P1-2-2-2), we make the substitution x = xt; now E4 is
given by t = 0, and the proper transform of Ct is given by 1

y6t 2 f(xy2 t, xy3t) −
atx − bt = 0. The special fiber is given by y2 t = 0 and consists of the union
of E4 (which appears with multiplicity 2) and E3 (which also appears with multi-
plicity 2). The total space of the family is nonsingular.

The total space of our family is now nonsingular; the special fiber is supported on
a nodal curve, but it contains components of multiplicity 2 that must be dealt with.
A schematic drawing of the special fiber is given below.

E3 (2)

C

E ′
2

E ′′
2

E ′′′
2

E4 (2)

We deal with the components of multiplicity 2 by making a base change of
order 2 branched over t = 0. This base change will introduce new singularities
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into the total space, so we package it with the normalization of the resulting surface.
The effect of this will be to take the branched cover of the total space branched
along the union of C, E ′

2, E ′′
2, and E ′′′

2 (see [HM, pp. 124–125]). Since this branch
divisor is smooth, the resulting surface will be smooth as well. Since E3 meets the
branch locus in four points, its inverse image will be a double cover of E3

∼= P
1

branched at four points—that is, a single elliptic curve that we will call E. On the
other hand, E4 is disjoint from the branch locus and so its inverse image will be
an unramified double cover of E4

∼= P
1: two disjoint rational curves that we call

E ′
4 and E ′′

4.

The pull-back of the special fiber to the new family will then be

2C̃ + 2E ′
2 + 2E ′′

2 + 2E ′′′
2 + 2E ′

4 + 2E ′′
4 + 2E.

But the special fiber of the new family is exactly half of this divisor. Thus the spe-
cial fiber is

C̃ + E ′
2 + E ′′

2 + E ′′′
2 + E ′

4 + E ′′
4 + E.

Since E ′
2, E ′′

2, E ′′′
2 , E ′

4, and E ′′
4 are all rational curves with self-intersection −1,

they can be blown down. The special fiber then becomes the union of E and C

meeting transversely at one point, as desired.
For our purposes, we are only interested in points of E. Hence we will explicitly

compute the base change just described only on those patches containing points
of E3—specifically, (P1-2-1), (P1-2-2-1), and (P1-2-2-2). Furthermore, since all
the points of E3 in (P1-2-2-1) are contained in one of the other two open sets, we
do not need to consider (P1-2-2-1). For ease of notation we will rename the open
sets (P1-2-1) and (P1-2-2-2) as U and V, respectively.

Recall that the total space on U is given by 1
x6y3 f(x 2y, x3y2) − at 2 − bt 3 =

0. The special fiber is given by x 2yt = 0 and consists of the union of C̃, E ′
2, E ′′

2,
E ′′′

2 , and E3 (which appears with multiplicity 2).
The total space on V is given by 1

y6t 2 f(xy2 t, xy3t) − atx − bt = 0. The spe-
cial fiber is given by y2 t = 0 and consists of the union of E4 (which appears with
multiplicity 2) and E3 (which also appears with multiplicity 2).

We now explicitly perform the calculations described before on these two
open sets.

After the base change of order 2 on U, the total space of the family is given by{
1

x6y3
f(x 2y, x3y2) − at 2 − bt 3 = 0

}
∩ {u2 − x 2yt = 0} ⊆ A

4
(x,y,t,u),

where the special fiber is given by u = 0. Normalizing by blowing up, we set u =
xv. This gives{

1

x6y3
f(x 2y, x3y2) − at 2 − bt 3 = 0

}
∩ {v2 − yt = 0} ⊆ A

4
(x,y,t,v),

where the special fiber is given by xv = 0. We continue to call this open set U.

On the open subset {t �= 0} ⊂ U we have y = v2/t, so the total space is given by{
t 3

x6v6
f(x 2v2 t−1, x3v4t−2) − at 2 − bt 3 = 0

}
∩ {t �= 0} ⊆ A

3
(x,t,v),
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with the special fiber still given by xv = 0. In this case, x = 0 is a local equa-
tion for E and v = 0 is a local equation for E ′

2 ∪ E ′′
2 ∪ E ′′′

2 . Hence these rational
curves can be blown down using the relation xv �→ x. We thus arrive at{

t 3

x6
f(x 2 t−1, x3vt−2) − at 2 − bt 3 = 0

}
∩ {t �= 0} ⊆ A

3
(x,t,v);

here the special fiber is given by x = 0, which is a local equation for E. We will
call this open set U0.

