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Outer Automorphisms of Algebraic Groups and
Determining Groups by Their Maximal Tori

Skip Garibaldi

One goal of this paper is to prove Theorem 20 below, which completes some
of the main results in the remarkable paper [PRa1] by Gopal Prasad and Andrei
Rapinchuk. For example, combining their Theorem 7.5 with our Theorem 20 gives
the following statement.

Theorem 1. Let G1 and G2 be connected, absolutely simple algebraic groups
over a number field K that have the same K-isomorphism classes of maximal
K-tori. Then:

(1) G1 and G2 have the same Killing–Cartan type (and even the same quasi-split
inner form) or one has type Bn and the other has type Cn;

(2) if G1 and G2 are isomorphic over an algebraic closure of K and are not of
type An for n ≥ 2, D2n+1, or E6, then G1 and G2 are K-isomorphic.

This result is mostly proved in [PRa1], except that paper omits types D2n for
2n ≥ 4 in (2). Our Theorem 20 gives a new proof of the 2n ≥ 6 case (treated by
Prasad and Rapinchuk in a later paper [PRa2, Sec. 9]) and settles the last remain-
ing case of groups of type D4. Note that in Theorem 1(2), types An, D2n+1, and
E6 are genuine exceptions by [PRa1, 7.6].

Similarly, combining our Theorem 20 with the arguments in [PRa1] implies
that their Theorems 4, 8.16, and 10.4 remain true if one deletes “D4” from their
statements—that is, the conclusions of those theorems regarding weak commen-
surability, locally symmetric spaces, and so on hold also for groups of type D4.

We mention the following specific result as an additional illustration. For a Rie-
mannian manifold M, write QL(M) for the set of rational multiples of lengths of
closed geodesics of M.

Theorem 2. Let M1 and M2 be arithmetic quotients of real hyperbolic space Hn

for some n �≡ 1 mod 4. If QL(M1) = QL(M2), then M1 and M2 are commensu-
rable (i.e., M1 and M2 have a common finite-sheeted cover).

The converse holds with no restriction on n; see [PRa1, Cor. 8.7]. The theorem it-
self holds for n = 2 by [Re]; for n = 3 by [CHLRe]; and for n = 4, 6, 8, . . . and
n = 11,15,19, . . . by [PRa1, Cor. 8.17] (which relies on [PRa2]). The last remain-
ing case, n = 7, follows from Theorem 20 (to follow) and arguments as in [PRa1].
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The conclusion of Theorem 2 is false for n = 5, 9,13, . . . by Construction 9.15
in [PRa1].

The other goal of this paper is to prove Theorem 11, which addresses the more
general setting of a semisimple algebraic group G over an arbitrary field k. That
theorem gives a cohomological criterion for the existence of outer automorphisms
of G—in other words, for the existence of k-points on nonidentity components of
Aut(G). This criterion and the examples we give of when it holds make up the
bulk of the proof of Theorem 20, which concerns groups over global fields.

Notation. A global field is a finite extension of Q or Fp(t) for some prime p.
A (non-Archimedean) local field is the completion of a global field with respect
to a discrete valuation (i.e., a finite extension of Qp or Fp((t)) for some prime p).

We write H d(k,G) for the dth flat (fppf ) cohomology set H d(Spec k,G) when
G is an algebraic affine group scheme over a field k. In case G is smooth, it is
the same as the Galois cohomology set H d(Gal(k),G(ksep)), where ksep denotes
a separable closure of k and Gal(k) denotes the group of k-automorphisms of ksep.

We refer to [KMRT; PlRa; Sp2] for general background on semisimple algebraic
groups. Such a group G is an inner form of G′ if there is a class γ ∈H1(k, Ḡ), for
Ḡ the adjoint group of G, such that G′ is isomorphic to G twisted by γ. We write
Gγ for the group G twisted by the cocycle γ, following the typesetter-friendly no-
tation of [KMRT, p. 387] instead of Serre’s more logical γG. We say simply that
G is inner or of inner type if it is an inner form of a split group; if G is not inner
then it is outer.

For a group scheme D of multiplicative type, we put D∗ for its Cartier dual
Hom(D, Gm).

1. Background: The Tits Algebras Determine
the Tits Class

Fix a semisimple algebraic group G over a field k. Its simply connected cover G̃
and adjoint group Ḡ fit into an exact sequence

1 �� Z ��
G̃

q
�� Ḡ �� 1, (3)

where Z denotes the (scheme-theoretic) center of G̃. Write δ : H1(k, Ḡ) →
H 2(k,Z) for the corresponding coboundary map.

