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On the Arithmetic Nature of the Values of the
Gamma Function, Euler’s Constant,

and Gompertz’s Constant

T. Rivoal

1. Introduction

In this paper, we prove some results concerning the arithmetic nature of the values
of the Gamma function � at rational or algebraic points and for Euler’s constant
γ. A (completely open) conjecture of Rohrlich and Lang predicts that all polyno-
mial relations between Gamma values over Q come from the functional equations
satisfied by the Gamma function. This conjecture implies the transcendence over
Q of �(α) at all algebraic nonintegral numbers. But at present, the only known re-
sults are the transcendance of �(1/2) = √

π , �(1/3), and �(1/4) (the last two are
algebraically independent of π; see [5]). Using the well-known functional equa-
tions satisfied by �, we deduce the transcendence of other Gamma values, such as
�(1/6), but not of �(1/5). Nonetheless, in [7, Thm. 3.3.5] it is proved that the set
{π,�(1/5),�(2/5)} contains at least two algebraically independent numbers. In
positive characteristic, all polynomial relations between values of the analogue of
the Gamma function are known to come from the analogue of the Rohrlich–Lang
conjecture (see [1]).

The results proved here are steps in the direction of transcendence results for
the Gamma function. We start with a specific quantitative theorem and then prove
more general results of a qualitative nature. We define log(z) and zα for z ∈
C \ (−∞, 0] with the principal value of the argument −π < arg(z) < π. An im-
portant function in the paper is the function

Gα(z) := z−α
∫ ∞

0
(t + z)α−1e−t dt.

For any α ∈ C, it is an analytic function of z in C \ (−∞, 0]. When α = 0 and
z = 1, G0(1) is known as Gompertz’s constant (see [6]).

The main result of the paper is the following.

Theorem 1. (i) For any rational number α /∈ Z , any rational number z > 0,
and any ε > 0, there exists a constant c(α, ε, z) > 0 such that for any p, q, r ∈ Z ,
q �= 0, we have ∣∣∣∣�(α)zα

− p

q

∣∣∣∣ +
∣∣∣∣Gα(z)− r

q

∣∣∣∣ ≥ c(α, ε, z)

H 3+ε , (1.1)
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whereH = max(|p|, |q|, |r|). In particular, at least one of �(α)/zα and Gα(z) is
an irrational number.

(ii) For any rational number z > 0 and for any ε > 0, there exists a constant
d(ε, z) > 0 such that for any p, q, r ∈ Z , q �= 0, we have∣∣∣∣γ + log(z)− p

q

∣∣∣∣ +
∣∣∣∣G0(z)− r

q

∣∣∣∣ ≥ d(ε, z)

H 3+ε . (1.2)

In particular, at least one of γ + log(z) and G0(z) is an irrational number.

Remarks. The constants c(α, ε, z) and d(ε, z) could be made explicit, but this
is not necessary here.

Aptekarev [2] was apparently the first to state explicitly that at least one of γ
and G0(1) is irrational. He constructed and studied precisely a sequence of linear
forms in 1, γ, and G0(1) with integer coefficients and tending to zero. The tech-
nique presented here is different, but we show in Section 6 how to construct such
linear forms using our approach. For other constructions of rational approxima-
tions for Gamma values, see [11; 12].

The proof of Theorem1is a consequence of the construction of Hermite–Padé-type
approximants to 1, exp, and a specificE-function (in Siegel’s sense; for the defini-
tion, see [13]). As almost always with Hermite–Padé approximants, they provide
precise Diophantine estimates but at the cost of less generality. In fact, using the
much more general theorems of Shidlovskii on the algebraic independence of val-
ues of E-functions, we can obtain better qualitative results that we now explain.
(Some of them are variations of results due to Mahler [8].) However, it is not clear
to us that the precise irrationality measures in Theorem 1 could be obtained by
Shidlovskii’s methods.

Theorem 2. (i) For any algebraic number z /∈ (−∞, 0] and any algebraic num-
ber α /∈ Z , the transcendence degree of the field generated by ez, �(α)/zα, and
Gα(z) is at least 2. In particular, at least one of the numbers �(α)/zα and Gα(z)
is transcendental.

(ii) For any algebraic number z /∈ (−∞, 0], the transcendence degree of the
field generated by γ + log(z), ez, and G0(z) is at least 2. In particular, at least
one of γ + log(z) and G0(z) is transcendental.

Since �(1/2) = √
π , we have the following corollaries to Theorem 2(i), which

are appealing because of the simultaneous occurences of the numbers π and e,
whose algebraic independence over Q is still conjectural.

