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Polyhedral Divisors of Cox Rings

Klaus Altmann & Jarosław A. Wi śniewski

1. Introduction

Let Z be a Q-factorial projective variety defined over the field of complex num-
bers such that its divisor class group Cl(Z) is a lattice that is a free abelian, finitely
generated group. We consider the Cox ring of Z,

Cox(Z) =
⊕

D∈Cl(Z)

�(Z, O(D)),

with multiplicative structure defined by a choice of divisors whose classes form
a basis of Cl(Z). Our standing assumption in this paper is the finite generation
of the C-algebra Cox(Z). We will call such Z a Mori dream space (or MDS), as
it was baptized by Hu and Keel in [HuKe]. We note that a somewhat more gen-
eral definition of MDS, without the Q factoriality assumption, was developed by
Artebani, Hausen, and Laface [AHL, Thm. 2.3]. However, Q-factoriality of Z is
a part of our setup in the present paper.

The Cl(Z)-grading of Cox(Z) yields an algebraic action of the associated torus
HomZ(Cl(Z), C∗) ∼= (C∗)rk(Cl(Z)) on the affine variety Spec(Cox(Z)). The vari-
etyZ is a GIT quotient of Spec(Cox(Z)) by the action of this torus. More precisely,
a choice of an ample divisor on Z determines an open subset of Spec(Cox((Z))

such that Z is a good geometric quotient of this set; see [HuKe, Prop. 2.9].
Affine varieties with an algebraic torus action were dealt with by Altmann and

Hausen [AlH1], who introduced the notion of polyhedral divisors, or p-divisors.
Every normal, affine variety X with an algebraic torus action can be described in
terms of a polyhedral divisor D = ∑

i 	i ⊗ Di over its Chow quotient Y [AlH1,
Thm. 3.4]. Alternatively, such a p-divisor can be interpreted as a convex, fanwise
linear (i.e., piecewise linear and homogeneous, defined on a cone) map from the
character lattice M of the torus to CaDivQ(Y ); see Section 2.1 for more details.
Note that, by abuse of notation, we use the word “Chow quotient” for the normal-
ization of the distinguished component of the inverse limit of the GIT quotients
of X (cf. [AlH1, Sec. 6; Hu]).
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We apply this formalism to treat the case of X = Spec(Cox(Z)) for Z as above.
Although in general the structure of the Chow quotient Y is rather obscure, our
main result (Theorem 11) asserts that the associated p-divisor is supported on a fi-
nite number of exceptional divisors Di with polyhedral coefficients 	i described
clearly in terms of stabilized multiplicities with respect to these divisors:

	i = {C ∈ Cl∗(Z)Q | C ≥ −multst
Di
} + shift.

Thus, polyhedral divisors provide an alternative view of the stabilized base point
loci and the asymptotic order of the vanishing of linear series on Z, as defined by
Ein, Lazarsfeld, Mustaţǎ, Nakamaye, and Popa [E+].

The composition of the p-divisor associated to Cox(Z), treated as a fanwise lin-
ear map D : MQ = ClQ(Z) ⊃ Eff(Z) → CaDivQ(Y ), with the divisor class map
CaDivQ(Y ) → PicQ(Y ) (dividing by Q-principal divisors) maps the cone of ef-
fective divisors on Z, denoted by Eff(Z), to the cone Nef(Y ) of nef (in this case
also semiample) divisors on Y. In Corollary 12 we show that it is a composition
of two other maps ClQ(Z) ⊃ Eff(Z) → ClQ(Z) = PicQ(Z) → PicQ(Y ). First,
one performs a retraction of Eff(Z) to the cone of movable divisors Mov(Z) that
is a union of cones Nef(Zi), where the Zi are different GIT quotients of Cox(Z).

Second, the chambers Nef(Zi) are mapped to faces of Nef(Y ) by pulling the di-
visors back along the natural morphisms Y → Zi.

Our starting point, however, is the toric case where both the Chow quotient
of Cox(Z) and the p-divisor can be described explicitly. We discuss this in Sec-
tion 3 right after the introductory Section 2, in which we recall the language of
p-divisors. The main toric result, Theorem 7, is obtained by explicit methods. In
the subsequent Section 4, we rephrase it by using dual polyhedra and the associ-
ated fanwise linear functions. These easy observations lead us to the relation to
multiplicities of divisors in base point loci of linear systems, which forms the core
of the proof of Theorem 11. This is contained in Section 5, where we also recall
the basic information about MDS.

Finally, in Section 6 we discuss the surface case and provide some further ex-
amples. If Z = S with dim S = 2, then the Chow limit Y coincides with S. So
the p-divisor defines a retraction Eff(S) to Nef(S) that reflects the Zariski de-
composition on S. It is linear on the Zariski chambers, as defined in [BKS]. The
coefficients of the p-divisor on an MDS surface are presented in Theorem 13. For
a del Pezzo surface S they look particularly nice, as in the following result.

Corollary 14. If S is a del Pezzo surface with exceptional curves Ei ⊆ S, then
the p-divisor encoding Cox(S) equals D = idCl(S) + ∑

i(0Ei + Nef(S)) ⊗ Ei.

2. The Language of Polyhedral Divisors

2.1. Definition of Polyhedral Divisors

We start by recalling the basic notions of [AlH1]. Let T be an affine torus over a
field of complex numbers C. It gives rise to the mutually dual free abelian groups,
or lattices, M := HomalgGrp(T, C∗) and N := HomalgGrp(C

∗, T ). The pairing
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of dual lattices (or, also, dual vector spaces) will be denoted by 〈·, ·〉. Via T =
Spec C[M ] = N ⊗Z C∗, the torus can be recovered from these lattices. Denote by
MQ := M ⊗Z Q and NQ := N ⊗Z Q the corresponding vector spaces over Q (the
same notation will be used whenever we extend a lattice to a Q-vector space).

Definition 1. If σ ⊆ NQ is a polyhedral cone, then we denote by Pol(NQ , σ)

the Grothendieck group of the semigroup

Pol+(NQ , σ) := {	 ⊆ NQ | 	 = σ + [compact polytope]}
with respect to Minkowski addition. Via a �→ a + σ, the latter contains NQ.

Moreover, tail(	) := σ is called the tail cone of the elements of Pol(NQ , σ).