Let U1 denote the open subset {y �= 0} ⊂ U. On this open set we have t = v2/y,
so the total space is given by{

1

x6
f(x 2y, x3y2) − ayv4 − bv6 = 0

}
∩ {y �= 0} ⊆ A

3
(x,y,v)

with the special fiber once again given by xv = 0. In this case, x = 0 is a local
equation for E and v = 0 is a local equation for C̃. On this open set we can blow
down using the relation xy �→ x. We then arrive at{
y 4 + y3

∑
i+j=3

αi,j x
j + y2

∑
i+j=4

βi,j x
j+2 − ayv4 − bv6 = 0

}
∩ {y �= 0}

⊆ A
3
(x,y,v).

After the base change of order 2 on V, the total space of the family is given by{
1

y6t 2
f(xy2 t, xy3t) − atx − bt = 0

}
∩ {u2 − y2 t = 0} ⊆ A

4
(x,y,t,u),

where the special fiber is given by u = 0. We normalize by setting u = xyv.

This gives{
1

y6t 2
f(xy2 t, xy3t) − atx − bt = 0

}
∩ {x 2v2 − t = 0} ⊆ A

4
(x,y,t,v);

here the special fiber is given by xyv = 0. Clearly this can be simplified to{
1

x6y6v4
f(x3y2v2, x3y3v2) − axv2 − bv2 = 0

}
⊆ A

3
(x,y,v).

On this open set, x = 0 is a local equation for E ′
4 ∪ E ′′

4 and y = 0 is a local equa-
tion for E. We can therefore blow down using the relation xy �→ y. The result is{

1

y6v4
f(xy2v2, y3v2) − axv2 − bv2 = 0

}
⊆ A

3
(x,y,v)

with special fiber given by yv = 0, where y = 0 is a local equation for E.

The question remains as to which elements of �1 can appear in this stable limit.
On the open set U0, the elliptic curve is given by the equation v2 − t −at 3 −bt 4 =
0 in the (t, v)-plane and the double cover of P

1 that appears in the stable reduc-
tion process is given by (t, v) �→ t, where we consider t as an affine coordinate
on P

1. Moreover, U0 contains all but three points of the elliptic curve (i.e., C ∩E,
E ′

4 ∩ E, and E ′′
4 ∩ E), and it is clear where these points map to: C ∩ E maps to 0

and the other two points map to infinity. Thus we see that the map is branched at
the points of P

1 satisfying t + at 3 + bt 4 = 0.
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If we compose this map with the automorphism of P
1 that sends t to 1/t, then

the new map is branched at infinity and at points satisfying t 3 + at + b = 0.
The elliptic curve that appears in the stable limit is consequently isomorphic to
an elliptic curve, in the (x, y)-plane, that is given by y2 = x3 + ax + b. The
j -invariant of such a curve is easily calculated as

j = 1728
4a3

4a3 + 27b2
.

Since every elliptic curve is isomorphic to one of the form y2 = x3 + Ax + B in
the plane, we see that the elliptic curve appearing in our stable limit is a general
elliptic curve.

If C is any smooth curve of genus 2 and Q is a point of C that is not a hyper-
elliptic Weierstrass point, then |K + 2Q| determines a map from C to P

2. This
maps C to a cuspidal quartic that is smooth away from the cusp. Furthermore,
after an automorphism of P

2, we can assume that the cuspidal quartic is given by
F(X, Y, Z) = 0 for some choice of αi,j and βi,j . Thus we see that (i) an open
dense subset of the genus-2 curves can appear in the limit and (ii) the point E ∩C

can be any point of C other than one of the six hyperelliptic Weierstrass points.
This shows that there exists an open dense subset of �1 any points of which can
appear as the stable limit of our family.

We now use this family to prove the following theorem.

