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A Relation between Height, Area, and Volume
for Compact Constant Mean Curvature

Surfaces in M
2 × R

Claudemir Leandro & Harold Rosenberg

1. Introduction

Let � be a compact CMC-H surface in M
2 ×R with � = ∂� ⊂ M

2 ×{0}, where
M

2 is a Hadamard surface with curvature KM2 ≤ −κ ≤ 0. Let �1 be the con-
nected component of the part of � above the plane Q = M

2 × {0}, and let h be
the height of �1 above Q. We will determine a volume V1 bounded by �1 and
prove that

h ≤ H |�1|
2π

− κV1

4π
;

here |�1| is the area of �1. We also state conditions under which equality occurs.
We then let M

2 = H
2 be the hyperbolic plane of curvature −1, with � ⊂ H

2 × R

a compact CMC-H surface as just described. Finally, we give a condition that guar-
antees � lies in a half-space determined by Q.

We introduce some definitions and notation as follows. Let γ ⊂ Q be a com-
plete geodesic. We call P = γ × R a vertical plane of M

2 × R. Let β(t) be a
complete geodesic of Q, with β(0) in the vertical plane P and β ′(0) orthogonal
to P. Let Pβ(t) be the vertical plane of M

2 × R that passes through β(t) and is
orthogonal to β at β(t). We call Pβ(t) the vertical plane foliation determined by
P and β.

2. The Main Result

Let � ⊂ M
2 × R be a CMC-H surface as before and suppose that � meets Q

transversally along � = ∂� ⊂ Q. We put �+ = � ∩ (M
2 × R+) and �− =

� ∩ (M
2 × R−). There is a connected component of �+ or �− that contains �.

We can assume, without loss of generality, that � ⊂ ∂�+. We use �1 to denote
the connected component of �+ that contains �.

Let �̂1 be the symmetry of �1 through the plane Q. Then �̂1 ∪ �1 is a compact
embedded surface with no boundary, and with corners along ∂�1, that bounds a
domain U in M

2 × R. Let U1 be the intersection of U with the half-space above
Q. Thus U1 is a bounded domain in M

2 × R whose boundary, ∂U1, consists of
the smooth connected surface �1 and the union � of finitely smooth, compact and
connected surfaces in Q. We define A+ to be the area of �1.
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Theorem 2.1. Let M
2 be a Hadamard surface with Gaussian curvature KM ≤

−κ ≤ 0. Let � be a compact H -surface embedded in M
2 ×R, with boundary be-

longing to Q = M
2 × {0} and transverse to Q. If h denotes the height of � with

respect to Q, then

h ≤ HA+

2π
− κ Vol(U1)

4π
(1)

for A+ and U1 defined as before. There is equality if and only if K ≡ −κ inside
U1 and � is a rotational spherical cap.

Proof. From the surface � we obtain the surface �1, the bounded domain U1 ⊂
M

2 ×R, and the union � of finitely smooth, compact and connected surfaces in Q

as just described. Let �H denote the mean curvature vector of �1, and take the unit
normal N of �1 to point inside U1. Let π1 : M

2 × R → M
2 and π2 : M

2 × R →
R be the usual projections. If we denote by h1 : �1 → R the height function of
�1—that is, h1(p) = π2(p) and ν = 〈

N, ∂
∂t

〉
—then we can write

∂

∂t
= T + νN, (2)

where T is a tangent vector field on �1. Since ∂
∂t

is the gradient in M
2 × R of the

function t, it follows that T is the gradient of h1 on �1.

If H = 0 then h (the height of �) is a harmonic function and therefore, by the
maximum principle, � ⊂ M

2 × {0}. So we suppose that H > 0.

Let A(t) be the area of �t = {p ∈ �1; h1(p) ≥ t} and let �(t) = {p ∈ �1;
h1(p) = t}. By [6, Thm. 5.8] we have

A′(t) = −
∫

�(t)

1

‖∇h1‖ dst , t ∈ O,

where O is the set of all regular values of h1.