Let Y be a normal and semiprojective (i.e., Y → Y0 is projective over an affine
Y0) C-variety. By CaDiv(Y ) and Div(Y ) we denote the group of Cartier and Weil
divisors on Y with linear equivalence groups by Pic(Y ) and Cl(Y ), respectively.
A Q-Cartier divisor on Y is called semiample if a multiple of it becomes base
point free.

Definition 2. An element D = ∑
i 	i⊗Di ∈ Pol(NQ , σ)⊗Z CaDiv(Y ) with ef-

fective divisors Di and 	i ∈ Pol+(NQ , σ) is called a polyhedral divisor on (Y, N)

with tail cone σ. Moreover, it is called semiample if the evaluations D(u) :=∑
i min〈	i, u〉Di are semiample for u∈ σ∨ ∩ M and big for u∈ int σ∨ ∩ M.

Note that the membership u ∈ σ∨ := {u ∈ MQ | 〈σ, u〉 ≥ 0} guarantees that
min〈	i, u〉 > −∞ and therefore D defines a function σ∨ → CaDivQ(Y ) that we
will denote by the same name. Sometimes, by abuse, we will refer to D as a func-
tion defined on the whole lattice M or space MQ. In such a case, for u /∈ σ∨ we
have min〈	i, u〉 = −∞ and thus, although −∞ as a Cartier divisor coefficient
does not make sense, we get as a reasonable conclusion that �(Y, OY (D(u))) = 0.

The common tail cone σ of the coefficients 	i will be denoted by tail(D).

Semiample polyhedral divisors will be called p-divisors for short. Their posi-
tivity assumptions imply that D(u) + D(u′) ≤ D(u + u′); hence OY (D) :=⊕

u∈σ∨∩M OY (D(u)) becomes a sheaf of rings, and we can define X := X(D) :=
Spec �(Y, O(D)) over Y0.

This space does not change if D is pulled back via a birational modification
Y ′ → Y or if D is altered by a polyhedral principal divisor—the latter means an
image under N ⊗Z C(Y )∗ → Pol(NQ , σ)⊗Z CaDiv(Y ). Polyhedral divisors that
differ by (chains of ) those operations only are called equivalent. Note that this
implies that one can always ask for a smooth Y.

Theorem 3 [AlH1,Thm. 3.1,Thm. 3.4, Cor. 8.12]. The map D �→ X(D) yields a
bijection between equivalence classes of p-divisors and normal, affine C-varieties
with an effective T-action.

Remark. TheT-action onX corresponds to theM-valued grading of �(Y, O(D)).

In this context, tail(D)∨ becomes the cone generated by the weights. Note also that
the knowledge of D ∈ Pol(NQ , σ) ⊗Z CaDiv(Y ) is equivalent to the knowledge
of D as the above fanwise linear (cf. Section 4.4) function σ∨ ∩M → CaDiv(Y ),
u �→ D(u).
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2.2. Morphisms between Polyhedral Divisors

The construction of X(D) is functorial: up to the aforementioned equivalences of
p-divisors, a map (Y ′, N ′, D ′) → (Y, N, D) consists of a morphism ψ : Y ′ → Y

such that the support
⋃

i Di of D does not contain ψ(Y ′) and a linear map
F : N ′ → N with∑

i

(F(	′
i ) + tail D) ⊗ D ′

i =: F∗(D ′) ⊆ ψ∗(D) :=
∑

i

	i ⊗ ψ∗(Di)

inside Pol(NQ , tail D)⊗Z CaDiv(Y ′). The inclusion is understood as a relation be-
tween the coefficients of the same divisors. In particular, we ask for F(tail D ′) ⊆
tail D.

Theorem 4 [AlH1, Cor. 8.14]. A map (Y ′, N ′, D ′) → (Y, N, D) with dominant
ψ : Y ′ → Y gives rise to an equivariant, dominant map X(D ′) → X(D), and
eventually this leads to an equivalence of categories.

2.3. Polyhedral Divisors Encode Toric Degenerations

The representation or encoding of a multigraded algebra as a p-divisor has many
advantages. First, although one misses direct information about generators and
syzygies, one should notice that this construction does entail being of finite type.
This is because only semiample divisors are used to produce the homogeneous
parts of the algebra.

However, the main advantage of a p-divisor is that it is possible to read off equi-
variant and geometric properties of the associated affineT-varietyX. This becomes
possible because X is the contraction of X̃ := X̃(D) := SpecY O(D), and this
space is a degenerate toric fibration overY. That is, there is a flat map X̃ → Y where
the general fiber is the toric variety TV(tail(D), N) := Spec C[tail(D)∨ ∩ M ].
Moreover, the divisors Di and their polyhedral coefficients 	i provide the infor-
mation about the location and the quality of the degeneration, respectively:

X̃
��

��

X

��

Y �� Y0 .

Special fibers over y ∈ Y can be reducible; their components are in a one-to-one
correspondence with the vertices of the polyhedron 	y := ∑

Di�y 	i.

Thus, also the configuration of T-orbits and their closures are directly encoded
in the presentation of X as a polyhedral divisor D. The orbits in X̃ correspond to
pairs (y, F ) with y ∈ Y and faces F ≤ 	y. Moreover, as is known from the toric
case, mutual inclusions among orbit closures correspond to opposite inclusions of
the corresponding faces. The orbit structure of X may be obtained from that of
X̃ by keeping track of when certain orbits from X̃ will be identified in X. This
happens in relation to the different contractions of Y provided by the semiample
divisors D(u).

As an example of how to use this information, see Hausen’s [H2] description
of those open subsets U ⊆ X providing a complete quotient U/T.
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3. The Toric Situation

3.1. Restriction to Subtorus Actions

If T ⊆ (C∗)n occurs as a subtorus induced by a surjective map deg: Zn →→ M

(corresponding to the choice of degrees deg xi ∈ M), then every affine toric va-
riety TV(δ) with δ ⊆ Qn inherits a T-action. By [AlH1, Sec. 11], the associated
p-divisor D(δ) can be obtained as follows. Defining MY := ker(deg), we have
two mutually dual exact sequences:

0 �� N
i �� Zn π �� NY

��

s
�� 0;

0 M�� Zn
deg

��

s∗ ��
MY

�� 0.��

Here by s we denote a section of π. Then D(δ) lives on the toric variety Y :=
TV(�) ⊇ NY ⊗Z C∗ =: TY , where � denotes the fan in NY that is the coarsest
common refinement of the image under π of all faces of δ. As a function, D(δ) is
given by

D(δ)(u) = s∗(deg−1(u) ∩ δ∨),

where the right-hand side is a polyhedron in MY whose normal fan is refined by
�. Thus, it encodes a semiample, TY -invariant divisor on Y. This implies that

D(δ) =
∑

a∈�(1)

	a ⊗ orb(a) with 	a = (π−1(a) ∩ δ) − s(a) ⊆ NQ.