Theorem 3.5. With notation as in the proof of Proposition 2.2, let φ : E → P
1

be the double cover of P
1 determined (up to automorphism of P

1) by |2P1|. Let
S1, S2, and S3 be the points of E, other than P1, that are ramified over P

1. Then,
as a scheme, D1(σ

′) is reduced except at S1, S2, S3, and P2, where the ideal lo-
cally defining D1(σ

′) is the product of the maximal ideal at Si, i = 1, 2, 3, and the
ideal defining E (or of the maximal ideal at P2 and the ideal defining E0).

Proof. We use the family π : X → A
1
u constructed before. It is clear that we can

apply Lemmas 3.3 and 3.4 to our situation, where DX, DY , and DZ are simply the
proper transforms of {X = 0}, {Y = 0}, and {Z = 0}. We first find local equa-
tions for sX, sY , and sZ on each of the open sets U0, U1, and V. We have already
identified local equations for E and C in the descriptions of each of these open
sets given previously. Moreover, these open sets are disjoint from DZ and so, on
each patch, a local equation for sZ is the same as a local equation for C. Thus, if
we can determine local equations for DX and DY then we can, in turn, determine
local equations for sX and sY .

A careful schematic drawing of the sequence of blow-ups, base changes, and
blow-downs in the foregoing stable reduction process will reveal that DX inter-
sects the central fiber in those points of E that are the images of E ′

4 and E ′′
4 after

the blow-down. Therefore, a local equation for DX can be found on each patch
by determining a local equation for E ′

4 ∪ E ′′
4 prior to the blow-down. Similarly,

DY intersects the central fiber in those points of E that are the images of E ′
2, E ′′

2,
and E ′′′

2 , and so a local equation for DY can be found on each patch by determin-
ing a local equation for E ′

2 ∪ E ′′
2 ∪ E ′′′

2 prior to the blow-down. As a result, on U0
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we have sX = x, sY = x 2v, and sZ = t; on U1 we have sX = x, sY = x 2y, and
sZ = v; and on V we have sX = yx, sY = y2, and sZ = 1.

Now we can explicitly compute the map at each point of D1(σ
′). Note that all

points of E are contained in U0 except for those that are the result of blowing down
E ′

4 and E ′′
4 (contained in V ) and the point where E meets C (contained in U1).

We consider U0 first. Recall that on this open set the total space of the family
is given by{

t 3

x6
f(x 2 t−1, x3vt−2) − at 2 − bt 3 = 0

}
∩ {t �= 0} ⊆ A

3
(x,t,v)

with a fiber of the family given by x = u. Thus we have

dx = 0
and

d

(
t 3

x6
f(x 2 t−1, x3vt−2) − at 2 − bt 3

)
= 0;

this allows us to write

0 = p(x, t, v) dt + q(x, t, v) dv,
where

p(x, t, v) = ∂

∂t

(
t 3

x6
f(x 2 t−1, x3vt−2) − at 4 − bt 3

)
= −v2 t−2 +

∑
i+j=3

−jαi,j x
jvjt−j−1

+
∑

i+j=4

(−1 − j)βi,j x
2+jvjt−2−j − 2at − 3bt 2,

q(x, t, v) = ∂

∂v

(
t 3

x6
f(x 2 t−1, x3vt−2) − at 2 − bt 3

)
= 2vt−1 +

∑
i+j=3

jαi,j x
jvj−1t−j +

∑
i+j=4

jβi,j x
2+jvj−1t−1−j.

Suppose (0, γ, ζ) is a point on E with ζ �= 0. Since t �= 0 on all of U0, it follows
that 2ζγ−1 �= 0 and hence q(0, γ, ζ) �= 0. Thus, in a neighborhood of (0, γ, ζ),
we have

dv = −p(x, t, v)

q(x, t, v)
dt.

Let (x0, t0, v0) be a point in such neighborhood. The linearizations of x, x 2v, and
t at this point are

x = x0 + dx

= x0,

x 2v = x 2
0v0 + 2x0v0 dx + x 2

0 dv

= x 2
0v0 − x 2

0

(−p(x0, t0, v0)

q(x0, t0, v0)

)
dt,

t = t0 + dt.
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Locally, then, the map σ ′ can be given by the matrix
 x x 2v t

0 −x 2

(−p(x, t, v)

q(x, t, v)

)
1


.

