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A Relation between Height, Area, and Volume
for Compact Constant Mean Curvature
Surfaces in M? x R

CLAUDEMIR LEANDRO & HAROLD ROSENBERG

1. Introduction

Let X be a compact CMC-H surface in M? x R with ' = 9% C M? x {0}, where
M? is a Hadamard surface with curvature Ky < —k < 0. Let X be the con-
nected component of the part of ¥ above the plane Q = M? x {0}, and let i be
the height of ¥, above Q. We will determine a volume V; bounded by X; and
prove that

H|Z|  «V)
=< - =0
- 27 4
here || is the area of X;. We also state conditions under which equality occurs.

We then let M> = H? be the hyperbolic plane of curvature —1, with ¥ € H? x R
acompact CMC-H surface as justdescribed. Finally, we give a condition that guar-
antees X lies in a half-space determined by Q.

We introduce some definitions and notation as follows. Let y C Q be a com-
plete geodesic. We call P = y x R a vertical plane of M? x R. Let B(t) be a
complete geodesic of Q, with B(0) in the vertical plane P and B’(0) orthogonal
to P. Let Pg(¢) be the vertical plane of M? x R that passes through B(¢) and is
orthogonal to B at B(¢). We call Pg(¢) the vertical plane foliation determined by
P and B.

h

2. The Main Result

Let ¥ C M? x R be a CMC-H surface as before and suppose that ¥ meets Q
transversally along ' = 9X C Q. Weput ¥* = ¥ N (M? x Ry) and £~ =
¥ N (M? x R_). There is a connected component of £t or ¥~ that contains T'.
We can assume, without loss of generality, that ' C dXF. We use ¥, to denote
the connected component of X+ that contains T

Let 3 be the symmetry of X; through the plane Q. Then TIUS isa compact
embedded surface with no boundary, and with corners along 9%, that bounds a
domain U in M? x R. Let U be the intersection of U with the half-space above
Q. Thus Uj is a bounded domain in M? x R whose boundary, dU,, consists of
the smooth connected surface ¥; and the union €2 of finitely smooth, compact and
connected surfaces in Q. We define A™ to be the area of .
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THEOREM 2.1.  Let M? be a Hadamard surface with Gaussian curvature Ky <
—k < 0. Let © be a compact H-surface embedded in M? x R, with boundary be-
longing to Q = M? x {0} and transverse to Q. If h denotes the height of T with
respect to Q, then
HA* Vol (U
h < _ K VO ( 1) (1)
2 4

for AT and U, defined as before. There is equality if and only if K = —«k inside
U, and X is a rotational spherical cap.

Proof. From the surface ¥ we obtain the surface X, the bounded domain U; C
M2 x R, and the uni0n§2 of finitely smooth, compact and connected surfaces in O
as just described. Let H denote the mean curvature vector of X, and take the unit
normal N of ¥ to point inside U;. Let 7;: M? x R — M? and mp: M? x R —
R be the usual projections. If we denote by 4;: £; — R the height function of
Y —thatis, hi(p) = mp(p) and v = (N, %)—then we can write

a
—=T N, 2
o +v 2

where T is a tangent vector field on ;. Since % is the gradient in M? x R of the
function ¢, it follows that T is the gradient of 4; on X;.

If H = 0 then 4 (the height of ¥) is a harmonic function and therefore, by the
maximum principle, ¥ C M? x {0}. So we suppose that H > 0.

Let A(z) be the area of ¥, = {p € Zy; hi(p) = t}andletI'(z) = {p € Xy;
hi(p) = t}. By [6, Thm. 5.8] we have

1
At) = —/ ——ds;, teQ,
ro IV

where O is the set of all regular values of /.
If L(r) denotes the length of the planar curve I'(¢), then the Schwartz inequal-
ity yields

1
L* (1) < / I VAl dsr/ ——ds; = —A(1) IVhilds;,, te€O. (3)
() r VRl ()

But from (2) we have that, along the curve I'(¢),
912
Vhi|? =1—=v%={(n',—):
VA || <77 at>

here 1’ is the inner conormal of X, along d%,. Since X, is above the plane Q(t),
we know that (n’, %) > 0. Hence

9
Vil = (n', —).
VA ]| <n at>

Therefore, (3) may be rewritten as

L*(t) < —A(1) <n’, 3>ds,. 4
I'(r) ot
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Now we recall the flux formula. Let X, and €2 (#) be two compact, smooth, and
embedded but not necessarily connected surfaces in M? x R such that their bound-
aries coincide. Assume that there exists a compact domain U(¢) in M? x R such
that the boundary of U(¢) is U (t) = X, U (¢) and is orientable. Notice that the
boundary of U(#) is smooth except perhaps along 9%, = 92(?).