Here a ∈�(1) are primitive lattice elements of rays in � and orb(a) are their as-
sociated TY -invariant divisors. The relation between these two representations of
D has been proved by [AlH2, Prop. 8.5] and, in a broader context, by [CM].

3.2. The Polyhedral Coefficients

We will now present a method to describe the coefficients 	a with inequalities.
This observation is as trivial as it is useful.

Lemma 5. In the situation of Section 3.1, the polyhedral coefficients 	a are cut
out by the inequalities 〈·, deg(r)〉 ≥ −〈s(a), r〉 for r ∈ δ∨ (or generators of δ∨).

Proof.

x ∈	a ⇐⇒ i(x) + s(a)∈π−1(a) ∩ δ ⇐⇒ i(x) + s(a)∈ δ

⇐⇒ 〈x, deg(r)〉 + 〈s(a), r〉 = 〈i(x) + s(a), r〉 ≥ 0

for all r ∈ δ∨.

3.3. Toric Cox Rings

Let F be a simplicial fan in some lattice NZ. Identifying again its 1-dimensional
rays F(1) = {a1, . . . , an} with the first lattice points sitting on them, we assume
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that F(1) generates NZ. We would like to apply Lemma 5 to understand the Cox
ring of the Q-factorial toric variety Z := TV(F ). As a ring, it is simply Cox(Z) =
C[xa | a ∈F(1)]; but by setting M := Cl(Z), it is then the M-grading that makes
it interesting. The exact sequences from Section 3.1 become

0 �� Cl(Z)∗ i �� Div∗
eq Z π �� NZ

��

s��
0,

0 Cl(Z)�� Diveq Z
p

�� MZ
div�� 0.��

Here we have denoted by Diveq Z ∼= Zn the group of TZ-equivariant divisors;
the rays ai are the images of the unit vectors ei. Note that the torus T acting on
Cox(Z) is the Picard torus T = Hom(Cl(Z), C∗). The degree cone of Cox(Z) is
the cone of effective divisors Eff(Z) ⊆ ClQ(Z). Hence, the tail of the p-divisor
DCox will be the dualized cone Eff(Z)∨ ⊆ ClQ(Z)∗.

According to Section 3.1, DCox lives on Y := TV(�) for � the coarsest fan in
NY = NZ containing all possible cones generated by subsets of F(1). In particu-
lar, � is a subdivision of F (i.e., � ≤ F ); in other words, there is a proper map
ψ : Y → Z that becomes an isomorphism if it is restricted on the tori TY = TZ. In
the surface case we have � = F; hence Y = Z and ψ = id. Finally, the choice
of the section s will not affect the upcoming result.

3.4. The Splitting of DCox

Although p-divisors on Y may be altered by so-called principal p-divisors com-
ing from N ⊗Z C(Y )∗ = Hom(M, C(Y )∗), this does not mean that D is deter-
mined by an element of Pol(NQ , σ)⊗Z PicQ(Y ). However, elements of the group
N ⊗Z PicQ(Y ) = Hom(M, PicQ(Y )) with PicQ(Y ) := CaDivQ(Y )/PDiv(Y ) �=
Pic(Y )⊗Z Q denoting the Q-Cartier divisors modulo principal divisors do indeed
give a correct description of an equivalent class of a polyhedral divisor. In partic-
ular, it makes sense to add those elements to already existing p-divisors.

Definition 6. In the case of Section 3.3, the pull-back map

M = Cl(Z) ⊆ PicQ(Z) → PicQ(Y )

defines an element ψ∗ ∈ Hom(M, PicQ(Y )) = N ⊗Z PicQ(Y ) that gives rise to a
splitting DCox = ψ∗ + D ′

Cox with some correction term D ′
Cox.

Remark. Note that, although PicQ(Y ) �= PicQ(Y ), we nevertheless have a map
PicQ(Y ) = CaDivQ(Y )/PDiv(Y ) → CaDivQ(Y )/PDivQ(Y ) = PicQ(Y ) and
therefore DCox determines a map ClQ(Z) ⊃ Eff(Z) → Nef(Y ) ⊂ PicQ(Y ).

The splitting of DCox into ψ∗ and a correction term is then quite natural. Since,
on the one hand, a p-divisor D encodes the ring

⊕
u∈M �(Y, D(u)) and, on the

other hand, Cox(Z) = ⊕
u∈M �(Z, u) = ⊕

u∈M �(Y, ψ∗u), one is tempted to say
that D = ψ∗. However, because tail(D)∨ = Eff(Z) ⊇ Nef(Z), it is generally the
case that ψ∗(tail(D)∨) �⊆ Nef(Y ); that is, ψ∗ is not a p-divisor. Thus, all u ∈
tail(D)∨ ∩ M leading to non-semiample divisors must be processed.
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3.5. The Polyhedral Divisor of Toric Cox Rings

If E ⊆ Y = TV(�) and P ⊆ Z = TV(F ) are toric prime divisors, then there
exist associated rays a(E)∈�(1) ⊆ NYZ := NY = NZ and a(P )∈F(1) ⊆ NYZ ,
respectively. Recall that we identify a ray with its integral, primitive generator.
In particular, each a(E) sits in a unique minimal cone CE ∈ F; hence there are
unique λE(P )∈Q>0 such that a(E) = ∑

a(P )∈CE
λE(P )a(P ). (Remember, F is

a simplicial fan.) Set λE(P ) := 0 for a(P ) /∈CE.

Remark. Note that λE(P ) > 0 if and only if a(P ) ∈CE if and only if ψ(E) ⊆
P. In nontoric terms, these coefficients can be expressed as λE(P ) = multE(ψ∗P).

If E is not contracted, we may identify E ⊆ Y with its divisorial image ψ(E) ⊆
Z; then λE(P ) = 1 if E = P and λE(P ) = 0 if E �= P. In dimension 2, this is
always the case (because Y = Z).