The ideal of
C[x, t, v, t−1](

t 3

x6 f(x 2 t−1, x3vt−2) − at 2 − bt 3
)

generated by the 2 × 2 minor determinants of this matrix is (x); in particular,
D1(σ

′) is reduced at such points.
Next we consider the points (0, γ, 0) of E. Notice that if x = v = 0 then we

have 1+aγ 2 +bγ 3, and if −2aγ −3bγ 2 = 0 we have γ = −2a/3b. Combining
these yields

0 = 1 + a

(
4a2

9b2

)
− b

(
8a3

27b3

)
,

−1 = 4a3

27b2
.

Hence we must have −2aγ − 3bγ 2 �= 0 and so p(0, γ, 0) �= 0. Thus, in a neigh-
borhood of (0, γ, 0), we have

dt = −q(x, t, v)

p(x, t, v)
dv.

Again, let (x0, t0, v0) be a point in such a neighborhood. The linearizations of x,
x 2v, and t at this point are

x = x0 + dx

= x0,

x 2v = x 2
0v0 + 2x0v0 dx + x 2

0 dv

= x 2
0v0 + x 2

0 dv,

t = t0 + dt

= t0 + −q(x0, t0, v0)

p(x0, t0, v0)
dv.

So locally, the map σ ′ can be given by the matrix
 x x 2v t

0 x 2 −q(x, t, v)

p(x, t, v)


,

and the ideal of
C[x, t, v, t−1](

t 3

x6 f(x 2 t−1, x3vt−2) − at 2 − bt 3
)

generated by the 2 × 2 minor determinants of this matrix is
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x3,

xq(x, t, v)

p(x, t, v)
, x 2

(
vq(x, t, v)

p(x, t, v)
+ t

))
.

Passing to the complete local ring at (0, γ, 0) we see that, since vq(x, t,v)

p(x, t,v)
+ t �= 0

and p(x, t, v) �= 0, it follows that the ideal is given by

(xq(x, t, v), x 2) = (xvt 4, x 2) = (xv, x 2).

In particular, D1(σ
′) is nonreduced at such points.

Next we consider the points of V that are not contained in U0 ∪ U1. There are
only two such points: those obtained from blowing down E ′

4 and E ′′
4. Recall that,

on V, the total space of the family is given by{
1

y6v4
f(xy2v2, y3v2) − axv2 − bv2 = 0

}
⊆ A

3
(x,y,v)

with a fiber given by yv = u. Thus we have

d(yv) = y dv + v dy = 0.

Since v �= 0, this gives

dy = −y

v
dv;

also,

d

(
1

y6v4
f(xy2v2, y3v2) − axv2 − bv2

)
= 0.

These relations allow us to write

0 = p(x, y, v) dx + q(x, y, v) dv,

where

p(x, y, v) = ∂

∂x

(
1

y6v4
f(xy2v2, y3v2) − axv2 − bv2

)
=

∑
i+j=3

iαi,j x
i−1yjv2 +

∑
i+j=4

iβi,j x
i−1y2+jv4 − av2

= v2

( ∑
i+j=3

iαi,j x
i−1yj +

∑
i+j=4

iβi,j x
i−1y2+jv2 − a

)
,

q(x, y, v) = ∂

∂v

(
1

y6v4
f(xy2v2, y3v2) − axv2 − bv2

)

− y

v

∂

∂y

(
1

y6v4
f(xy2v2, y3v2) − axv2 − bv2

)
=

∑
i+j=3

2αi,j x
iy jv +

∑
i+j=4

4βi,j x
iy2+jv3 − 2axv − 2bv

−
∑

i+j=3

jαi,j x
iy jv −

∑
i+j=4

(2 + j)βi,j x
iy2+jv3

=
∑

i+j=3

(2 − j)αi,j x
iy jv +

∑
i+j=4

(2 − j)βi,j x
iy2+jv3 − 2axv − 2bv.
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The points of V that we wish to consider are (0, 0, ζ), where 1 − bζ2 = 0. At
such a point we have

p(0, 0, ζ) = −aζ2 �= 0.

Thus, in a neighborhood of such points,

dx = −q(x, y, v)

p(x, y, v)
dv.

Let (x0, y0, v0) be a point in such a neighborhood. The linearizations of xy, y2,
and 1 at this point are

xy = x0y0 + y0 dx + x0 dy

= x0y0 −
(
y0

q(x0, y0, v0)

p(x0, y0, v0)
+ x0y0

v0

)
dv,

y2 = y2
0 + 2y0 dy

= y2
0 − 2

y2
0

v0
dv,

1 = 1 + 0 dv.