Corollary 1. For any algebraic number z /∈ (−∞, 0], the transcendence de-
gree of the field generated by π, ez, and G1/2(z) is at least 2.

In particular, for z = 1 we have the following result.

Corollary 2. The transcendence degree of the field generated by π, e, and∫ ∞
0 e−t/

√
1 + t dt is at least 2.
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It is easy to see that the asymptotic expansion

Gα(z) ∼
∞∑
m=0

(−1)m
(1 − α)m

zm+1

holds as |z| → ∞ in any open angular sector that does not contain (−∞, 0]. Here,
(x)m := x(x + 1) · · · (x + m − 1) is the Pochhammer symbol. The divergent
asymptotic series on the right-hand side is a Gevrey series of exact order 1. (A for-
mal power series

∑
n≥0 anz

n with an ∈ C is a Gevrey series of order s, s ∈ R, if
the associated power series

∑
n≥0(an/n!s )zn has a nonzero radius of convergence;

it is of exact order s if the radius of convergence is finite nonzero.) The Taylor
series for exp is a Gevrey series of exact order −1 and an E-function in the sense
of Siegel; π is the sum of the series 4

∑∞
m=0

zm

2m+1 at z = −1, which is a Gevrey
series of exact order 0 and aG-function in the sense of Siegel; and the asymptotic
expansion of G1/2 is a Gevrey series of exact order 1. Hence Corollary 1 deals with
three numbers at different levels in the hierarchy of Gevrey series. However, this
is rather accidental because the proof remains purely at the level of E-functions.
It is still a difficult open problem to find transcendence methods that would enable
one to construct “good” auxiliary functions mixing E-functions and G-functions
for example.

In Section 2, we prove the relation between �(α)/zα, Gα(z), respectively
γ + log(z), G0(z), and the E-functions just mentioned. In Section 3, we con-
struct certain Hermite–Padé-type approximants to these E-functions, which are
needed for the proof of Theorem 1 in Section 4. In Section 5 we give the proof of
Theorem 2, and in Section 6 we construct a sequence of linear forms. Finally, in
Section 7 we explain why Theorem 2 is implicit in a paper of Mahler [8].

Acknowledgments. I thank Stéphane Fischler, Frédéric Jouhet, Julian Rosen,
Michel Waldschmidt, and the referee for pointing out some inaccuracies and for
their comments that helped to improve this text.

2. Some Useful Functional Relations

In this section, we discuss the relations at the origin of Theorems 1 and 2. We
define the function

Eα(z) :=
∞∑
m=0

zm

m! (m+ α + 1)

for any z∈ C and α ∈ C, α �= −1, −2, . . . , and we let

E(z) :=
∞∑
m=1

zm

m!m

for any z∈ C. Both functions areE-functions discussed in Shidlovskii’s book [13].

Proposition 1. (i) For any z ∈ C \ (−∞, 0] and any α ∈ C, α �= −1, −2, . . . ,
we have

�(α + 1)

zα+1
= Eα(−z)+ e−zGα+1(z). (2.1)



242 T. Rivoal

(ii) For any z∈ C \ (−∞, 0], we have

γ + log(z) = −E(−z)− e−zG0(z). (2.2)

Proof. (i) We fix z > 0 and α such that �(α) > −1; then

�(α + 1) =
∫ z

0
e−tt α dt +

∫ ∞

z

e−tt α dt

= zα+1
∫ 1

0
e−tzt α dt +

∫ ∞

0
e−(t+z)(t + z)α dt

= zα+1
∫ 1

0
e−tzt α dt + e−zzα+1Gα+1(z).

This identity can be analytically continued to any z such that z∈ C \ (−∞, 0] and
any α ∈ C, α �= −1, −2, . . . . This is nothing but (2.1) because∫ 1

0
e tzt α dt = Eα(z).

(ii) We use the same strategy as before. It is well known that γ = −� ′(1).
Hence, for any z > 0,

−γ =
∫ ∞

0
e−t log(t) dt =

∫ z

0
e−t log(t) dt +

∫ ∞

z

e−t log(t) dt

= z

∫ 1

0
e−tz log(tz) dt +

∫ ∞

0
e−(t+z) log(t + z) dt (2.3)

= log(z)+ z

∫ 1

0
e−tz log(t) dt + e−z

∫ ∞

0

e−t

t + z
dt

(after an integration by parts in the last integral of (2.3)). By analytic continuation
this holds for any z∈ C \ (−∞, 0], giving (2.2) because

z

∫ 1

0
e−tz log(t) dt = E(−z).