There is a unique element νG ∈ H1(k, Ḡ) such that the twisted group ḠνG

is quasi-split [KMRT, 31.6], and the Tits class tG of G is defined to be tG :=
−δ(νG)∈H 2(k,Z). The element tG depends only on the isogeny class of G.

For γ ∈H1(k, Ḡ), the center of the twisted group G̃γ is naturally identified with
(and not merely isomorphic to) Z, and a standard twisting argument shows that

tGγ
= tG + δ(γ ). (4)

Example 5. If G itself is quasi-split, then tG = 0 and for every γ ∈ H1(k, Ḡ)

we have tGγ
= δ(γ ).
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Definition 6 (Tits algebra). A Tits algebra of G is an element

χ(tG)∈H 2(k(χ), Gm) for χ ∈Z∗,

where k(χ) denotes the subfield of ksep of elements fixed by the stabilizer of χ in
Gal(k); that is, k(χ) is the smallest separable extension of k such that χ is fixed
by Gal(k(χ)).

The Tits algebras of G can be interpreted as follows. Each maximal k-torus T̃
of G̃ contains the center Z, so every character λ ∈ T̃ ∗ gives a well-defined Tits
algebra λ(tG) := λ|Z(tG). This λ(tG) measures the failure of the irreducible rep-
resentation of G̃ with highest weight λ—which is defined over ksep—to be defined
over k [Ti, Sec. 7]. Roughly speaking, a typical example of a Tits algebra is pro-
vided by the even Clifford algebra of the special orthogonal group of a quadratic
form (see e.g. [KMRT, Sec. 27]).

Obviously, the Tits class tG determines the Tits algebras χ(tG) for all χ. The
converse also holds, as is shown next.

Proposition 7. The natural map
∏

χ : H 2(k,Z) →
∏

χ∈Z∗
H 2(k(χ),Z) (8)

is injective.

This proposition can probably be viewed as folklore. I learned it from Alexander
Merkurjev and Anne Quéguiner.

Proof of Proposition 7. The claim depends only on Z, so we may replace G̃ with
G̃νG and so assume that G̃ is quasi-split. We pick a maximal k-torus T̃ contained
in a Borel k-subgroup B of G̃. This determines a set � of simple roots of G̃ with
respect to T̃ such that the natural Galois action on T̃ ∗ permutes �; in other words,
it coincides with the ∗-action.

Recall that σ ∈ Gal(k) acts naturally on λ ∈ T̃ ∗ via (σλ)(t) = σ(λ(σ−1(t)))

for t ∈ T̃ (ksep). Typically, this action does not leave �, equivalently B, invariant
and one chooses gσ ∈ NG̃(T̃ )(ksep) such that σ(B) = Int(gσ )(B). The ∗-action
of Gal(k) on T̃ is defined by σ ∗ λ := σλ � Int(gσ ); it normalizes �. In our case,
σ(B) = B and so we may take gσ to be the identity.

We fix a set S of representatives of the Gal(k)-orbits in � and write αs (resp.,
λs) for the simple root (resp., fundamental dominant weight) corresponding to
s ∈ S. Because G̃ is simply connected,

T̃ ∼=
∏

s∈S
Rk(λs )/k(imhαs ),

where hαs denotes the homomorphism Gm → T̃ corresponding to the coroot α∨
s

[St, Cor., p. 44] and k(λs) is the field of definition of λs (equivalently, αs by our
choice of B and T̃ ).
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The product of the compositions

Z
λs |Z �� Rk(λs |Z)/k(Gm) ↪ �� Rk(λs)/k(Gm)

hαs �� Rk(λs)/k(imhαs )

for s ∈ S is the inclusion of Z in T̃. It follows that the kernel of
∏

χ is contained
in the kernel of H 2(k,Z) → H 2(k, T̃ ).

In the short exact sequence 1 → Z → T̃ → T̃/Z → 1, the set � is a basis for
the lattice (T̃/Z)∗; hence H1(k, T̃/Z) is zero and the map H 2(k,Z) → H 2(k, T̃ )
is injective.