As a result, locally the map σ ′ can be given by the matrix
 xy y2 1

−y
q(x, y, v)

p(x, y, v)
− xy

v

−2y2

v
0


.

The ideal of
C[x, y, v]( 1

y6v4 f(xy2v2, y3v2) − axv2 − bv2
)

generated by the 2 × 2 minor determinants of this matrix is(
y

(
q(x, y, v)

p(x, y, v)
+ xy

v

)
, y2

)
,

but
q(0, 0, ζ)

p(0, 0, ζ)
= 2bζ

a
�= 0.

Therefore, in the complete local ring at (0, 0, ζ), the ideal is given simply by (y);
in particular, D1(σ

′) is reduced at the points (0, 0, ζ).
Finally, we consider the point P = (0,1, 0) of U1. Recall that the total space of

the family on U1 is given by{
y 4+y3

∑
i+j=3

αi,j x
j +y2

∑
i+j=4

βi,j x
j+2−ayv4−bv6 = 0

}
∩{y �= 0} ⊆ A

3
(x,y,v)

with a fiber given by xv = u. So in a neighborhood of P we have

0 = d

(
y 4 + y3

∑
i+j=3

αi,j x
j + y2

∑
i+j=4

βi,j x
j+2 − ayv4 − bv6

)

= p(x, y, v) dx + q(x, y, v) dy + r(x, y, v) dv,
where
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p(x, y, v) = y3
∑

i+j=3

jαi,j x
j−1 + y2

∑
i+j=4

(j + 2)βi,j x
j+1,

q(x, y, v) = 4y3 + 3y2
∑

i+j=3

αi,j x
j + 2y

∑
i+j=4

βi,j x
j+2 − av4,

r(x, y, v) = −4ayv3 − 6bv5.

However, q(0,1, 0) = 4 + 3α3,0 = 1 (recall that α3,0 was assumed to be −1).
Thus, in a neighborhood of P we have

dy = −p(x, y, v)

q(x, y, v)
dx − r(x, y, v)

q(x, y, v)
dv;

we also have
0 = d(xv) = v dx + x dv.

Hence F is locally generated by 1, dx, and dv but with a nontrivial relation at P.

We now consider the map from E(U1) to the free module generated by 1, dx,
and dv. Let (x0, y0, v0) be a point in a neighborhood of P. The linearizations of
x, x 2y, and v at this point are

x = x0 + dx,

x 2y = x 2
0y0 + 2x0y0 dx + x 2

0 dy

= x 2
0y0 + 2x0y0 dx + x 2

0
−p(x0, y0, v0)

q(x0, y0, v0)
dx − x 2

0
r(x0, y0, v0)

q(x0, y0, v0)
dv

= x 2
0y0 +

(
2x0y0 − x 2

0
p(x0, y0, v0)

q(x0, y0, v0)

)
dx − x 2

0
r(x0, y0, v0)

q(x0, y0, v0)
dv,

v = v0 + dv.

Locally this map is given by


x x 2y v

1 2xy − x 2 p(x, y, v)

q(x, y, v)
0

0 −x 2 r(x, y, v)

q(x, y, v)
1


. (3.1)

Since F is not free at P, we apply the process of [D] (described previously).
As mentioned before, the smallest nonzero Fitting ideal of F is the maximal ideal
of P. We therefore blow up along the maximal ideal of P, pull back E , F, and σ,
and then take their double duals. This gives the map σ ′ : E ′ → F ′. We have two
patches to consider.

On the first patch we have the relation v = xv. The result of pulling back (3.1) is


x x 2y xv

1 2xy − x 2 p(x, y, xv)

q(x, y, xv)
0

0 −x 2 r(x, y, xv)

q(x, y, xv)
1


.
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Yet on this patch the relation 0 = v dx + x dv, after taking the double dual of the
pull-back of F, becomes 0 = v dx + dv. Thus the map σ ′ is given locally by

 x x 2y xv

1 2xy − x 2 p(x, y, xv)

q(x, y, xv)
+ x 2v

r(x, y, xv)

q(x, y, xv)
−v


. (3.2)

The ideal generated by the 2 × 2 minor determinants in

C[x, y, v, y−1](
y 4 + y3

∑
i+j=3 αi,j x

j + y2 ∑
i+j=4 βi,j x

j+2 − ax4yv4 − bx6v6
)

is (
xv, x 2

(
y − x

p(x, y, xv)

q(x, y, xv)

))
.