We conclude this section with an identity that is irrelevant for the questions con-
sidered in this paper but is still interesting because it expresses Gα(z) in terms of
a more natural integral of Stieltjes type.

Proposition 2. For any complex number α such that �(α) < 1 and any z ∈
C \ (−∞, 0],

Gα(z) = 1

�(1 − α)

∫ ∞

0

t−αe−t

t + z
dt. (2.4)

Proof. With x = 1/z > 0 and α < 1, it is enough to prove that

�(1 − α)

∫ ∞

0

e−t

(1 + xt)1−α dt =
∫ ∞

0

t−αe−t

1 + xt
dt;

the complete result then follows by analytic continuation in x and α.
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By definition of �(1 − α), we have

�(1 − α)

∫ ∞

0

e−t

(1 + xt)1−α dt

=
∫ ∞

0

∫ ∞

0

e−(s+t)s−α

(1 + xt)α+1
dt ds

=
∫ ∞

0
e−u

(∫ u

0
v1−α 1 + xu

(1 + xv)2

1 + xv

v(1 + xu)
dv

)
du

=
∫ ∞

0
e−u

(∫ u

0

v−α

1 + xv
dv

)
du

=
∫ ∞

0

v−α

1 + xv

(∫ ∞

v

e−u du

)
dv =

∫ ∞

0
e−v v−α

1 + xv
dv,

which proves the expected identity. Here we used the change of variables

s = v
1 + xu

1 + xv
, t = u− v

1 + xv
,

and the application of Fubini’s theorem is licit by positivity.

3. Hermite–Padé-type Approximants of E-Functions

In this section, we present the constructions of explicit Hermite–Padé-type ap-
proximants of the functions 1, exp, Eα on the one hand (Section 3.1), and 1, exp, E
on the other hand (Section 3.2). In the latter case, the construction is an adapta-
tion of the techniques in [14]. Propositions 3 and 4 are crucial ingredients in the
proof of Theorem 1. Both are generalizations of a classical construction of diago-
nal Padé approximants of exp, based on the study of the integral

z2n+1

n!

∫ 1

0
e tzt n(1 − t)n dt ∈ Z[z] + Z[z] exp(z)

(for details, see e.g. [3]).

3.1. Approximations to the Functions 1, exp, and Eα
Proposition 3. Let us fix α such that �(α) > −1 and α /∈ Z. For any integer
n ≥ 0, there exist some polynomials An,Cn (of degree ≤ n) and Bn (of degree ≤
n+ 1) with coefficients in Q(α) and such that

Rn,α(z) := z3n+1

n!2

∫ 1

0

∫ 1

0
ezuvu2n+α(1 − u)nv2n(1 − v)n du dv

= An(z)e
z + Bn(z)Eα(z)+ Cn(z). (3.1)

The order of Rn(z) at z = 0 is 3n+ 1.

Explicit expressions for the polynomials are provided by the proof. The condi-
tion that α /∈ Z is not necessary to define Rn,α(z), but the polynomials cannot be
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defined for α ∈ Z in the explicit expressions. This is fixed in Section 3.2 in the
case α = 0.

Proposition 3 fails to give a solution to the problem of finding the simultaneous
Hermite–Padé approximants [n; n+1; n] to the functions 1, exp, and Eα. But that
failure is by a small margin because this would have been the case if the order at
z = 0 of Rn(z) were 3n+ 3.

To prove this proposition, we need the following lemma.

Lemma 1. For any integers k, j ≥ 0, any z ∈ C, and any α /∈ Z , �(α) > −1,
we have∫ 1

0

∫ 1

0
ezuvuk+αvj du dv

= 1

j − k + α

(
1

z
Mj,k,α

(
1

z

)
ez + (−1)k

(α + 1)k
zk

Eα(z)+ (−1)j
j!

zj+1

)
,

where

Mj,k,α(z) =
k−1∑
%=0

(k − %+ α + 1)%(−z)% −
j∑
%=0

(j − %+ 1)%(−z)%.

Remark. The lemma does not hold when α ∈ Z , in which case it must be re-
placed by Lemma 2.

Proof of Lemma 1. Expanding exp(zuv) in series of powers of zuv, we get∫ 1

0

∫ 1

0
ezuvuk+αvj du dv

=
∞∑
m=0

zm

m!
· 1

(m+ k + α + 1)(m+ j + 1)

= 1

j − k − α

( ∞∑
m=0

zm

m! (m+ k + α + 1)
−

∞∑
m=0

zm

m! (m+ j + 1)

)
.