2. Outer Automorphisms of Semisimple Groups

We continue to consider a semisimple linear algebraic group G over a field k. In
case G is split, there is a natural map α : Aut(G) → Aut(�) for � the Dynkin
diagram of G; see [Sp2, Sec. 16.3]. In this section, we will define α also in the
case where G is nonsplit and ask:

Is α : Aut(G)(k) → Aut(�)(k) surjective? (9)

One obstruction to α being surjective can come from the fundamental group—
this is clear from considering the case whereG is the split group SO8 of typeD4—
so we assume that G is simply connected. (One could equivalently assume that G
is adjoint.) Then, still assuming that G is split, α fits into an exact sequence

1 �� Ḡ
ε �� Aut(G)

α �� Aut(�) �� 1, (10)

where Ḡ denotes the adjoint group of G (see [Sp2]).
We claim that the maps in sequence (10) are defined and that the sequence is

exact for arbitrary semisimple simply connected G. Indeed, such a G is obtained
by twisting a split simply connected group G′ by a cocycle z ∈ Z1(k, Aut(G′)).
Starting with a version of (10) involving the split group G′, we may twist by z and
obtain sequence (10) for nonsplit G. Note that the resulting group scheme Aut(�)
is finite étale but not necessarily constant: Gal(k) acts on Aut(�)(ksep) via the
∗-action. (One can see this by reducing to the case where G is quasi-split, where
it can be checked directly.) Furthermore, the sequence identifies Aut(�) with the
group of connected components of Aut(G), so Question 9 is the same as: Does
every connected component of Aut(G) × ksep that is defined over k necessarily
have a k-point?

The Tits class provides an obstruction to the surjectivity of α, as we now ex-
plain. There is a commutative diagram

Aut(G)

��

α �� Aut(�)

����
��

��
��

�

Aut(Z),
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where Z denotes the center of G and the diagonal arrow comes from the natural
action of Aut(�) on the coroot lattice. Hence Aut(�)(k) acts on H 2(k,Z) and
we have the following result.

Theorem 11. Recall that G is assumed semisimple and simply connected. Then
there is an inclusion

im[α : Aut(G)(k) → Aut(�)(k)] ⊆ {π ∈Aut(�)(k) | π(tG) = tG}. (12)

Furthermore, the following are equivalent :

(a) equality holds in (12);
(b) the sequence H1(k,Z) → H1(k,G) → H1(k, Aut(G)) is exact ;
(c) ker δ ∩ ker[H1(k, Ḡ) → H1(k, Aut(Ḡ))] = 0.

Proof. We consider the interlocking exact sequences

H1(k,Z)

��

H1(k,G)

q

��

Aut(G)(k)
α �� Aut(�)(k)

β
�� H1(k, Ḡ)

ε ��

δ

��

H1(k, Aut(G))

H 2(k,Z),

where the horizontal sequence comes from (10) and the vertical sequence comes
from (3). The crux is to prove that

π(tGβ(π)
) = tG for π ∈Aut(�)(k). (13)

Since Ḡ and Aut(G) are smooth, we may view their corresponding H1 as Galois
cohomology. Put γ := β(π), so γσ = f −1 σf for some f ∈ Aut(G)(ksep) and
every σ ∈ Gal(k). The group Gγ has the same ksep-points as G but has a different
Galois action �, given by σ � g = γσσg for g ∈ G(ksep) and σ ∈ Gal(k), where
juxtaposition denotes the usual Galois action on G.

The map f gives a k-isomorphism Gγ
∼−→G. Sequence (3) gives a commuta-

tive diagram

H1(k, Ḡγ )
δγ

��

f

��

H 2(k,Z)

f

��

H1(k, Ḡ)
δ �� H 2(k,Z).
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Let η ∈ Z1(k, Ḡγ ) be a 1-cocycle representing νGγ
. Then f(η) is a 1-cocycle in

Z1(F, Ḡ) and f is a k-isomorphism f : (Gγ )η
∼−→Gf(η). Since (Gγ )η is k-quasi-

split, we have f(νGγ
) = f(η) = νG. The commutativity of the diagram gives

f(tGγ
) = tG, proving (13).

It follows that π ∈ Aut(�)(k) satisfies π(tG) = tG if and only if tGβ(π)
= tG,

if and only if δ(β(π)) = 0. That is, in (12), the left side is kerβ and the right
side is ker δβ, which makes the inclusion in (12) and the equivalence of (a) and
(c) obvious. Statement (b) says that ker εq = ker q (i.e., ker ε∩ im q = 0), which
is (c).

It is easy to find nonsimple groups (even over R) for which the inclusion (12) is
proper, because the Tits index also provides an obstruction to equality. Indeed, if
G is the product of the split and the compact real forms of G2, then the image of
α is the identity but the right side of (12) is Z/2Z. We now slightly modify this
example to show that the Tits algebras and Tits index are not the only obstructions
to equality in (12), even over a number field.