In the complete local ring at any point of this patch along the exceptional divisor,
this ideal becomes

(xv, x 2).

If v �= 0, then this ideal is simply (x), and we see that D1(σ
′) is reduced.

On the second patch we have the relation x = xv. The result of pulling back
(3.1) is 



xv x 2yv2 v

1 2xyv − x 2v2 p(xv, y, v)

q(xv, y, v)
0

0 −x 2v2 r(xv, y, v)

q(xv, y, v)
1


.

But on this patch the relation 0 = v dx + x dv, after taking the double dual of the
pull-back of F, becomes 0 = dx + x dv. Thus the map σ ′ is given locally by

 xv x 2yv2 v

−x −x 2v2 r(xv, y, v)

q(xv, y, v)
− 2x 2yv + x3v2 p(xv, y, v)

q(xv, y, v)
1


. (3.3)

The ideal generated by the 2 × 2 minor determinants in

C[x, y, v, y−1](
y 4 + y3

∑
i+j=3 αi,j x

jvj + y2 ∑
i+j=4 βi,j x

j+2vj+2 − ayv4 − bv6
)

is (xv). This shows that, at (0,1, 0), D1(σ
′) is simply the union of the exceptional

divisor and E.

Combining this with (3.2) completes the proof of Theorem 3.5.

4. Excess Porteous

Letπ : X → B be a generic1-parameter family of smooth, nonhyperelliptic curves
of genus 3 degenerating to a general element of �1; let E and C be the elliptic
and genus-2 curves, respectively, meeting transversely at P. Let σ : E → F be
the map of coherent sheaves described in Section 2.
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Let g : X ′ → X be the blow-up of X at the maximal ideal of P, with E0 the
exceptional divisor, and let σ ′ : E ′ → F ′ be the map of vector bundles on X ′ de-
scribed in Section 2.

Let D = D1(σ
′) = {x ∈ X ′ | rank(σ ′

x) ≤ 1}. The expected codimension of D

is (3 − 1)(2 − 1) = 2, but the contribution to D of the central fiber is the union of
E0, E, and the six hyperelliptic Weierstrass points of C (i.e., Q1, . . . , Q6). We’d
like to compute the class D1(σ

′) of D in A0(D); since the codimension of D is less
than 2, we use the excess Porteous formula [F, Exm. 14.4.7]. Specifically, since
D0(σ

′) = ∅, there exist vector bundles K and C (of ranks 2 and 1, respectively) on
D as well as an exact sequence

0 → K → E ′
D → F ′

D → C → 0,

where E ′
D and F ′

D are the restrictions of E ′ and F ′ to D. Then

D1(σ
′) = {c(K∨ ⊗ C ) ∩ s(D, X ′)}0.

Proposition 4.1. Let P1 and P2 be as in the proof of Proposition 2.2; let S1, S2,
and S3 be as in Theorem 3.2; and let Qi, i = 1, . . . , 6, be the hyperelliptic Weier-
strass points of C. Then

s(D, X ′) = [E0 ] + [E ] +
6∑

i=1

[Qi] +
3∑

i=1

[Si] + [P1] + [P2 ].

In particular, we have ∫
D

s(D, X ′) = 11.

Proof. Let f : X̃ ′ → X ′ be the blow-up of X ′ along ID (the ideal sheaf of D).