To evaluate both series, we remark that
∞∑
m=0

zm

m! (m+ j + 1)
=

∫ 1

0
eztt j dt,

∞∑
m=0

zm

m! (m+ k + α + 1)
=

∫ 1

0
eztt k+α dt

and that, by repeated integration by parts, we have

∫ 1

0
eztt j dt = ez

j∑
%=0

(−1)%
(j − %+ 1)%

z%+1
+ (−1)j+1 j!

zj+1
(3.2)

and
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∫ 1

0
eztt k+α dt = ez

k−1∑
%=0

(−1)%
(k − %+ α + 1)%

z%+1
+ (−1)k

(α + 1)k
zk

Eα(z).

The lemma follows immediately.

Proof of Proposition 3. We fix α such that �(α) > −1. Set

Pn(t) = 1

n!
(t n(1 − t)n)(n) =

n∑
k=0

(−1)k
(
n

k

)(
n+ k

n

)
t k ∈ Z[t],

Qn,α(t) = 1

n! t n+α
(t 2n+α(1 − t)n)(n)

=
n∑
k=0

(−1)k
(
n

k

)(
2n+ k + α

n

)
t k ∈ Z[α][t],

which are of degree n in t. Here,
(

2n+k+α
n

)
:= (n+k+α+1)n

n! and it is standard that if
α = a/b ∈ Q, with a, b ∈ Z , then b2n

(
2n+k+α

n

) ∈ Z , so that b2nQn,α(t) ∈ Z[t] in
this case.

Let us define

In,α(z) =
∫ 1

0

∫ 1

0
ezuvuαQn,α(u)Pn(v) du dv (3.3)

for any z∈ C. For simplicity, we write

Pn(t) =
n∑

j=0

pj,nt
j, Qn,α(t) =

n∑
k=0

qk,n,α t
k.

Hence,

In,α(z)=
n∑
k=0

n∑
j=0

qk,n,αpj,n

∫ 1

0

∫ 1

0
ezuvuk+αvj du dv

=
n∑
k=0

n∑
j=0

qk,n,αpj,n

j − k + α

(
1

z
Mj,k,α

(
1

z

)
ez + (α + 1)k

zk
Eα(z)− j!

zj+1

)
(3.4)

by Lemma 1. Clearly, it follows that

zn+1In,α(z) = An(z)e
z + Bn(z)Eα(z)+ Cn(z)

for some polynomials An, Bn, and Cn as described in Proposition 3.
To conclude, it remains to prove that

zn+1In,α(z) = Rn,α(z).

This is easily done as follows: in zn+1In,α(z), we integrate n times by parts in v,
and then n times by parts in u, which gives Rn,α(z).
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3.2. Approximations to the Functions 1, exp, and E
In Proposition 3, the integral Rn,α(z) is well-defined for α = 0, but its expansion
as a linear form in 1, exp(z), and E0(z) = (exp(z) − 1)/z does not hold because
the polynomials An,Bn,Cn are not defined for α = 0 (more precisely, because of
the factor 1/(j − k − α)). However, this can be corrected.

Proposition 4. For any integer n ≥ 0, there exist some polynomials A n, Bn, Cn
(all of degree ≤ n) with coefficients in Q and such that

Rn,0(z) := z3n+1

n!2

∫ 1

0

∫ 1

0
ezuvu2n(1 − u)nv2n(1 − v)n du dv

= A n(z)e
z + Bn(z)E(z)+ Cn(z). (3.5)

The order at z = 0 of Rn,0(z) is 3n+ 1.

To prove the proposition, we need an analogue of Lemma1in the case whenα = 0.

Lemma 2. Fix any integers k, j ≥ 0 and any z∈ C.

If k �= j, then∫ 1

0

∫ 1

0
ezuvukvj du dv = 1

j − k

(
1

z
Mj,k

(
1

z

)
ez + (−1)k+1 k!

zk+1
+ (−1)j

j!

zj+1

)
,

where

Mj,k(z) =
k∑
%=0

(k − %+ 1)%(−z)% −
j∑
%=0

(j − %+ 1)%(−z)%.

If k = j, then

∫ 1

0

∫ 1

0
ezuvukvk du dv = 1

z
Mk

(
1

z

)
ez + (−1)k+1 k!

zk+1
E(z)+ (−1)kk!

zk+1

k∑
j=1

1

j
,

where

Mk(z) =
k∑
%=1

k−%∑
m=0

(−1)%+m+1 (k − %−m+ 1)mk!

(k − %+ 1)!
z%+m.