Example 14. Fix a prime p and write x1, x2 for the two square roots of p in k :=
Q

(√
p

)
. For i = 1, 2, let Hi be the group of type G2 associated with the 3-Pfister

quadratic form φi := 〈〈−1, −1, xi〉〉. For G = H1 × H2, the Tits index is

• •< • •<

and the right side of (12) is Z/2Z , but H1 is not isomorphic to H2 and so no
k-automorphism of G interchanges the two components.

Nonetheless, we now give several examples of equality holding in (12).

Example 15. If G is quasi-split then α maps Aut(G)(k) onto Aut(�)(k) by
[SGA3, XXIV.3.10] or [KMRT, 31.4], so equality holds in (12).

Example 16. If H1(k,G) = 0, then trivially Theorem 11(b) holds. That is,
(a)–(c) hold for every semisimple simply connected G if k is local (by Kneser–
Bruhat–Tits), global with no real embeddings (Kneser–Harder–Chernousov), or
the function field of a complex surface (de Jong–He–Starr–Gille), and conjec-
turally if the cohomological dimension of k is at most 2 (Serre).

Example 17. Suppose G is absolutely almost simple (and simply connected).
Conditions (a)–(c) of the proposition hold trivially if Aut(�)(k) = 1, in particu-
lar if G is not of type A, D, or E6 or if G has type 6D4. Conditions (a)–(c) also
hold in the following four cases.

Case (i): G is of inner type. If G is of inner type A (n ≥ 2), then Aut(�) =
Z/2Z and the nontrivial element π acts via z �→ z−1 on Z; hence π(tG) = −tG. If
2tG = 0, then G is SL1(D) for D a central simple algebra of degree n+1 such that
there is an anti-automorphism σ ofD; therefore, g �→ σ(g)−1 is a k-automorphism
ofGmapping toπ. (By a theorem ofAlbert [Sch,Thm. 8.8.4] one can even arrange
for σ to have order 2 and thus for this automorphism of G to have order 2.)
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Next let G be of type 1Dn for n ≥ 5 and suppose that the nonidentity element
π ∈Aut(�)(k) fixes the Tits class tG. The group G is isomorphic to Spin(A, σ, f )
for some central simple k-algebra A of degree 2n and quadratic pair (σ, f ) on A

such that the even Clifford algebra C0(A, σ, f ) is isomorphic to a direct product
C+ ×C− of central simple algebras. Since π fixes the Tits class, the algebras C+
and C− are isomorphic. The equation [A] + [C+] − [C−] = 0 holds in the Brauer
group of k by [KMRT, 9.12] (alternatively, because the cocenter is an abelian group
of order 4). Therefore, A is split. Let φ ∈ O(A, σ, f )(k) be a hyperplane reflec-
tion as in [KMRT, 12.13]; it does not lie in the identity component of O(A, σ, f ).
The automorphism of SO(A, σ, f ) given by g �→ φgφ−1 lifts to an automorphism
of Spin(A, σ, f ) that is outer (i.e., that induces the automorphism π on �).

To recap: Given a nonzero π ∈Aut(�)(k) that preserves the Tits class, we de-
duced that A is split and thus that (A, σ, f ) has an improper isometry. Conversely,
[KMRT, 13.38(2)] shows: if (A, σ) has an improper isometry, then A is split and
obviously such an automorphism π exists.

For the remaining cases, we simply point out that an outer automorphism of
order 3 in the D4 case exists when tG = 0 by triality [SpV, 3.6.3, 3.6.4], and an
outer automorphism of order 2 exists in the E6 case when tG = 0 is provided by
the “standard automorphism” of a J -structure [Sp1, p. 150].

Case (ii): G is the special unitary group of a hermitian form relative to a sep-
arable quadratic extension K/k (i.e., G is of type 2An and resK/k(tG) is zero in
H 2(K,Z)). We leave the details in this case as an exercise.

Case (iii): k is real closed. By the previous cases, we may assume that G has
type 2Dn (for n ≥ 4) or 2E6. For type 2Dn, Aut(�)(k) = Z/2Z (also for n = 4)
and G is the spin group of a quadratic form by [KMRT, 9.14], so a hyperplane
reflection gives the desired k-automorphism.