Theorem 7. D ′
Cox = ∑

E 	E ⊗ E, where E ⊆ Y runs through the toric prime
divisors and 	E ⊆ Cl(Z)∗Q is the polyhedron cut out by the inequalities 〈·, [P ]〉 ≥
−λE(P ) for toric prime divisors P. In particular, 	E ⊇ tail DCox.

Proof. In the first exact sequence of Section 3.3, we add the cosection t : Zn →
Cl(Z)∗ induced from s. Then the maps satisfy it + sπ = idZn , ti = idCl∗ , and
πs = idNYZ

:

0 �� Cl(Z)∗ i �� (Zn = Div∗
eq Z) π ��

t��
NYZ

��

s��
0.

Denote by {e(P )} ⊆ Zn = Div∗
eq Z the dual basis with respect to that of the toric

prime divisors of Z. In particular, π(e(P )) = a(P ) ∈ NYZ. This notion can be
extended to the prime divisors on Y via e(E) := ∑

a(P )∈CE
λE(P )e(P ); we keep

the property πe = a.

If E ⊆ Y is a toric prime divisor (corresponding to the ray a(E)∈�(1) ⊆ NYZ)

then, by Lemma 5, the true coefficient 	Cox
E is given by the inequalities 〈·, [P ]〉 ≥

−〈s(a(E)), P 〉, where the latter just means the P th entry of −s(a(E)) ∈ Zn. On
the other hand, the claimed inequalities for 	E of D ′

Cox are 〈·, [P ]〉 ≥ −λE(P ) =
−〈e(E), P 〉. Thus, it remains to show that b(E) := e(E)− s(a(E))∈Zn is con-
tained in Cl(Z)∗ ⊆ Zn and satisfies d := ∑

E b(E)⊗[E ] = ψ∗ ∈ Cl(Z)∗⊗Cl(Y ).

The first claim follows from b(E) = e(E) − s(a(E)) = e(E) − sπ(e(E)) =
it(e(E)). Moreover,

d =
∑
E

it(e(E))⊗ [E ] = ((it)⊗ clY )  
(∑

E

e(E)⊗E ∈ Div∗
eq Z ⊗Z Diveq Y

)
,

where cl denotes the canonical map Div → Cl. On the other hand, since for
a toric prime divisor P ⊆ Z we have ψ∗P = ∑

E λE(P )E, it follows that
ψ∗ = ∑

E,P λE(P )e(P ) ⊗ E = ∑
E e(E) ⊗ E; that is, d = ((it) ⊗ clY )  ψ∗.

Restricted via i to Cl(Z)∗, this yields ((iti) ⊗ clY )  ψ∗ = (i ⊗ clY )  ψ∗ =
(cl∗Z ⊗ clY )  ψ∗ = ψ∗

Cl.

See Section 6.3 for an example.
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4. Duality of Polyhedra

4.1. Cones over Polyhedra

Dualization of polyhedral cones via σ∨ := {x | 〈σ, x〉 ≥ 0} is a straightforward
generalization of the dualization of vector spaces. One has the basic relations
(σ∨)∨ = σ and (σ1 ∩ σ2)

∨ = σ∨
1 + σ∨

2. Moreover, via τ �→ τ ′ := τ⊥ ∩ σ∨ (for
τ ≤ σ and where the RHS ≤ σ∨), it provides a bijection of faces. For the conve-
nience of the reader, we will recall how this theory can be further extended to the
set of polyhedra containing the origin.

Let V be a finite-dimensional Q-vector space and let 	 ⊆ V be a polyhedron
containing 0. Then we define

∇ := 	∨ := {x ∈V ∗ | 〈	, x〉 ≥ −1}.
This construction can be understood by the ordinary duality notion of cones; it just
requires a definition of the cone C(	) spanned over a polyhedron 	 located in an
affine hyperplane V × {1} ⊂ V × Q. Namely, we set

C(	) := Q≥0 · (	, 1) = Q>0 · (	, 1) $ (tail(	), 0) ⊆ V ⊕ Q.

The polyhedron 	 can be recovered as the cross section 	 = C(	) ∩ (V × {1}).
Then we verify that C(∇) = C(	)∨; hence ∇∨ = (	∨)∨ = 	 and (	1 ∩	2)

∨ =
conv(	∨

1 ∪ 	∨
2). Note that 	1 + 	2 ⊆ 2 conv(	1 ∪ 	2) ⊆ 2(	1 + 	2) and that,

in general, C(	1 + 	2) �= C(conv(	1 ∪ 	2)) = C(	1) + C(	2).

4.2. Heads and Tails

Inside V there are two cones associated to 	. One is the already mentioned
tail(	) = C(	) ∩ (0, 1)⊥; since 0 ∈ 	, we have tail(	) ⊆ 	. The other is
head(	) := Q≥0	 ⊇ 	.

If 	 is itself already a polyhedral cone, then both cones coincide and are equal
to 	. In general, polyhedral duality interchanges both constructions—that is,
tail(∇) = head(	)∨ and head(∇) = tail(	)∨. Indeed, x ∈ tail 	∨ if and only
if 	∨ + Q≥0x ⊆ 	∨ if and only if 〈x, 	〉 ≥ 0 if and only if 〈x, Q≥0	〉 ≥ 0. This
duality is even more transparent if we note that

head(	) =
⋃
t→∞

t · 	 and tail(	) =
⋂
t→0

t · 	.

4.3. Face Duality

Via application of C, the nonempty faces F ≤ 	 correspond bijectively to the
faces of C(	) not contained in tail(	) ≤ C(	). The inverse map is the intersec-
tion with V × {1}. Since the dual face (tail 	)′ ≤ C(	)∨ = C(∇) contains (0, 1),
it is not contained in tail∇ and corresponds to the minimal face of ∇ that con-
tains 0. Thus, restricting the duality faces(C	) ↔ faces(C∇) to those faces with
�⊆ (tail 	) and �⊇ (tail∇)′ on the left-hand side (and doing similarly on the right),
we obtain an order- and dimension-reversing bijection
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{faces F ≤ 	 | 0 /∈F } ↔ {faces F ′ ≤ ∇ | 0 /∈F ′}.
The remainder of the bijection faces(C	) ↔ faces(C∇) translate into

{faces F ≤ 	 | 0 ∈F } = faces(head 	) ↔ faces((head 	)∨) = faces(tail∇)

and, analogously, faces(tail 	) ↔ {∇-faces containing 0}.