Let Nx, and Ng(, be the unit normal fields to X, and €2(¢), respectively, that
pointinside U(t). Finally, assume that 3, is a compact surface with constant mean
curvature H = (ﬁ, Ns,) > 0. Let Y be a Killing vector field in M? x R. Then
the flux formula (i.e., [4, Prop. 3]) yields

(Y,n') =2H (Y, No@y). &)
0%, Q(1)

Using (5), we can take ¥ = % to obtain

9 ,>
—n )| =2H|Q®],
/r(r)<3f

where ||€2(¢#)]| is the area of the planar region €2(f). Hence substituting into (4)
results in

L% (1) < —2HA'(1)||2(t)|| for almost every 7 > 0, t € O. 6)
Next we will show that
L(t) = 47| + Q0] ©)

We put (1) = [J;2, Q:(r), where ©(2), ..., 2,,(¢) are bounded domains deter-
mined in the plane Q(#) by the closed curve I'(¢) and where ||2;(¢)] (withi =
0,...,n,) is the area of the corresponding €2;(¢). Then ||Q(2)| = Y7, 1)

i=1
We know by [2] that equation (7) holds if n, = 1. Supposing the result is true for
n, = m, we will prove it to be true also for m + 1.

Let L(z) be the length of Q(f) = |/, Q:(). We know that
L*(t) = 47 |Q(0) || + «|I(0)]1>  (by hypothesis of induction),  (8)
L2 (1) 2 47| QD] + €l Qui (DI (by [2]). )
Inequalities (8) and (9) imply, respectively,
L(1) = V| Q)

L1 (1) = V| Quir (D]
Therefore,

L) Lys1 (1) = k| Q) Qur1 (D]
= 2L(OLp1(1) = 26| QO Q1 (D] (10)
Combining (8), (9), and (10) yields
(L(1) + L1 (0)* = 47 (IQU || + 1Qm1 (D) + €I + 12m41 (D)
and this proves (7).
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From (6) and (7) it follows that
4| + k@I < —2HA D[R],
4| + €l + 2HA M) <0,
(@m +2HA' (@) + xQ@DILDOI <0,
4w +2HA' (1) + k[|Q;(1)] < 0.
After integrating the last inequality from O to 2 = max,ex h1(p) > 0, we have

4h +2H(A(h) — A(0)) + « Vol(U;) < 0;
then 2th & Vol(Uy)
+ = A i el V4
AT =A0) = 7 t—g
which is the inequality that we were seeking.

If equality holds, then all the preceding inequalities become equalities. In par-
ticular, by [2] it will follow that I'(¢) is the boundary of a geodesic disk in M? x {¢}
for every ¢ > 0 and that Ky2(p) = —« forall pe U.

Let D C M? x {0} be the geodesic disk such that 3D = 9%, and let p € D
be the center of D. Let y be a horizontal, complete, oriented geodesic passing
through the point p with y(0) = p, and let P, (¢) be the oriented foliation of ver-
tical planes along the y. Let P,(#1) be a vertical plane in this horizontal foliation
that does not touch X. Now, performing Alexandrov reflection with the planes
P, (1), starting at t = #; and then decreasing ¢, we obtain—by the symmetries of
dD—that ¥ is symmetric with respect to P, (0). Since y is an arbitrary horizon-
tal complete geodesic passing through the point p, it follows that X is a rotational
spherical cap.

COROLLARY 2.1.  Let M? be a Hadamard surface with Gaussian curvature Ky <
—k < 0. Let X be a compact H-surface embedded in M? x R without boundary
but with area A, and let U be the compact domain bounded by ¥.. Then

2HA > k Vol(U) + 47h.
Equality holds if and only if X is a sphere of revolution.

COROLLARY 2.2. Let M? be a Hadamard surface with Gaussian curvature Ky <
—k < 0. If ¥ is a compact H-surface embedded in M?* x R with boundary in a
plane Q and transverse to Q, then

k Vol(U)) < 2mHA"
for AT and U, defined as before Theorem 2.1.

3. Horizontal H-cylinders in H? x R

Now we use a translation-invariant H-hypersurface given by P. Bérard and R. Sa
Earp in [3] to give some conditions implying that X lies above Q = H? x {0}
when 0¥ C Q. We recall some ideas here.
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Let y; be a geodesic passing through 0 € H? x {0} in Q = H? x {0} and let
P =y1 xR ={(yi1(s),1); (s,1) € Rz} be the vertical plane, where s is the signed
hyperbolic distance to 0 on y;.