Proof. If k �= j, we expand exp(zuv) in powers of zuv to get
∫ 1

0

∫ 1

0
ezuvukvj du dv =

∞∑
m=0

zm

m! (m+ k + 1)(m+ j + 1)

= 1

j − k

( ∞∑
m=0

zm

m! (m+ k + 1)
−

∞∑
m=0

zm

m! (m+ j + 1)

)

= 1

j − k
(Ik − Ij ),

where
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Ik :=
∫ 1

0
eztt k dt.

To conclude this case we then use identity (3.2), which enables us to evaluate Ik
and Ij .

If k = j, then∫ 1

0

∫ 1

0
ezuvukvk du dv = −

∫ 1

0
eztt k log(t) dt =: −Jk.

We have J0 = z−1E(z). For k ≥ 1, using integration by parts yields

Jk = −1

z
Ik−1 − k

z
Jk−1,

which we iterate to obtain

Jk =
k∑
%=1

(−1)%

z%
· k!

(k − %+ 1)!
Ik−% + (−1)k

k!

zk
J0

= −1

z
Mk

(
1

z

)
ez + (−1)k

k!

zk+1
E(z)+ (−1)k+1k!

zk+1

k∑
j=1

1

j
.

This concludes the proof of the lemma.

Proof of Proposition 4. We start from the integral

In,0(z) :=
∫ 1

0

∫ 1

0
ezuvQn,0(u)Pn(v) du dv.

Expanding the polynomials Qn,0 and Pn and using Lemma 2, we see that

In,0(z)=
n∑
k=0

n∑
j=0

qk,n,0pj,n

∫ 1

0

∫ 1

0
ezuvukvj du dv

=
n∑

j,k=0
j �=k

qk,n,0pj,n

j − k

(
1

z
Mj,k

(
1

z

)
ez + (−1)k+1 k!

zk+1
+ (−1)j

j!

zj+1

)

+
n∑
k=0

qk,n,0pk,n

(
1

z
Mk

(
1

z

)
ez + (−1)k+1 k!

zk+1
E(z)+ (−1)kk!

zk+1

k∑
j=1

1

j

)
.

It follows that zn+1In,0(z) = A n(z)e
z +Bn(z)E(z)+ Cn(z), where the polynomi-

als A n, Bn, and Cn are as described in Proposition 4. To prove that zn+1In,0(z) =
Rn,0(z), we integrate n times by parts in v and then n times by parts in u.

4. Proof of Theorem 1

The Hermite–Padé approximants constructed in Section 3.1 provide good func-
tional simultaneous approximations to the functions exp(z) and Eα(z), and as
usual it is natural to expect that they also provide good numerical simultaneous
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approximations to the values of both functions. In our situation, the transfer is
operated by means of Nesterenko’s [9] criterion for linear independence of real
numbers, which we recall next.

Proposition 5 (Nesterenko’s criterion). Let ξ1, . . . , ξN denote N real numbers
such that there existN sequences of integers (pj,n)n≥0, j = 1, . . . ,N, four positive
real numbers τ1, τ2, c1, c2, and a monotonically increasing function σ (defined on
R) that satisfy the following properties:

(i) lim
t→+∞ σ(t) = +∞ and lim sup

t→+∞
σ(t + 1)

σ(t)
= 1;

(ii) max
j=1,...,N

|pj,n| ≤ eσ(n);

(iii) c1e
−τ1σ(n) ≤

∣∣∣∣
N∑
j=1

pj,Nξj

∣∣∣∣ ≤ c2e
−τ2σ(n).

Then the dimension of the vector space spanned over Q by ξ1, . . . , ξN is at least
τ1+1

1+τ1−τ2
.

We will also use a quantitative version of the criterion when τ1 = τ2 = N − 1. In
that case the dimension is maximal and equal toN and, for any ε > 0, there exists
a constant ηε > 0 such that for any (a1, . . . , aN)∈ ZN \ {(0, . . . , 0)} we have

∣∣∣∣
N∑
j=1

aj ξj

∣∣∣∣ ≥ ηε

maxj=1,...,N |aj |N−1+ε . (4.1)

This is a consequence of the theorem stated in [9, p. 72], which in fact encom-
passes Proposition 5.

To apply the proposition and (4.1), we need two lemmas. The first one is used
for case (i) of Theorem 1 whereas the second is used for case (ii). Set dn :=
lcm(1, 2, . . . , n).

Lemma 3. Let α = a/b ∈ Q \ Z , α > −1, b ≥ 1, and z = u/v ∈ Q∗.
(i) The numbers

b3nvndbn+|a|An(z), b
3nvn+1dbn+|a|Bn(z), b3nvndbn+|a|Cn(z)

are integers.
(ii) For all large enough n, we have max(|An(z)|, |Bn(z)|, |Cn(z)|) ≤ cn3n! for

some c3 > 0 that depends on α and z.
(iii) We have Rn,α(z) = c

n(1+o(1))
4 /n!2, where c4 := 16z3/81.