4.4. Fanwise Linear Functions

A rational (or real) function is called fanwise linear if it is linear on the closed
cones of a fan (and hence is continuous on the support of the fan). This is equiva-
lent to being piecewise (affine) linear and homogeneous; that is, f(t ·v) = t ·f(v)

for t ∈ Q≥0. For a polyhedron 	 ⊆ V, we define the fanwise linear function
min(	) : V ∗ → Q ∪ {−∞} by setting min(	)(v) = min〈	, v〉. In particular,
min(	)−1(Q) = (tail 	)∨. If additionally 0 ∈ 	, then min(	) : V ∗ → Q≤0 ∪
{−∞} with min(	)−1(Q≤0) = head(∇). Moreover, min(	)−1(0) = tail(∇).

Lemma 8. If 	 and ∇ are mutually dual polyhedra containing 0, then

min(	)(v) = −1

max{t ∈Q | tv ∈∇} .
Equivalently, the homogeneous, continuous function min(	) : head(∇) → Q≤0

is characterized by the property that min(	) ≡ −1 on ∂∇ ∩ int(head∇), where
∂ and int denote (respectively) the relative boundary and interior of the cone. In
particular, min(	) is equal to −1 on all nonzero vertices of ∇.

Proof. Let us consider v ∈ ∂∇ ∩ int(head∇); then t · v /∈ ∇ for every t > 1.
Moreover, by definition, 〈v, 	〉 ≥ −1 and so min(	)(v) ≥ −1. On the other
hand, if 0 > λ > −1 is such that 〈u, v〉 ≥ λ for all u ∈ 	, then 〈u, |λ|−1v〉 ≥
−1. Hence, by definition of duality of polyhedra, |λ|−1v is in ∇—contradicting
the assumption.

Conversely, let f : β → Q≥0 be a fanwise linear function defined on a ratio-
nal, convex polyhedral cone β ⊆ V ∗. We assume that f is also concave; that is,
f(v1 + v2) ≤ f(v1) + f(v2). Defining

∇f := conv{f(v)−1 · v | v ∈ β} with 0−1 · v := Q≥0 · v
yields a polyhedron with head(∇f ) = β and tail(∇f ) = f −1(0).

Lemma 9. Let 	f be a polyhedron dual to ∇f as defined previously. Then, over
the cone β ⊆ V ∗,

min(	f) = −f.

Proof. Let us set g(v) = (sup{t | tv ∈ ∇f })−1. Clearly, both f and g van-
ish exactly on tail(∇f ) ⊂ σ, so we can assume that v is chosen such that both
are nonzero. By definition of ∇f we have f(v)−1 · v ∈ ∇f ; hence f(v)−1 ≤
sup{t | tv ∈ ∇f } and thus g(v) ≤ f(v). Now suppose that t · v ∈ ∇f . Then, by
definition of ∇f ,
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t · v =
∑

i

aif(vi)
−1 · vi

for some vi ∈ σ and positive numbers ai such that
∑

i ai = 1. Applying the func-
tion f to both sides of the equality and using its homogenity and convexity, we get

t · f(v) ≤
∑

i

aif(vi)
−1 · f(vi)

and so t · f(v) ≤ 1. Thus sup{t | tv ∈∇f } ≤ f(v)−1; hence g(v)−1 ≤ f(v)−1 and
thus g(v) ≥ f(v). Since g = −min(	f), this concludes the proof.

Remark. It is possible to weaken the assumption of fanwise linearity to homo-
geneity of f (see the preceding proof ). Then ∇f and 	f still become well-defined,
mutually dual convex bodies, although they lose their polyhedral structure.

4.5. Dualized Cox Coefficients

The duality described in Section 4.1 allows a nicer description of the polyhedral
coefficients 	E ⊆ ClQ(Y )∗ from Theorem 7. Since they contain the origin, it
makes sense to define their duals ∇E := 	∨

E ⊆ ClQ(Z). It follows that

∇E = conv{0, [P ]/λE(P ) | ψ(E) ⊆ P ⊆ Z} + ∑
P �⊇ψ(E) Q≥0 · [P ]

= conv{[P ]/λE(P ) | P ⊆ Z} ⊆ head∇E = Eff(Z),

where v/0 := Q≥0 · v, P runs through the toric prime divisors of Z, and λE(P ) =
multE(ψ∗P). Using these polyhedra, we obtain that D ′

Cox = ∑
E ∇∨

E ⊗E and that
D ′

Cox(u) contains E with multiplicity

min〈	E , u〉 = −1

max{λ∈Q | λu∈∇E} ∈Q≤0 ∪ {−∞}.

5. Mori Dream Spaces and Their Cox Polyhedral Divisors

5.1. Mori Dream Spaces

Mori dream spaces (MDS) were introduced in [HuKe]. Recall that Z is a Q-
factorial variety, Cl(Z) is a lattice, and Cox(Z) is finitely generated.

The birational geometry of Z is finite. In other words, Z has finitely many small
(i.e., isomorphic in codimension 1) Q-factorial modifications Zi (set Z0 := Z);
we will call them SQM models of Z. The varieties Zi are exactly the Q-factorial
GIT quotients of Cox(Z) by the Picard torus arising from linearizations of the
trivial bundle depending on the choice of a character of the torus; see [HuKe]. All
models Zi share the same Cox ring and can be distinguished by pure combina-
torics (cf. [H1]). In particular, by strict transforms we can identify Div(Zi) and
Cl(Zi) with Div(Z) and Cl(Z), respectively. The same holds true for the cones
Eff(Zi) = Eff(Z) and Mov(Zi) = Mov(Z). However, the cones Nef(Zi) are
different: int Nef(Zi) ∩ int Nef(Zj ) = ∅ if Zi �= Zj , and we have the decompo-
sition Mov(Z) = ⋃

i Nef(Zi) [HuKe, 1.11(3)]. This chamber decomposition is
polyhedral and coincides with that of the stability with respect to the Picard torus
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(cf. [HuKe, 2.3; DHu]). Finally, perhaps the most striking feature of Mori dream
spaces is that nefness implies semiampleness.