By [Ha, Exm. II.7.11(b)] we can identify this blow-up with the blow-up along
Q1 ∪ · · · ∪ Q6 ∪ S1 ∪ S2 ∪ S3 ∪ P2. Let E ′ be the exceptional divisor of this
blow-up and let Q′

i, S
′
i, and P ′

2 be the respective components lying above Qi, Si,
and P2. Then D ′ := f −1(D) = f ∗(E0 + E) + E ′. Let h : D ′ → D be the pro-
jection. By [F, Cor. 4.2.2] we have

s(D, X ′)
= h∗[D ′ ] − h∗(D ′ · [D ′ ])

= [E0 ] + [E ]

− h∗(f ∗(E0 + E) · [f ∗(E0 + E)] + 2f ∗(E0 + E) · [E ′ ] + E ′ · [E ′ ])

= [E0 ] + [E ] − (E0 + E) · [E0 + E ]

− h∗(2f ∗(E0 + E) · [E ′ ] + E ′ · [E ′ ])

= [E0 ] + [E ] − (E0 + E) · [E0 + E ]

+
6∑

i=1

[Qi] +
3∑

i=1

[Si] + [P2 ] − h∗(2f ∗(E0 + E) · [E ′ ])

= [E0 ] + [E ] − (E0 + E) · [E0 + E ] +
6∑

i=1

[Qi] +
3∑

i=1

[Si] + [P2 ].
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The second and third equalities follow from [F, Prop. 2.3(c)]. The fourth equality
holds because each component of E ′ is a rational curve with self-intersection −1
and disjoint from the other components. The last equality is shown as follows:

f ∗(E0 + E) · [E ′ ] = (E0 + E + S ′
1 + S ′

2 + S ′
3 + P ′

2)

· [Q′
1 + · · · + Q′

6 + S ′
1 + S ′

2 + S ′
3 + P ′

2 ]

= E0 · [P ′
2 ] +

3∑
i=1

E · [S ′
i ] +

3∑
i=1

S ′
i · [S ′

i ] + P ′
2 · [P ′

2 ]

= (E0 + P ′
2) · [P ′

2 ] +
3∑

i=1

(E + S ′
i ) · [S ′

i ]

= 0,

where by abuse of notation we identify E0 and E with their proper transforms in
D ′. Furthermore, we have

E0 · [E0 ] = −[P1],

E0 · [E ] = [P1],

E · [E ] = −2[P1].
Consequently,

(E0 + E) · ([E0 + E ]) = E0 · [E0 ] + 2E · [E0 ] + E · [E ] = −[P1].

In order to determine the equivalence of D1(σ
′), we need only look at the inter-

section c1(K∨ ⊗ C ) ∩ ([E0 ] + [E1]). By [F, Exm. 3.2.2] we have

c1(K∨ ⊗ C ) = 2c1(C ) + c1(K∨) = 2c1(C ) − c1(K).

Also, from the exact sequence

0 → K → E ′
D → F ′

D → C → 0

we obtain the relation

c1(K) + c1(F ′
D) = c1(E ′

D) + c1(C ).

Combining then yields

c1(K∨ ⊗ C ) = c1(C ) + c1(F ′
D) − c1(E ′

D).

Moreover, E ′
D is the trivial bundle on both E0 and E, so c1(E ′

D) = 0.
Since F ′

D → C is surjective, its kernel is a vector bundle (of rank 1). But the
kernel of this map is the image of E ′

D → F ′
D , which we will call A. Thus we have

c1(C ) + c1(A) = c1(F ′
D).

If we combine this equality with our previous results, then

c1(K∨ ⊗ C ) = 2c1(F ′
D) − c1(A).

The proof of [D, Lemma 5] immediately generalizes to our situation to show that

c1(F ′
D) = 3γD − E0,
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where γD = c1(ωX/B) ·D. The restriction of ωX/B to E is K1(P1), where K1 is the
canonical bundle on E, so γD has degree 1 on this curve; the restriction of ωX/B to
C is K2(P2), where K2 is the canonical bundle on C, so γD has degree 3 on this
curve. Because the degree of γD on any member of the family is 4, the degree on
E0 must be 0. Also, we see that #(E0 · [E0 ]) = −1 and #(E0 · [E ]) = 1. Thus we
have the following statement.

Proposition 4.2.∫
D

2c1(F ′
D) ∩ ([E0 ] + [E ]) = 2(3γD − E0) · ([E0 ] + [E ]) = 6.

It remains to determine c1(A) ∩ ([E0 ] + [E ]). For this we use the following two
propositions.

Proposition 4.3. We have
AE0

∼= O(1).

Proof. We consider the map E ′ → F ′ on E0 given by restricting the matrices (3.2)
and (3.3) to E0. On one affine patch of E0 we have[

0 0 0
1 0 −v

]
and on the other [

0 0 0
−x 0 1

]
,

where v and x are affine parameters on their respective patches. On the first patch
v = 0 is a local equation for C, and on the second x = 0 is a local equation for E.