Lemma 4. Set z = u/v ∈ Q∗.
(i) The numbers

vndnA n(z), v
n+1Bn(z), v

ndnCn(z)
are integers.
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(ii) For all large enough n, we have max(|A n(z)|, |Bn(z)|, |Cn(z)|) ≤ cn5n! for
some c5 > 0 that depends on z.

(iii) We have Rn,0(z) = c
n(1+o(1))
4 /n!2, where c4 := 16z3/81.

We prove only Lemma 3, since the proof of Lemma 4 is analogous.

Proof of Lemma 3. (i) This is immediate from (3.4) for In,α(z) and since pk,n ∈
Z and v2nqk,n ∈ Z

(
the latter because v2n

(
2n+k+u/v

n

) ∈ Z
)
.

(ii) This part is also immediate from expression (3.4). Indeed, the coefficients
pk,n and qk,n,α of the polynomials Pn and Qn are uniformly bounded (for k =
0, . . . , n) by cn6 for some constant c6 that depends only on α.

(iii) An application of Laplace’s method to the integral expression (3.1) for
Rn(z) shows that

lim
n→+∞(n!2 Rn(z))

1/n = z3 max
(u,v)∈[0,1]2

(u2(1 − u)v2(1 − v)) = 16z3

81
.

(The fact that α and z are real is used here.)

Proof of Theorem 1. We prove only (i), since (ii) is proved in a similar fashion.
First, we remark that the restriction that α > −1 in Lemma 3 is not essential: we
can remove it provided we assume n is large enough, say n ≥ N(α), which of
course is possible in the lemma and in Proposition 5.

For n ≥ N(α), we construct a sequence of linear forms

%n = ane
z + bnEα(z)+ cn

with an, bn, cn ∈ Z by setting

%n = b3nvn+1dbn+|a|Rn(z), an = b3nvn+1dbn+|a|An(z),

bn = b3nvn+1dbn+|a|Bn(z), cn = b3nvn+1dbn+|a|Cn(z).

Since dn = en(1+o(1)), the various estimates in Lemma 3 show that we can apply
Proposition 5 with σ(n) = log(n!) = n log(n)(1 + o(1)) and τ1 = τ2 = 2. (The
exact values of c1, c2 > 0 are not important.) It follows that the dimension of the
vector space spanned over Q by 1, ez, and Eα(z) is exactly 3.

Recall (2.1)—that is, that

�(α + 1)

zα+1
= Eα(−z)+ e−zGα+1(z).

Since Eα(−z) and e−z are Q-linearly independent, at least one of �(α + 1)/zα+1

and Gα+1(z) is irrational for any z ∈ Q∗, z > 0 and any α ∈ Q \ Z. We now
prove a quantitative version of this statement. (We change α to α − 1 for sim-
plicity.) Indeed, we are in a situation where we can use the linear independence
measure (4.1): for any integers p, q, r not all zero and any ε > 0, we have

|p + qe−z + rEα−1(−z)| ≥ c7

H 2+ε , (4.2)

where H = max(|p|, |q|, |r|) and c7 depends on α, ε, and z.
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We claim this implies that, for any integers p, q, r not all zero and any ε > 0,∣∣∣∣q�(α)zα
− p

∣∣∣∣ + |qGα(z)− r| ≥ c8

H 2+ε , (4.3)

where c8 = c7/(1 + e−z). To get a contradiction, let us assume we can find some
integers p ′, q ′, r ′ not all zero and an ε > 0 such that∣∣∣∣q

′�(α)
zα

− p ′
∣∣∣∣ + |q ′Gα(z)− r ′| < c8

H̃ 2+ε ,

where H̃ = max(|p ′|, |q ′|, |r ′|). Hence∣∣∣∣q
′�(α)
zα

− p ′
∣∣∣∣ < c8

H̃ 2+ε
and

|q ′e−zGα(z)− r ′e−z| < c8e
−z

H̃ 2+ε .

On the other hand, by (4.2),

c7

H̃ 2+ε ≤ |−p ′ + r ′e−z + q ′Eα−1(−z)| =
∣∣∣∣−p ′ + r ′e−z + q ′

(
�(α)

zα
− Gα(z)

)∣∣∣∣
≤

∣∣∣∣q
′�(α)
zα

− p ′
∣∣∣∣ + e−z|q ′Gα(z)− r ′| < c8(1 + e−z)

H̃ 2+ε = c7

H̃ 2+ε .