5.2. The Chow Limit

Let Y be the Chow quotient of Cox(Z) by the Picard torus—that is, by abuse
of notation, the normalized component of the inverse limit of the models (GIT
quotients) Zi that is birational to the original Z. In particular, we have birational
morphisms ψi : Y → Zi.

Note that Y carries the following two types of exceptional divisors.

(i) An irreducible divisor E ⊆ Y is said to be of the first kind if it is a component
of the exceptional locus of a morphism ψi : Y → Zi. Note that, since Zi is
Q-factorial, the exceptional locus of ψi is of pure codimension 1. Moreover,
since the Zi are isomorphic outside codimension 2, the set of exceptional di-
visors is the same for all ψi.

(ii) We say that an irreducible divisor E is an exceptional divisor of the second
kind if it is a strict transform to Y of a (divisorial) component of an excep-
tional locus of a birational morphism (divisorial contraction) of a Zi. In other
words (cf. [HuKe, 1.11(5)]), E is a strict transform of a nonmovable divisor
from Z.

5.3. Stabilized Multiplicities

Letψ : Y → Z be a proper, birational morphism andE ⊆ Y a prime divisor. Then,
in the toric case of Sections 3.5 and 4.5, the multiplicities λE(P ) = multE(ψ∗P)

of a divisor ψ∗P in the general point of E in Z.

In [E+, Sec. 2] there is a stable version of these multiplicities. At least for big
divisors P, one defines multst

E(ψ∗P) either as the E-multiplicity of the stable base
locus of P or, by [E+, Lemma 3.3], as

multst
E(ψ∗ [P ]) := inf

D∈|P |Q
multE(ψ∗D) ≤ multE(ψ∗P).

Here D ∈ |P |Q means that D is an (effective) Q-divisor with mD ∈ |mP | for
m * 0. Finally, it follows from [E+, Thm. D] that, for a Mori dream space Z, the
stable multiplicity function multst

E := multst
E  ψ∗ can be extended to a concave,

fanwise linear function on Eff(Z) ⊆ Cl(Z)Q. We have the following immediate
consequence of Lemma 9.

Corollary 10. Let Z be an MDS and ψ : Y → Z the birational morphism from
the Chow quotient of Cox(Z). Let E ⊆ Y a prime divisor. Then

∇E := conv

{
[P ]

multst
E ψ∗ [P ]

∣∣∣ [P ] ∈ Eff Z

}
⊆ Cl(Z)Q

and
	E := {C ∈ Cl∗(Z)Q | C ≥ −multst

E}
are mutually dual polyhedra with min(	E) = −multst

E. Moreover, if Z is toric
then they coincide with those from Section 4.5.
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5.4. The Cox Polyhedral Divisor of a Mori Dream Space

Now we are able to present the p-divisor DCox describing the Cox ring of an MDS.
As in Definition 6, we split DCox = ψ∗ + D ′

Cox.

Theorem 11. The part D ′
Cox of the p-divisor of the Cox ring of a MDS equals

D ′
Cox =

∑
E⊂Y

	E ⊗ E,

where the coefficients 	E are defined in Corollary 10 and the sum is formally taken
over all divisors E ⊂ Y. However, if E is not one of the finitely many exceptional
divisors as described in (i) and (ii) of Section 5.2, then the corresponding coeffi-
cient is trivial; that is, 	E = tail D = Eff(Z)∨ ⊆ Cl(Z)∗Q anyway.

Proof. We will treat all SQM models Zi on equal footing; that is, we consider
Di := ψ∗

i + D ′
i with D ′

i := ∑
E⊂Y 	i

E ⊗ E and 	i
E := {C ∈ Cl∗(Zi)Q |

〈C, [P ]〉 ≥ −multE ψ∗
i P }. Since the divisors on Zi are identified, via the strict

transform, with those on Z, we can compare the Di as functions Di : Div(Z) =
Div(Zi) → CaDivQ(Y ). Taking, as we did in Corollary10, the function multst

E  ψ∗
i

for the fanwise linear map f in Section 4.4, we obtain that Di(D) = ψ∗
i (D) −∑

E⊂Y multst
E ψ∗

i (D) · E for D ∈ Div Z.

We claim that Di(D) = Dj(D). Indeed, since the multiplicities of D along di-
visors E contained in Z (isomorphic in codimension 1 to Zi and Zj) are the same,
we conclude that the difference Di(D)−Dj(D) is supported on divisors contracted
by ψ. More precisely, we have

Di(D) − Dj(D) =
(
ψ∗

i (D) −
∑

E⊂Exc(ψ)

multst
E ψ∗

i (D) · E
)

−
(
ψ∗

j (D) −
∑

E⊂Exc(ψ)

multst
E ψ∗

j (D) · E
)
.

But ψ∗
i (D)−∑

E⊂Exc(ψi )
multE ψ∗

i (D) ·E is the strict transform of the Q-Cartier
divisor D from Zi to Y via the birational mapping ψi : Y → Zi; hence, again by
isomorphism in codimension 1, it is the same for ψj : Y → Zj . Thus, passing to
the limit from multE to multst

E , we get the conclusion of our claim.
Let us recall that, by [HuKe, Prop. 1.11(5)], every big divisor D ∈ Div Z

(possibly replaced by its multiple) admits a canonical splitting D = mov(D) +
fix(D) into the stable movable and fixed part, respectively. Moreover, there is an
SQM model Zi such that mov(D) ∈ Nef(Zi); in other words, mov(D) is semi-
ample on Zi. Thus, the linear system |mov(D)| can be assumed base point free
so that it defines a contraction of Zi such that the support of fix(D) is in the
exceptional locus of the contraction. If Eν ⊆ Zi denote divisors contracted by
|mov(D)| then, by definition, fix(D) = ∑

ν multst
Eν

(D) ·Eν. We note that we can
write multst

Eν
(D) = multEν

(D) because |mov(D)| is base point free and D ∈ |D| =
|mov(D)| can be chosen general. Thus,
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ψ∗
i (D) = ψ∗

i (mov(D)) +
∑
ν

multst
Eν

(D) · ψ∗
i (Eν)

= ψ∗
i (mov(D)) +

∑
ν

multst
Eν

(D) ·
(
Êν +

∑
E⊂Exc(ψi )

multE(ψ∗
i Eν) · E

)

where Êν ⊆ Y denotes the strict transform via ψ∗
i of Eν (i.e., becoming an excep-

tional divisor of the second kind) and where the second summation is restricted to
exceptional divisors of the first kind. In particular, ψ∗

i (D)−ψ∗
i (mov(D)) is sup-

ported exclusively on exceptional divisors (of both kinds). On the other hand, as
the pull back of a semiample divisor, ψ∗

i (mov(D)) contains no exceptional com-
ponents when D is general in its linear system. Thus,

ψ∗
i (D) = ψ∗

i (mov D) +
∑
E⊂Y

multst
E(ψ∗

i D) · E;

therefore, if D(D) denotes the mutually equal Di(D), we obtain that D(D) =
ψ∗

i (mov(D)) and that D(D) inherits the semiampleness from mov(D) on Zi.