Take a geodesic y, such that y,(0) = y,(0) and y;5(0) L y/(0). We consider
the hyperbolic translation with respect to the geodesic y;. In the vertical plane P;
we take the curve a(s) = (s, f(s)), where f is a real function.

In H? x {f(s)} we translate the point a(s) by the translations with respect to
y2 % { f(s)}, which yields the equidistant curves (¥ )q(s) passing through a(s) at
a distance s from y, x {f(s)}. The curve « then generates a translation surface
C =J,(y2)a(s in H? x R.

PrINCIPAL CURVATURES. The principal directions of curvature of C are tangent
to the curve « in P; and the directions tangent to (2 )q(s). The corresponding prin-
cipal curvatures with respect to the unit normal pointing downward are given by

kp,=—f"(s)(1+ (f'(sHH~¥? and
Ky = —F ()1 + (f'(s)*)7? tanh(s).

The first equality holds because P is totally geodesic and flat. The second equal-
ity follows because (2)q(s) is at a distance s from y, x { f(s)} in H? x {f(s5)}.

MEAN CURVATURE. The mean curvature of the translation surface C associated
with f is given by

2H(s) = —f"($)(A + (f' (N7 = £/()(1 + (f'(s))*) "> tanh(s),
2H(s) cosh(s) = —f"(s)(1 4+ (f'(5))*) "% cosh(s)
— £/ + (f'(s)*) "% sinh(s),

2H(s) cosh(s) = —%(f’(s)(l + (') 72 cosh(s)).

We assume that H = constant. Observe that in our case H > 0. The generating
curves of translation surfaces with mean curvature H are given by the differential
equation

—f/ (YA + (f'()*) 7% cosh(s) = 2H sinh(s) + di,

where d; is a constant.
We want that f'(0) = 0, so we take d; = 0. Therefore,

— /()14 (f'(s)*)™"? = 2H tanh(s),
—f'(s) = 2H tanh(s)(1 + (f'(s))))"/?,
(f'(5))* = 4H? tanh’ (s)(1 + (f'(5))*)
= 4H?tanh?(s) + (f'(s5))*4H? tanh?(s)

_ 4H’tanh’(s)
" 1 —4H?tanh%(s)’
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We have two first-order, linear ordinary differential equations given by
2 H tanh(s) 2 H tanh(s)

V1 —4H?2tanh2(s) V1 — 4H? tanh?(s)

with s € (—sy, sy), where sy = arctanh(1/2H).
We assume that H > 1/2. After resolving the previous equations, we get

_ 2H 4HZ 1 .
f+(s) = —m arctan +d>

V1 —4H?tanh2(s)

GHT 1
+ds,

2H
———— arctan
V4H? —1 (\/1—4H2tanh2(s)

respectively, where d, and d3 are constant.
We want that lim;_, 4, f4+(s) = lims_, 4, f-(s) =0,sowetakedr = —d; =

Hr/~4H? — 1. Hence

fl(s)=— and  f/(s) =

and

f-(s) =

o) 2H <mam( 4H? —1 ) n)
§) = ———— - =
- GH? —1 J1—4H?anh?(s)/) 2

and

2H ( ( 4H? —1 ) n)
f-(s) = ————=| arctan ——).
4H? — 1 V1 — 4H?tanh2(s) 2

We have two curves, a(s) = (s, fi(s)) and a_(s) = (s, f—(s)). The curve
o = oy Ua_ generates a complete embedded translation invariant H-surface, Cy,
which we call an H-cylinder.

Observe that the height of Cy is given by

4H
hc, = —————| arctan(v4H? — 1) — l).
e 4H2—1< ( )3
Since arctan(1/x) = /2 — arctan x for x > 0, it follows that

4H . ( 1 )
————— arctan| —— ).
4H? —1 V4H? —1
But arctan x = arcsin(x/«/l + x2 ) SO

. 4H A
= ————arcsin{ — |.
T JaHE -1 2H

By Aledo, Espinar, and Gélvez [ ] we have that the height of the rotational H -

sphere, Sy, is equal to
8H . 1
——————arcsin| — );
4H? —1 2H

hey, =

H

therefore,

We can use these Cy-cylinders to prove the theorem that follows.
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REMARK. In the rest of this paper, the height of a compact H-surface ¥ embed-
ded into H? x R is the height difference between its upper point and lower point.

THEOREM3.1. Let X be a compact H-surface (H > 1/2), embedded intoH? xR,
whose boundary is a convex planar curve contained in the plane Q = H? x {0}.
Assume that 2hys, < hg,, where hy, and hg,, denote (respectively) the height of the
surface ¥ and that of the H-sphere. Then X stays in a half-space determined by
Q and is transverse to Q along the boundary. Moreover, ¥ inherits the symme-
tries of its boundary.