This is a contradiction, and thus (4.3) holds, which is the inequality (1.1) in dis-
guise with c(α, ε, z) = c8.

Inequality (4.3) quantifies the assertion “at least one of �(α)/zα and Gα(z) is ir-
rational”. Indeed, if �(α)/zα or Gα(z)/z is rational (say, �(α)/zα = p0/q0 ∈ Q∗
for simplicity), we set p = p0q

′, q = q0q
′, and r = q0p

′ in inequality (4.3) for
any integers p ′, q ′ �= 0, r ′. In particular,∣∣∣∣�(α)zα

− p

q

∣∣∣∣ = 0.

Consequently,

c8

H 3+ε ≤
∣∣∣∣�(α)zα

− p

q

∣∣∣∣ +
∣∣∣∣Gα(z)− r

q

∣∣∣∣ =
∣∣∣∣Gα(z)− p ′

q ′

∣∣∣∣
withH := max(|p|, |q|, |r|) = max(|p0q

′|, |q0q
′|, |q0p

′|) ≤ max(|p0|, |q0|) · H̃ .
Let Ĥ := max(|p ′|, |q ′|). Then, setting c9 = c8 max(|p0|, |q0|)3+ε, for any inte-
gers p ′, q ′ �= 0 we have ∣∣∣∣Gα(z)− p ′

q ′

∣∣∣∣ ≥ c9

Ĥ 3+ε ,

which shows that Gα(z) is an irrational number (and even a non-Liouville number).

5. Proof of Theorem 2

(i) For any α /∈ Z , the functions exp(z) and Eα(z) are algebraically independent
over C(z) [13, Lemma 7], and both functions satisfy the homogeneous linear dif-
ferential system
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y ′
1 = y1,

y ′
2 = 1

z
y1 − α + 1

z
y2.

(5.1)

If α is an algebraic noninteger, then Shidlovskii’s classical theorem onE-functions
[13, Thm. 3] yields that for any algebraic number z �= 0, the numbers Eα(−z) and
exp(−z) are algebraically independent over Q.

We now use identity (2.1) to deduce that, for any α ∈ Q̄ \ Z and any z∈ Q̄∗, z /∈
(−∞, 0], the field generated over Q by the numbers �(α)/zα, ez, and Gα(z) has
transcendence degree at least 2. This is the content of Theorem 2(i).

(ii) Although this is not proved in [13], the functions exp(z) and E(z) are alge-
braically independent over Q(z). Because they satisfy the inhomogeneous linear
differential system

y ′
1 = y1,

y ′
2 = 1

z
y1 − 1

z
,

we can apply Shidlovskii’s second fundamental theorem [13, p. 123] to deduce that
for any z ∈ Q̄∗, the numbers E(−z) and exp(−z) are algebraically independent
over Q. Together with identity (2.2), this immediately implies Theorem 2(ii).

6. A Sequence of Linear Forms in 1, �(α)/zα, and Gα(z)

In this section, we construct an explicit sequence of linear forms

Ln(α, z)∈ Z + Z
�(α)

zα
+ ZGα(z)

that tends to 0 as n → +∞ under the assumptions that z ∈ Q∗, z > 0, and α ∈
Q \ Z.

The principle of the construction is simple and was already used in [10; 11] (for
a different purpose, however). We consider Rn,α(−z) and Rn+1,α(−z) simultane-
ously and define the five determinants

Sn(z) =
∣∣∣∣ An(−z) Rn,α(−z)
An+1(−z) Rn+1,α(−z)

∣∣∣∣, Tn(z) =
∣∣∣∣ Rn,α(−z) Bn(−z)
Rn+1,α(−z) Bn+1(−z)

∣∣∣∣,

Un(z) =
∣∣∣∣ An(−z) Cn(−z)
An+1(−z) Cn+1(−z)

∣∣∣∣, Vn(z) =
∣∣∣∣ An(−z) Bn(−z)
An+1(−z) Bn+1(−z)

∣∣∣∣,
and

Wn(z) =
∣∣∣∣ Cn(−z) Bn(−z)
Cn+1(−z) Bn+1(−z)

∣∣∣∣.
Clearly, Un,Vn,Wn are polynomials in z of degree at most 2n+ 2, with coeffi-

cients in Q(α). Furthermore, we have the relations

Vn(z)Eα(−z)+ Un(z) = Sn(z) = O(z3n+1),

Vn(z)e
−z +Wn(z) = Tn(z) = O(z3n+1).
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(These functional approximations almost provide the diagonal simultaneous Padé
approximants of type II for the functions exp(z) and Eα(z).)