Eventually, since |mov(D)| = |D|, the natural inclusion map ιi : �(Y, D(D)) =
�(Y, ψ∗

i (mov D)) → �(Y, ψ∗
i (D)) = �(Z, D) becomes an isomorphism. Since

the maps D �→ D(D) and D �→ ψ∗
i (D) − ∑

E multst
E(ψ∗

i D) · E are both piece-
wise linear, this extends to the whole effective cone being the closure of the cone
of big divisors (cf. [La, Thm. 2.2.26]). In particular, D is a decent p-divisor and
�(Y, D(D)) → �(Z, D) is an isomorphism for every D ∈ Eff(Z)∩ Cl(Z); hence⊕

D∈Cl(Z)

�(Z, D) =
⊕

D∈Cl(Z)

�(Y, D(D))

gives a presentation of Cox(Z) as a p-divisor.

The arguments in the proof of Theorem 11 yield the following observation (cf. the
remark following Definition 6).

Corollary 12. The fanwise linear map DCox : Eff(Z) → Nef(Y ) associated to
the p-divisor DCox is a composition of a fanwise linear retraction Eff(Z) →
Mov(Z) and a fanwise linear map Mov(Z) → Nef(Y ) whose restriction to
the cone Nef(Zi), for every SQM model Zi, coincides with the pull-back map
ψ∗

i : Nef(Zi) → Nef(Y ).

5.5. Example: Blowing Up Two Points in P3

This is perhaps the simplest 3-dimensional example to illustrate Corollary 12. Let
Z be the blow-up of P3 in two points, say x1 and x2, with exceptional divisors
denoted by E1 and E2. The strict transform of a general plane, a plane passing
through each of these points, and a plane passing through both of them defines di-
visors whose classes span Mov(Z). The rational maps defined by these divisors
are onto P3, P2, and P1, respectively. The flop along the strict transform of the
line passing through x1 and x2 yields another SQM model, let us call it Z1. The
variety Y results from blowing up this strict transform.

Now Figure 1 presents sections of cones in spaces of divisor classes. The 3-
dimensional cone Eff(Z) presented on the left-hand side gets retracted to Mov(Z);
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the regions on which the retraction is linear are denoted by dotted line segments.
Next Mov(Z) = Nef(Z) ∪ Nef(Z1) is mapped linearly on each Nef cone to two
3-dimensional faces of the 4-dimensional cone Nef(Y ).

We note that only two of the four faces of the tetrahedron representing the section
of the 4-dimensional cone Nef(Y ) are associated to SQM models of Z. The other
two faces represent contractions of Y to P3 blown up at one point (x1 or x2) and
then along the strict transform of the line passing through x1 and x2. This is equiv-
alent to blowing up the line first and then blowing up the fiber of the exceptional
divisor above x1 or x2. In particular, the dotted edge of the tetrahedron represents
the contraction of Y to P3 blown up along the line passing through x1 and x2.

6. Surfaces

6.1. Specializing the General Result

The case of (Q-factorial Mori dream) surfaces Z = S is special for two reasons.
First, it does not require the pull back to the Chow quotient (i.e., Y = Z = S with
ψ = ψi = id), and D : Eff(S) → Nef(S) simply reflects the Zariski decomposi-
tion. Indeed, given any effective divisor D on S, we can write it uniquely as the sum
D ≡ P + ∑

i aiEi; here P ∈ Nef(S), the Ei are exceptional curves (if there are
any) such that (P ·Ei) = 0, and the coefficients ai = multst

Ei
D. Thus P = D(D).

Second, the Q-valued intersection product, denoted simply by a dot, allows one
to identify vector spaces Cl(S)∗Q = Cl(S)Q with 〈C1, C2〉 = (C1 · C2). In par-
ticular, the polyhedral coefficients 	E will be contained in Cl(S)Q now and have
Nef(S) = Eff(S)∨ as their common tail cone. If S is smooth, then we even know
that Cl(S)∗ = Cl(S). In general, this equation has to be replaced by Cl(S)∗ =
{D ∈ Cl(S)Q | 〈D, Cl(S)〉 ⊂ Z}. Finally, we recognize the (finitely many) excep-
tional divisors Ei ⊆ S by their negative self-intersection numbers (E 2

i ).

Theorem 13. Let S be a Mori dream surface with exceptional divisors Ei ⊂ S.

Then D ′
Cox = ∑

i 	i ⊗ Ei with

	i = {D ∈ Eff(S) | (D · Ei) ≥ −1 and (D · Ej) ≥ 0 for j �= i},
and the dual coefficients equal ∇i = 0Ei + ∑

j �=i Q≥0[Ej ] + Nef(S). (By 0Ei

we denote the line segment connecting 0 and [Ei] inside ClQ(S).)
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Proof. This is a reformulation of Theorem 11. Note that 	i and ∇i are dual with
respect to the intersection product. On the other hand, by Lemma 8 the function
defined by ∇i is just −multst

Ei
.

6.2. del Pezzo Surfaces

Let S = Sd be a smooth del Pezzo surface of degree d = K2
S . By definition, −KS

is ample. Any such Sd is known to be P1 × P1 (d = 8) or a blow-up of P2 at
r := 9 − d general points. It is known that, for d ≤ 7, the cone Eff(S) is gener-
ated by a finite number of (−1)-curves. In fact, any nonmovable curve on such S

is a (−1)-curve. In this special case, the polyhedral coefficients from Theorem 13
become especially easy.

Corollary 14. If S is a del Pezzo surface and E is a (−1)-curve, then the only
vertices of 	E are 0 and [E ]. In particular, the polyhedral coefficients of D ′

Cox

are as follows: 	E = conv{0, [E ]} + Nef(S) = 0[E ] + Nef(S).