If L(t) denotes the length of the planar curve �(t), then the Schwartz inequal-
ity yields

L2(t) ≤
∫

�(t)

‖∇h1‖ dst

∫
�(t)

1

‖∇h1‖ dst = −A′(t)
∫

�(t)

‖∇h1‖ dst , t ∈ O. (3)

But from (2) we have that, along the curve �(t),

‖∇h1‖2 = 1 − ν 2 =
〈
ηt,

∂

∂t

〉2

;

here ηt is the inner conormal of �t along ∂�t . Since �t is above the plane Q(t),
we know that

〈
ηt, ∂

∂t

〉 ≥ 0. Hence

‖∇h1‖ =
〈
ηt,

∂

∂t

〉
.

Therefore, (3) may be rewritten as

L2(t) ≤ −A′(t)
∫

�(t)

〈
ηt,

∂

∂t

〉
dst . (4)
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Now we recall the flux formula. Let �t and �(t) be two compact, smooth, and
embedded but not necessarily connected surfaces in M

2 ×R such that their bound-
aries coincide. Assume that there exists a compact domain U(t) in M

2 × R such
that the boundary of U(t) is ∂U(t) = �t ∪ �(t) and is orientable. Notice that the
boundary of U(t) is smooth except perhaps along ∂�t = ∂�(t).

Let N�t
and N�(t) be the unit normal fields to �t and �(t), respectively, that

point inside U(t). Finally, assume that �t is a compact surface with constant mean
curvature H = 〈 �H, N�t

〉 > 0. Let Y be a Killing vector field in M
2 × R. Then

the flux formula (i.e., [4, Prop. 3]) yields∫
∂�t

〈Y, ηt 〉 = 2H

∫
�(t)

〈Y, NQ(t)〉. (5)

Using (5), we can take Y = ∂
∂t

to obtain∫
�(t)

〈
∂

∂t
, ηt

〉
= 2H‖�(t)‖,

where ‖�(t)‖ is the area of the planar region �(t). Hence substituting into (4)
results in

L2(t) ≤ −2HA′(t)‖�(t)‖ for almost every t ≥ 0, t ∈ O. (6)

Next we will show that

L2(t) ≥ 4π‖�(t)‖ + κ‖�(t)‖2. (7)

We put �(t) = ⋃nt

i=1 �i(t), where �1(t), . . . , �nt
(t) are bounded domains deter-

mined in the plane Q(t) by the closed curve �(t) and where ‖�i(t)‖ (with i =
0, . . . , nt ) is the area of the corresponding �i(t). Then ‖�(t)‖ = ∑nt

i=1‖�i(t)‖.

We know by [2] that equation (7) holds if nt = 1. Supposing the result is true for
nt = m, we will prove it to be true also for m + 1.

Let L̃(t) be the length of �̃(t) = ⋃m
i=1 �i(t). We know that

L̃2(t) ≥ 4π‖�̃(t)‖ + κ‖�̃(t)‖2 (by hypothesis of induction), (8)

L2
m+1(t) ≥ 4π‖�m+1(t)‖ + κ‖�m+1(t)‖2 (by [2]). (9)

Inequalities (8) and (9) imply, respectively,

L̃(t) ≥ √
κ‖�̃(t)‖,

Lm+1(t) ≥ √
κ‖�m+1(t)‖.

Therefore,

L̃(t)Lm+1(t) ≥ κ‖�̃(t)‖‖�m+1(t)‖
�⇒ 2L̃(t)Lm+1(t) ≥ 2κ‖�̃(t)‖‖�m+1(t)‖. (10)

Combining (8), (9), and (10) yields

(L̃(t) + Lm+1(t))
2 ≥ 4π(‖�̃(t)‖ + ‖�m+1(t)‖) + κ(‖�̃(t)‖ + ‖�m+1(t)‖)2,

and this proves (7).



126 Claudemir Leandro & Harold Rosenberg

From (6) and (7) it follows that

4π‖�(t)‖ + κ‖�(t)‖2 ≤ −2HA′(t)‖�(t)‖,

4π‖�(t)‖ + κ‖�(t)‖2 + 2HA′(t)‖�(t)‖ ≤ 0,

(4π + 2HA′(t) + κ‖�(t)‖)‖�(t)‖ ≤ 0,

4π + 2HA′(t) + κ‖�i(t)‖ ≤ 0.