We now use (2.1) in the form

Eα(−z) = �(α + 1)

zα+1
− e−zGα+1(z),

so that

Sn(z) = Vn(z)
�(α + 1)

zα+1
− Vn(z)e

−zGα+1(z)+ Un(z),

Tn(z) = Vn(z)e
−z +Wn(z),

from which we finally obtain that

Sn(z)+ Gα+1(z)Tn(z) = Vn(z)
�(α + 1)

zα+1
+Wn(z)Gα+1(z)+ Un(z). (6.1)

The estimates given in Lemma 3 show that there exist some constants c10 and
c11 (depending on α and z) such that

|Sn(z)+ Gα+1(z)Tn(z)| ≤ cn10

n!
and, when z > 0 and α /∈ Z are rational numbers, the common denominatorDn of
the coefficients of Vn(z),Wn(z), and Un(z) is bounded by cn11. Hence

Ln(α + 1, z) := Dn(Sn(z)+ Gα+1(z)Tn(z))∈ Z + Z
�(α + 1)

zα+1
+ ZGα+1(z)

tends to 0 essentially as fast as 1/n! (up to some factor with exponential growth
in n). To conclude that at least one of �(α + 1)/zα+1 and Gα+1(z) is irrational,
it remains to prove that Ln(α + 1, z) �= 0 for infinitely many n. As seen in Sec-
tion 4, this is a consequence of the linear independence of the numbers exp(z) and
Eα(z) over Q. This is not an easy task if we don’t want to remember this fact. In
principal, we could explicitly compute the recurrence satisfied by An,Bn,Cn,Rn,
deduce that it is satisfied by Sn, Tn,Un,Vn,Wn, and then find the exact asymptotic
behavior of zSn(−z) + Gα+1(z)Tn(−z) by means of Birkhoff–Trjitzinski theory.
A similar construction of sequences of linear forms in γ + log(z) and G0(z) is
possible.

7. Connection with Mahler’s Paper

In Section 1, we mentioned that Theorem 2 is related to Mahler’s article [8],
where he says: “the results proved in this paper are quite trivial consequences of
Shidlovski’s work, and they do not even imply the irrationality of γ or of ζ(3).
However, they deserve perhaps a little interest because, up to now, nothing was
known about the arithmetic of these constants.” Mahler’s comment refers to his
remark that the number πY0(2)

2J0(2)
− γ and other similar numbers are transcendental,

but it could certainly be applied to our Theorem 2. Note that [8] was published in
1968, many years before Apéry’s proof of the irrationality of ζ(3).
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In the last five lines of [8], he mentions without proof the following theorem:
For z ∈ Q̄∗, integer k ≥ 0, and rational number α > −1, any finite number of
integrals ∫ 1

0
t α log(t)ke−zt dt (7.1)

are algebraically independent over Q. Clearly, this contains as a particular case
the algebraic independence over Q of the numbers exp(z) and Eα(z), respectively
of the numbers exp(z) and E(z) in the previous conditions. Although Mahler did
not give a proof, it is clear that it was based on the observation that the integral
in (7.1) is an E-function (of the variable z) strongly similar to Eα and E .

As an application of Mahler’s result, we mention a generalization of Theo-
rem 2(ii): For any z ∈ Q̄, z /∈ (−∞, 0], and any integer s ≥ 1, the transcendence
degree of the field generated over Q by

�(s)(1), log(z), ez, and
∫ ∞

0
log(t + z)se−t dt

is at least 2. In particular, at least one of �(s)(1) = ∫ ∞
0 log(t)se−t dt and∫ ∞

0 log(1 + t)se−t dt is transcendental.
The proof amounts to the observation that

�(s)(1) = z

∫ 1

0
log(tz)se−zt dt +

∫ ∞

z

log(t)se−t dt

= z

s∑
j=0

(
s

j

)
log(z)s−j

∫ 1

0
log(t)je−tz dt + e−z

∫ ∞

0
log(t + z)se−t dt

for any z∈ C \ (−∞, 0], at which point we can use Mahler’s result. We conclude
by mentioning that, for any integer s ≥ 1, �(s)(1) can be expressed as a polyno-
mial in γ, ζ(2), ζ(3), . . . , ζ(s) with rational coefficients (see [10, eq. (3.1)] for a
precise statement). For example, � ′(1) = −γ, � ′′(1) = ζ(2)+ γ 2, and � ′′′(1) =
−2ζ(3)− 3γ ζ(2)− γ 3.
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