Since C and E both meet E0 transversely, we see that s1 and s3 map to sections
with a simple zero on E0.

Let 0 → F ′
2 → F ′ → F ′

1 → 0 be the exact sequence given in [D, Lemma 5].
The proof of that lemma generalizes to show that this remains a filtration of F ′ in
our case.

Proposition 4.4. We have AE
∼= OE. In particular, c1(A) ∩ E = 0.

Proof. We consider the composition of maps E ′ → F ′ → F ′
1. For a point x ∈ E

this map takes sections of the relative dualizing sheaf, expands them about a local
coordinate at x, first maps them to the constant and linear term, and then maps
them to the constant term. We can choose a basis for the sections of the dualiz-
ing sheaf such that two of them (when expanded about x ∈E) are 0 and the other
is a section of K1(P1), where K1 is the canonical bundle of E. Thus E ′

x → (F ′
1 )x

is surjective if and only if the section on E fails to vanish at x. This is the case
for all x �= P1. Considering the map E ′ → F ′

1(−P1) shows that, away from P1,
this is the same as before. But at P1 this map will take the linear term of the sec-
tion of the dualizing sheaf, instead of the constant term, and so is surjective at all
points of E1. Hence AE → (F ′

1 )E(−P1) is a surjective map of vector bundles of
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the same rank and thus is an isomorphism. But F ′
1 is simply the relative dualizing

sheaf of the family, so F ′
1 is K1(P1) on E. Therefore, AE

∼= K1 = OE.

From these two propositions, we see that

c1(A) ∩ ([E0 ] + [E ]) = c1(O(1)) ∩ [E0 ],

#(c1(A) ∩ ([E0 ] + [E ])) = 1.

These equalities yield the following result.

Theorem 4.5. ∫
D

D1(σ
′) = 16.

Proof. From the foregoing it follows that∫
D

s(D, X ′) = 11,∫
D

2c1(F ′
D) ∩ ([E0 ] + [E ]) = 6,∫

D

c1(A) ∩ ([E0 ] + [E ]) = 1.

Thus ∫
D

D1(σ
′) = 11 + 6 − 1 = 16.

5. The Hyperelliptic Locus in M3

LetH be the hyperelliptic locus in M3 and H̄ its closure in M3. Let h̄∈ Picfun(M3)

be the rational divisor class on the moduli stack associated to H̄ by [HM, Prop.
3.88]. We wish to combine Theorem 4.5 with [D, Lemma 5] to obtain an expres-
sion for h̄ in terms of the generators λ, δ0, and δ1 of Picfun(M3).

Let π : X → B be a generic 1-parameter family of stable curves of genus 3. Let
σ ′ : E ′ → F ′ be the map described before on X ′, where g : X ′ → X is the blow-up
along the nodes of singular fibers of π. Applying the standard Thom–Porteous for-
mula now gives

[D1(σ
′)] = c2(E ′∗ − F ′∗).

From the proof of [D, Lemma 5], we have

c(E ′∗) = 1 − λ and

c(F ′) = 1 + 3γ − E0 + 2γ 2,

where E0 is the exceptional divisor of the blow-up g : X ′ → X. This gives

[D1(σ
′)] = 7ω2 − 3ωλ + E 2

0 .

But there is one component of E0 for each fiber of π from δ0 as well as one com-
ponent for each fiber from δ1, and each component has square −1. Hence
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(πg)∗([D1(σ
′)]) = 7κ − 12λ − δ0 − δ1.

We use λ = (κ + δ0 + δ1)/12 from [HM, 3.110] to obtain

(πg)∗([D1(σ
′)]) = 72λ − 8δ0 − 8δ1.

We observe that generic members of �1 are not contained in H̄, but by The-
orem 4.5 we know that the standard Thom–Porteous formula will count generic
members of �1 16 times each. Hence we need to subtract 16δ1 from the previous
result, which gives

72λ − 8δ0 − 24δ1.

Since each smooth hyperelliptic curve contains eight hyperelliptic Weierstrass
points, we divide through by 8 to obtain

h̄ = 9λ − δ0 − 3δ1.

This agrees with the Harris–Morrison result [HM, p. 188].
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