After integrating the last inequality from 0 to h = maxp∈� h1(p) ≥ 0, we have

4πh + 2H(A(h) − A(0)) + κ Vol(U1) ≤ 0;
then

A+ = A(0) ≥ 2πh

H
+ κ Vol(U1)

2H
,

which is the inequality that we were seeking.
If equality holds, then all the preceding inequalities become equalities. In par-

ticular, by [2] it will follow that �(t) is the boundary of a geodesic disk in M
2 ×{t}

for every t ≥ 0 and that KM2(p) ≡ −κ for all p ∈ U.

Let D ⊂ M
2 × {0} be the geodesic disk such that ∂D = ∂�, and let p ∈ D

be the center of D. Let γ be a horizontal, complete, oriented geodesic passing
through the point p with γ (0) = p, and let Pγ(t) be the oriented foliation of ver-
tical planes along the γ. Let Pγ(t1) be a vertical plane in this horizontal foliation
that does not touch �. Now, performing Alexandrov reflection with the planes
Pγ(t), starting at t = t1 and then decreasing t, we obtain—by the symmetries of
∂D—that � is symmetric with respect to Pγ(0). Since γ is an arbitrary horizon-
tal complete geodesic passing through the point p, it follows that � is a rotational
spherical cap.

Corollary 2.1. Let M
2 be a Hadamard surface with Gaussian curvature KM ≤

−κ ≤ 0. Let � be a compact H -surface embedded in M
2 × R without boundary

but with area A, and let U be the compact domain bounded by �. Then

2HA ≥ κ Vol(U) + 4πh.

Equality holds if and only if � is a sphere of revolution.

Corollary 2.2. Let M
2 be a Hadamard surface with Gaussian curvature KM ≤

−κ ≤ 0. If � is a compact H -surface embedded in M
2 × R with boundary in a

plane Q and transverse to Q, then

κ Vol(U1) < 2πHA+

for A+ and U1 defined as before Theorem 2.1.

3. Horizontal H -cylinders in HHH
2 × RRR

Now we use a translation-invariant H -hypersurface given by P. Bérard and R. Sa
Earp in [3] to give some conditions implying that � lies above Q = H

2 × {0}
when ∂� ⊂ Q. We recall some ideas here.
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Let γ1 be a geodesic passing through 0 ∈ H
2 × {0} in Q = H

2 × {0} and let
P1 = γ1 × R = {(γ1(s), t); (s, t) ∈ R

2} be the vertical plane, where s is the signed
hyperbolic distance to 0 on γ1.

Take a geodesic γ2 such that γ2(0) = γ1(0) and γ ′
2(0) ⊥ γ ′

1(0). We consider
the hyperbolic translation with respect to the geodesic γ2. In the vertical plane P1

we take the curve α(s) = (s, f(s)), where f is a real function.
In H

2 × {f(s)} we translate the point α(s) by the translations with respect to
γ2 × {f(s)}, which yields the equidistant curves (γ2)α(s) passing through α(s) at
a distance s from γ2 × {f(s)}. The curve α then generates a translation surface
C = ⋃

s(γ2)α(s) in H
2 × R.

Principal Curvatures. The principal directions of curvature of C are tangent
to the curve α in P1 and the directions tangent to (γ2)α(s). The corresponding prin-
cipal curvatures with respect to the unit normal pointing downward are given by

kP1 = −f ′′(s)(1 + (f ′(s))2)−3/2 and

k(γ2 )α(s)
= −f ′(s)(1 + (f ′(s))2)−1/2 tanh(s).

The first equality holds because P1 is totally geodesic and flat. The second equal-
ity follows because (γ2)α(s) is at a distance s from γ2 × {f(s)} in H

2 × {f(s)}.
Mean Curvature. The mean curvature of the translation surface C associated
with f is given by

2H(s) = −f ′′(s)(1 + (f ′(s))2)−3/2 − f ′(s)(1 + (f ′(s))2)−1/2 tanh(s),

2H(s) cosh(s) = −f ′′(s)(1 + (f ′(s))2)−3/2 cosh(s)

− f ′(s)(1 + (f ′(s))2)−1/2 sinh(s),

2H(s) cosh(s) = − d

ds

(
f ′(s)(1 + (f ′(s))2)−1/2 cosh(s)

)
.