If G has type 2E6, then combining the arguments on pages 37, 38, 119, and 120
in [J] shows that the (outer) automorphism of the Lie algebra Jacobson denotes by
t is defined over k.

Case (iv): k is global. Let γ ∈ H1(k, Ḡ) lie in ker δ ∩ ker ε for δ, ε as in the
proof of Theorem 11. At every completion kv of k, reskv/k(γ ) lies in the kernel of
the maps from H1(kv , Ḡ) to H 2(kv ,Z) and H1(kv , Aut(Ḡ)), so reskv/k(γ ) is zero
by (iii) (for v real) and Example 16 (for v finite). The Hasse principle for adjoint
groups [PlRa, Thm. 6.22] gives that γ is zero; hence (c) holds.

I don’t know any examples of absolutely almost simpleGwhere conditions (a)–(c)
fail. Furthermore, in all of the examples given here, every π from the right side of
(12) is not only of the form α(f ) for some f ∈Aut(G)(k), but one can even pick
f to have the same order as π.

We illustrate the foregoing results in the case of an arbitrary group of type 2An.

Example 18. Let G0 be an absolutely almost simple algebraic group of type 2An

over a field k. Its simply connected cover G is isomorphic to SU(B, τ) for some
central simple algebra B with center a separable quadratic extension L/k and τ a
unitary L/k-involution on L [KMRT, 26.9].
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If G0 has an outer automorphism defined over k, then B has exponent 1 or 2.
Indeed, every k-automorphism of G0 gives an L-automorphism of SU(B, τ)×L,
which is SL1(B). The claim follows by Example 17(i).

Conversely, if k is a global field and B has exponent (equivalently, index) 1
or 2, then G has an outer automorphism defined over k. Indeed, the hypothesis
on the exponent of B gives that the nonidentity element π ∈ Aut(�)(k) fixes tG;
hence, by Example 17(iv), π is the image of some element of Aut(G)(k).

3. Groups of Type Deven over Local Fields

The main point of this section is to prove the following lemma.

Lemma 19. Let G be an adjoint semisimple group over a field k, and fix a max-
imal k-torus T in G. If z1, z2 are in the image of the map H1(k, T ) → H1(k,G)

such that

(1) Gz1 and Gz2 are both quasi-split or
(2) T contains a maximal k-split torus in both Gz1 and Gz2 and

(a) k is real closed or
(b) k is a (non-Archimedean) local field and G has type D2n for some n ≥ 2,

then z1 = z2.

Proof. For short, we writeGi forGzi . In case (1), the uniqueness of the class νG ∈
H1(k,G) such that GνG is quasi-split (already used in Section 1) gives that z1 =
νG = z2. So suppose (2) holds. As T is contained in both these groups, their Tits
indexes are naturally identified over k. In particular, if one is quasi-split then so is
the other, and we are done as in (1). So we assume that neither group is quasi-split.

In case (2)(a), where k is real closed, one immediately reduces to the case
where G is absolutely simple. That case is trivial because the isomorphism class
of an adjoint simple group is determined by its Tits index, so G1 is isomorphic to
G2. The Tits index also determines the Tits algebras—see [Ti, pp. 211–212] for
a recipe—and so, by Proposition 7, δ(z1) = δ(z2). The claim now follows from
Example 17(iii) and Theorem 11(c).

So assume for the remainder of the proof that (2)(b) holds. In particular, δ is
injective. Number the simple roots of G1 with respect to T as in [B]. If G1 has
type 2D4, we take α1 to be the root at the end of the Galois-fixed arm of the Tits
index. Otherwise, we assign the numbering arbitrarily in case there is ambiguity
(e.g., α2n−1 and α2n). Note that G1 cannot have type 3D4 or 6D4 because it is not
quasi-split.

As 2ωi is in the root lattice for every i, the Tits algebrasωi(tG1) for i = 2n−1, 2n
define up to k-isomorphism a quaternion (Azumaya) algebra D over a quadratic
étale k-algebra 6. By the exceptional isomorphismD2 = A1×A1 and a Tits algebra
computation, PGL1(D) is isomorphic to PSO(M2(H ), σ, f ) for H the quaternion
algebra underlying ω1(tG1) and some quadratic pair (σ, f ) such that the even Clif-
ford algebra C0(σ, f ) is isomorphic to D (cf. [KMRT, 15.9]). Appending 2n − 2
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hyperbolic planes to (σ, f ), we obtain a quadratic pair (σ0, f0) such thatC0(σ0, f0)