Proof. If D ∈ 	E (i.e., if D is an effective Q-divisor with (D · E) ≥ −1 and
(D ·F ) ≥ 0 for (−1)-curves F �= E), then we must show that D ∈ 0E +Nef(S).

If D was already nef, then we are done. If not, then by rescaling we may assume
that (D · E) = −1 and then claim that D ′ := D − E is nef. First, (D ′ · E) =
(D · E) − (E 2) = 0. Then, if F is an arbitrary (−1)-curve different from E, we
may write D = eE + fF +P with e, f ≥ 0 and P being effective without E and
F contributions. Thus,

−1 = (D · E) = −e + f(F · E) + (P · E) ≥ −e + f(F · E);
hence e−1 ≥ f(F ·E) ≥ 0. This implies that D ′ is effective and, moreover, that

(D ′ · F ) ≥ (e − 1)(E · F ) − f ≥ f(E · F )2 − f = f((E · F )2 − 1).

If (E · F ) �= 0 then we obtain (D ′ · F ) ≥ 0; in the opposite case of (E · F ) = 0,
we simply conclude via (D ′ · F ) = (D · F ) − (E · F ) = (D · F ) ≥ 0.

Remark. Let S = Sd be a smooth del Pezzo surface of degree d ≤ 7 that is a
blow-up of P2 at r := 9 − d general points; by E1, . . . , Er ⊂ S we denote their
preimages. Then Cl(S) = ZH ⊕ (⊕r

i=1 ZEi); hence idCl S = [H ] ⊗ [H ] −∑r
i=1[Ei] ⊗ [Ei]. In particular,

DCox = ([H ] + Nef(S)) ⊗ H

+
r∑

i=1

([−Ei]0 + Nef(S)) ⊗ Ei +
∑

E/∈{Ei}
(0[E ] + Nef(S)) ⊗ E,

where E in the last sum is meant to run through the (−1)-curves that are outside
{E1, . . . , Er}.
Corollary 14 says that Zariski decomposition on a del Pezzo surface is orthog-
onal. That is, any effective divisor D on S can be written uniquely as the sum
D ≡ P + ∑

i aiEi, where P ∈ Nef(S) and the Ei are (−1)-curves such that
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(P · Ei) = 0, ai = multEi
D, and (Ei ·Ej) = 0 if i �= j. The last of these proper-

ties is known and follows from the fact that the birational morphism of a del Pezzo
surface associated to |mP |, m * 0, contracts disjoint (−1)-curves Ei.

6.3. Example: Blowing Up Two Points in P2

The following two examples are just toric, but they nevertheless illustrate the spe-
cial shape of DCox for del Pezzo surfaces and indicate how it differs from a some-
what more general situation. First, we consider a surface S1 that is an ordinary
blowing up of P2 in two points; second, we present a surface S2 that is a P2 with
two infinitesimally near points blown up.

The toric surface S1 is given by the fan �1 = {(1, 0), (1, 1), (0, 1), (−1, 0),
(−1,−1)}. The exceptional divisors of the blowing up are E1 = orb(1, 1) and
E2 = orb(−1, 0) together with the strict transform E0 = orb(0, 1) of the line con-
necting the two centers; they are the only (−1)-curves in S1.

Let [H ] denote the pull back of the line in P2. Then [E0 ] = [H ]− [E1]− [E2 ],
and the nef cone Nef(S1) is formed by the strict transforms [A] = [H ] − [E1] =
[E0 ]+[E2 ] and [B] = [H ]−[E2 ] = [E0 ]+[E1] and by [H ] = [E0 ]+[E1]+[E2 ]
itself. The ample anticanonical bundle is [−K] = 3[H ] − [E1] − [E2 ] =
[A] + [B] + [H ]; see Figure 2.
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The classes of the Ei form a basis of Cl(S1), and the associated intersection
matrix is 

−1 1 1
1 −1 0
1 0 −1


.

This implies that idCl S1 = [H ] ⊗ [E0 ] + [A] ⊗ [E1] + [B] ⊗ [E2 ], and the coef-
ficients of Ei in D ′

Cox S1
are indeed 	Ei

= 0[Ei] + Nef(S1).

For the second example S2, the left- and right-hand sides of Figure 3 depict the
fan and the class group, respectively. Here E2 is the exceptional curve of the sec-
ond blow-up, E1 is the (strict transform via the second blow-up of the) exceptional
curve of the first blow-up, and E0 is the strict transform of the line.
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Using the basis {[E0 ], [E1], [E2 ]}, the intersection matrix is
−1 0 1

0 −2 1
1 1 −1


.

The pull back of the line is [H ] = [B] = [A] + [E1] + [E2 ] with [A] =
[E2 ] + [E0 ], [B] = [E0 ] + [E1] + 2[E2 ], and [C] := 2[E0 ] + [E1] + 2[E2 ] =
2[A] + [E1] = [B] + [E0 ] generating the nef cone Nef(S2). This implies that
idCl S2 = [A] ⊗ [E1] + [C] ⊗ [E2 ] + [B] ⊗ [E0 ] and that the compact parts of the
coefficients of the Ei in D ′

Cox S2
are 	

comp
E0

= 0[E0 ]; however,

	
comp
E1

= conv
{
0, 1

2 [E1], [E1] + [E2 ]
}

and

	
comp
E2

= conv{0, [E2 ], [E1] + 2[E2 ]}.
The two surfaces are homeomorphic; in fact, there exists a deformation of S2 to

S1. Thus we can identify respective homology classes and put them in one picture
(see Figure 4). The cohomology classes [H ], [E0 ], [E2 ], and [A] are the same
for both surfaces, the class of the second blow-up we denote by [E1]1 and [E1]2,
respectively. To make the picture transparent, the boundaries of Eff cones (as well
as their division in Zariski chambers) are denoted by dotted line segments.

[E2 ]

[E0 ]

[E1]1 [E1]2

[A]

[H ]

• •
•

�������

������� •
									

Figure 4
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Figure 4 describes a typical situation: the effective cone, as the function of a
deformation, is upper semicontinuous (i.e., Eff(S2) ⊃ Eff(S1)) while the nef or
movable cone is lower semicontinuous (i.e., Mov(S2) ⊂ Mov(S1)).
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