We assume that H = constant. Observe that in our case H > 0. The generating
curves of translation surfaces with mean curvature H are given by the differential
equation

−f ′(s)(1 + (f ′(s))2)−1/2 cosh(s) = 2H sinh(s) + d1,

where d1 is a constant.
We want that f ′(0) = 0, so we take d1 = 0. Therefore,

−f ′(s)(1 + (f ′(s))2)−1/2 = 2H tanh(s),

−f ′(s) = 2H tanh(s)(1 + (f ′(s))2)1/2,

(f ′(s))2 = 4H 2 tanh2(s)(1 + (f ′(s))2)

= 4H 2 tanh2(s) + (f ′(s))24H 2 tanh2(s)

= 4H 2 tanh2(s)

1 − 4H 2 tanh2(s)
.
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We have two first-order, linear ordinary differential equations given by

f ′
+(s) = − 2H tanh(s)√

1 − 4H 2 tanh2(s)
and f ′

−(s) = 2H tanh(s)√
1 − 4H 2 tanh2(s)

with s ∈ (−sH , sH ), where sH = arctanh(1/2H ).

We assume that H > 1/2. After resolving the previous equations, we get

f+(s) = − 2H√
4H 2 − 1

arctan

( √
4H 2 − 1√

1 − 4H 2 tanh2(s)

)
+ d2

and

f−(s) = 2H√
4H 2 − 1

arctan

( √
4H 2 − 1√

1 − 4H 2 tanh2(s)

)
+ d3,

respectively, where d2 and d3 are constant.
We want that lims→±sH f+(s) = lims→±sH f−(s) = 0, so we take d2 = −d3 =

Hπ/
√

4H 2 − 1. Hence

f+(s) = − 2H√
4H 2 − 1

(
arctan

( √
4H 2 − 1√

1 − 4H 2 tanh2(s)

)
− π

2

)

and

f−(s) = 2H√
4H 2 − 1

(
arctan

( √
4H 2 − 1√

1 − 4H 2 tanh2(s)

)
− π

2

)
.

We have two curves, α+(s) = (s, f+(s)) and α−(s) = (s, f−(s)). The curve
α = α+∪α− generates a complete embedded translation invariant H -surface, CH ,
which we call an H -cylinder.

Observe that the height of CH is given by

hCH
= − 4H√

4H 2 − 1

(
arctan

(√
4H 2 − 1

) − π
2

)
.

Since arctan(1/x) = π/2 − arctan x for x > 0, it follows that

hCH
= 4H√

4H 2 − 1
arctan

(
1√

4H 2 − 1

)
.

But arctan x = arcsin
(
x/

√
1 + x 2

)
, so

hCH
= 4H√

4H 2 − 1
arcsin

(
1

2H

)
.

By Aledo, Espinar, and Gálvez [1] we have that the height of the rotational H -
sphere, SH , is equal to

8H√
4H 2 − 1

arcsin

(
1

2H

)
;

therefore,

hCH
= hSH

2
.

We can use these CH -cylinders to prove the theorem that follows.
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Remark. In the rest of this paper, the height of a compact H -surface � embed-
ded into H

2 × R is the height difference between its upper point and lower point.

Theorem 3.1. Let � be a compact H -surface (H > 1/2), embedded into H
2×R,

whose boundary is a convex planar curve contained in the plane Q = H
2 × {0}.

Assume that 2h� < hSH
, where h� and hSH

denote (respectively) the height of the
surface � and that of the H -sphere. Then � stays in a half-space determined by
Q and is transverse to Q along the boundary. Moreover, � inherits the symme-
tries of its boundary.

To prove this, we need the following lemma.

Figure 1

Lemma 3.1. Let � be a compact H -surface (H > 1/2) embedded in H
2 ×R and

with planar boundary. If 2h� < hSH
(where h denotes height as before), then the

surface � lies inside the right vertical cylinder determined by the convex hull of
its boundary.