is Brauer-equivalent to D. We have thus constructed PSO(Mn(H ), σ0, f0) so that
it is isomorphic to Gz for some class z ∈H1(k,G) with ωi(δ(z)) = ωi(δ(z1)) for
i = 1, 2n − 1, 2n. Examining the root system of type D2n, we find that restrict-
ing the three ωi to the center of the simply connected cover of G gives all three
nonzero elements of the cocenter [B, Sec. VI.2, Exer. 5a]; in other words, Gz and
G1 have the same Tits algebras. Hence Proposition 7 and the injectivity of δ imply
that z = z1, so G1 is isotropic and its semisimple anisotropic kernel is a product
of groups with Killing–Cartan type A1. (We have just given a characteristic-free
proof of Tsukamoto’s theorem [Sch, 10.3.6], relying on the Bruhat–Tits result that
δ is injective.)

The same argument applied to G2 shows that it is also isotropic with the same
kind of semisimple anisotropic kernel. Since the two groups have the same Tits
index and there is a unique quaternion division algebra over each finite extension of
k, it follows that G1 and G2 have the same Tits class—that is, δ(z1) = δ(z2).

In the statement of (2)(b), we cannot replace “D2n for some n ≥ 2” with “D6 for
some 6” because the claim fails for groups of typeDodd. This can been seen already
for typeD3 = A3: one can find z1, z2 ∈H1(k, PGL 4) such thatG1 andG2 are both
isomorphic to Aut(B)◦ for a division algebra B of degree 4, but δ(z1) = −δ(z2)

in H 2(k,µ4) = Z/4Z. Adding hyperbolic planes as in the proof of the lemma
gives a counterexample for all odd 6. This counterexample is visible in the proof:
for groups G1,G2 of type D6 with 6 ≥ 3 and odd, the semisimple anisotropic ker-
nels have Killing–Cartan type a product of the A1 and an A3; hence the very last
sentence of the proof fails.

4. Groups of Type Deven over Global Fields

The following technical theorem concerning groups over a global field connects
our Theorem 11 (about groups over an arbitrary field) with the results in [PRa1].
It implies [PRa2, Thm. 9.1].

Theorem 20. Let G1 and G2 be adjoint groups of type D2n for some n ≥ 2 over
a global field K such that G1 and G2 have the same quasi-split inner form; in
other words, the smallest Galois extension of K over which G1 is of inner type is
the same as for G2. If there exists a maximal torus Ti in Gi for i = 1, 2 such that

(1) there is a Ksep-isomorphism φ : G1 → G2 whose restriction to T1 is a K-
isomorphism T1 → T2 and

(2) there is a finite set V of places of K such that
(a) for all v /∈V, G1 and G2 are quasi-split over Kv and
(b) for all v ∈V, (Ti)Kv

contains a maximal Kv-split torus of (Gi)Kv
,

then G1 and G2 are isomorphic over K.

The hypotheses are what one obtains by assuming the existence of weakly commen-
surable arithmetic subgroups—see, for example, Theorems1and 6 and Remark 4.4
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(and especially p. 156) in [PRa1]. Note that the groups appearing in the theorem
can be trialitarian (i.e., of type 3D4 or 6D4). We remark that Allison gave an iso-
morphism criterion with very different hypotheses in [A, Thm. 7.7].

Proof of Theorem 20. Write G for the unique adjoint quasi-split group that is an
inner form of G1 and G2. According to Steinberg [PlRa, pp. 338–339], there is a
Ksep-isomorphismψ2 : G2 → Gwhose restriction to T2 is defined overK. We put
ψ1 := ψ2φ and T := ψ2(T2) = ψ1(T1). Then Gi is isomorphic to G twisted by
the 1-cocycle σ �→ ψi(

σψi)
−1. But this 1-cocycle consists of elements of Aut(G)

that fix T elementwise and thus belong to T itself. That is, for i = 1, 2, there is
a cocycle zi in the image of H1(K, T ) → H1(K,G) such that Gi is isomorphic
to G twisted by zi . (This argument uses neither that K is a number field nor that
G1 and G2 have type D2n, so roughly speaking it applies generally to the situa-
tion where G1 and G2 share a maximal torus over the base field—more precisely,
to the situation arising in [PRa1, Rem. 4.4].)

Now Lemma 19 gives that resKv/K(z1) = resKv/K(z2) for every v, so z1 = z2

by the Kneser–Harder–Hasse principle [PlRa, Thm. 6.22] and G1 is isomorphic
to G2 over K.
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