To prove this, we need the following lemma.

Figure 1

LEMMA 3.1.  Let X be a compact H-surface (H > 1/2) embedded in H* x R and
with planar boundary. If 2hs, < hg, (Where h denotes height as before), then the
surface X lies inside the right vertical cylinder determined by the convex hull of
its boundary.

Proof (see Figure 1). Suppose there is a point of ¥ projecting on a point ¢; € Q
outside the convex hull V of the boundary of X, and choose g, € V to minimize
the distance to g;. Denote by y, the geodesic of Q passing through ¢; and ¢,; we
have y(0) = ¢ and y(a) = q; fora > 0. Let y» C H? x {0} be a complete
geodesic with y»(0) = y1(0) and y;(0) L y/(0).

Consider the horizontal CMC cylinder Cy generated by o C P; = y; X R,
as described previously, with curvature H. We consider a half-cylinder C,, gen-
erated by a(s), where s € [0,sy] or s € [—sy,0]. We move C,, (by horizontal
translation along y;) far enough so that it does not touch the surface X, and we
place its concave side in front of X.

The surface X is inside a slab B parallel to Q with height less than &g, /2. This
slab is not necessarily symmetric with respect to Q. However, we may utilize
half-cylinders with axes in the central plane of B; then, making a vertical trans-
lation if necessary, we can suppose that B is symmetric with respect to Q. See
Figure 2.
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Figure 2

Now we proceed to approach the half-cylinder C,, to X via the horizontal trans-
lation along y, thereby obtaining a first (and so tangential) contact point between
the two surfaces.

Since y; lies inside Q and since there is a point of ¥ projecting on the point ¢,
outside the convex hull of the boundary, it follows that the contact point so ob-
tained is a nonboundary point of the surface X. It is also an interior point of the
half-cylinder C,, because ¥ is inside the slab B C H? x (—hs,, /2, hs, /2). On the
other hand, this half-cylinder has constant mean curvature H with respect to the
normal field pointing to its concave part. We already know that X is in that con-
cave part, so by elementary comparison we have that the same choice of normal at
the contact point gives the mean curvature H for . Yet because this contradicts
the maximum principle, all the points of the surface ¥ must project on the convex
hull of its boundary. O

Proof of Theorem 3.1. By the lemma just proved, if €2 is a compact convex domain
in Q with 92 = 0% then ¥ Next(2) = @J. Hence we can consider a hemisphere S
under the plane Q whose boundary disc D is contained in Q and is large enough
that Q C int(D) and S N X = @. Therefore, X U (D — Q) U (S — D) is a com-
pact embedded surface in H?> x R and so determines an interior domain, which
we call U. Choose a unit normal N for X in such a way that N points into U at
each point. If there are points of the surface X in both half-spaces determined by
0, then N takes the same value at the points where the height function attains its
respective maximum and minimum. Reversing N if necessary, we conclude that
the normal of ¥ (for which H > 0) takes the same value at the highest and the
lowest points of the surface.
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Lowering a sphere SIZ, to the highest point or pushing it up to the lowest one,
we obtain a contradiction via the interior maximum principle. Thus the surface
lies in one of the half-spaces determined by the plane Q and rises in it by less than
hs,, /2. Again using half-cylinders Cy with axes in a plane parallel to Q and height
hs, /2, we see that the boundary maximum principle implies that the surface is
transversal along its boundary.

Let y be a horizontal, complete, oriented geodesic passing through the origin
O € H? x R, and let P,(t1) be a vertical plane such that P,(#;) N X = #J. We
take the oriented foliation of vertical planes along y with P = P,(0). Finally,
we apply Alexandrov reflection with these planes—starting at r = ¢, and then de-
creasing —to obtain that X has all the symmetries of its boundary. O

COROLLARY 3.1. Let X be a compact H-surface (H > 1/2) embedded in H? x R
and with convex planar boundary. Then X is a graph if and only if hy < hg, /2,
where again hx, and hs, are the height of the surface ¥ and of the H-sphere,
respectively.

Proof. If X is a graph then the proof follows by [, Thm. 2.1]. Suppose now that
hs < hg,/2. By Theorem 3.1 we have that ¥ must be contained in one of the
half-spaces determined by the boundary plane; and by Lemma 3.1, X is inside
the right vertical cylinder determined by the convex hull of its boundary. Using
Alexandrov reflection with horizontal planes, we deduce that X is a graph. O
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