Proof (see Figure 1). Suppose there is a point of � projecting on a point q1 ∈ Q

outside the convex hull V of the boundary of �, and choose q2 ∈ V to minimize
the distance to q1. Denote by γ1 the geodesic of Q passing through q1 and q2; we
have γ1(0) = q2 and γ1(a) = q1 for a > 0. Let γ2 ⊂ H

2 × {0} be a complete
geodesic with γ2(0) = γ1(0) and γ ′

2(0) ⊥ γ ′
1(0).

Consider the horizontal CMC cylinder CH generated by α ⊂ P1 = γ1 × R,
as described previously, with curvature H. We consider a half-cylinder Cγ1 gen-
erated by α(s), where s ∈ [0, sH ] or s ∈ [−sH , 0]. We move Cγ1 (by horizontal
translation along γ1) far enough so that it does not touch the surface �, and we
place its concave side in front of �.

The surface � is inside a slab B parallel to Q with height less than hSH
/2. This

slab is not necessarily symmetric with respect to Q. However, we may utilize
half-cylinders with axes in the central plane of B; then, making a vertical trans-
lation if necessary, we can suppose that B is symmetric with respect to Q. See
Figure 2.
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Figure 2

Now we proceed to approach the half-cylinder Cγ1 to � via the horizontal trans-
lation along γ1, thereby obtaining a first (and so tangential) contact point between
the two surfaces.

Since γ2 lies inside Q and since there is a point of � projecting on the point q1

outside the convex hull of the boundary, it follows that the contact point so ob-
tained is a nonboundary point of the surface �. It is also an interior point of the
half-cylinder Cγ1 because � is inside the slab B ⊂ H

2 ×(−hSH
/2, hSH

/2). On the
other hand, this half-cylinder has constant mean curvature H with respect to the
normal field pointing to its concave part. We already know that � is in that con-
cave part, so by elementary comparison we have that the same choice of normal at
the contact point gives the mean curvature H for �. Yet because this contradicts
the maximum principle, all the points of the surface � must project on the convex
hull of its boundary.

Proof of Theorem 3.1. By the lemma just proved, if � is a compact convex domain
in Q with ∂� = ∂� then � ∩ext(�) = ∅. Hence we can consider a hemisphere S

under the plane Q whose boundary disc D is contained in Q and is large enough
that � ⊂ int(D) and S ∩ � = ∅. Therefore, � ∪ (D − �) ∪ (S − D) is a com-
pact embedded surface in H

2 × R and so determines an interior domain, which
we call U. Choose a unit normal N for � in such a way that N points into U at
each point. If there are points of the surface � in both half-spaces determined by
Q, then N takes the same value at the points where the height function attains its
respective maximum and minimum. Reversing N if necessary, we conclude that
the normal of � (for which H > 0) takes the same value at the highest and the
lowest points of the surface.
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Lowering a sphere S 2
H to the highest point or pushing it up to the lowest one,

we obtain a contradiction via the interior maximum principle. Thus the surface
lies in one of the half-spaces determined by the plane Q and rises in it by less than
hSH

/2. Again using half-cylinders CH with axes in a plane parallel to Q and height
hSH

/2, we see that the boundary maximum principle implies that the surface is
transversal along its boundary.

Let γ be a horizontal, complete, oriented geodesic passing through the origin
O ∈ H

2 × R, and let Pγ(t1) be a vertical plane such that Pγ(t1) ∩ � = ∅. We
take the oriented foliation of vertical planes along γ with P = Pγ(0). Finally,
we apply Alexandrov reflection with these planes—starting at t = t1 and then de-
creasing t—to obtain that � has all the symmetries of its boundary.

Corollary 3.1. Let � be a compact H -surface (H > 1/2) embedded in H
2 ×R

and with convex planar boundary. Then � is a graph if and only if h� < hSH
/2,

where again h� and hSH
are the height of the surface � and of the H -sphere,

respectively.

Proof. If � is a graph then the proof follows by [1, Thm. 2.1]. Suppose now that
h� < hSH

/2. By Theorem 3.1 we have that � must be contained in one of the
half-spaces determined by the boundary plane; and by Lemma 3.1, � is inside
the right vertical cylinder determined by the convex hull of its boundary. Using
Alexandrov reflection with horizontal planes, we deduce that � is a graph.
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