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Variation Formulas for L1-Principal Functions
and Application to the

Simultaneous Uniformization Problem

Sachiko Hamano

1. Introduction

Let R = ⋃
t∈B(t,R(t)) and R̃ = ⋃

t∈B(t, R̃(t)) be unramified sheeted domains
over B ×Cz, where B = {|t | < ρ} is a disk in C t and R(t) � R̃(t) for t ∈B. We
set ∂R =⋃

t∈B(t, ∂R(t)) in R̃. In this paper, we assume that

R : t ∈B → R(t)

is a Cω smooth variation of domains R(t) with Cω smooth boundaries in R̃(t).

Namely, we can choose a real-analytic defining function ϕ(t, z) of ∂R such that
∂ϕ

∂z
	= 0 on ∂R. We denote by Cj(t) (j = 0,1, . . . , ν), where ν ≥ 0 is indepen-

dent of t ∈B, the boundary contours of R(t) in R̃(t) with the orientation ∂R(t) =∑ν
j=0 Cj(t). Assume that the total space R contains B × {0}. Precisely, there

exists at least one constant section O of R over B × {0}. For each t ∈B, we con-
ventionally write 0 for the point O ∩ R(t).

Let t ∈B be fixed. In the theory of one complex variable, it is known that there
exists a unique real-valued function u(t, z) on R(t) \ {0} satisfying the following
four conditions:

(1) u(t, z) is harmonic on R(t) \ {0} and is continuous on R(t);
(2) u(t, z)− log 1

|z| is harmonic at z = 0;
(3) u(t, z) = 0 on C0(t);
(4) for each i = 1, . . . , ν, we have

(i) u(t, z) = ai(t) : constant on Ci(t) and
(ii)

∫
Ci(t)
∗ du(t, z) = 0.

We note that u(t, z) extends harmonically across ∂R(t) as a harmonic function
on V(t) such that ∂R(t) � V(t) � R̃(t). By (2), we find a neighborhood U0(t) of
z = 0 such that

u(t, z) = log
1

|z| + γ (t)+ h(t, z) on U0(t), (1.1)

where γ (t) is the constant term and h(t, z) is harmonic for z on U0(t) such that

h(t, 0) = 0, t ∈B. (1.2)
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The function u(t, z) is called the L1-principal function on R(t) with logarith-
mic pole at 0 with respect to C0(t), and γ (t) is called the L1-constant for (R(t), 0)
with respect toC0(t) (cf. [7]). In this paper, we simply call u(t, z) theL1-principal
function for (R(t), 0,C0(t)) and call γ (t) the L1-constant for (R(t), 0,C0(t)). We
note that u(t, z) > 0 in R(t) \ {0} and that ai(t) > 0 (i = 1, . . . , ν).

Then we have the following variation formula for the L1-constant γ (t) for
(R(t), 0,C0(t)).

Lemma 1.1. It holds for t ∈B that

∂ 2γ (t)

∂t∂t̄
= − 1

π

∫
∂R(t)

k2(t, z)

∣∣∣∣∂u(t, z)∂z

∣∣∣∣2

dsz − 4

π

∫∫
R(t)

∣∣∣∣∂ 2u(t, z)

∂t̄∂z

∣∣∣∣2

dx dy,

where

k2(t, z) =
(
∂ 2ϕ

∂t∂t̄

∣∣∣∣∂ϕ∂z
∣∣∣∣2

− 2 Re

{
∂ 2ϕ

∂t̄∂z

∂ϕ

∂t

∂ϕ

∂z̄

}
+

∣∣∣∣∂ϕ∂t
∣∣∣∣2

∂ 2ϕ

∂z∂z̄

)/ ∣∣∣∣∂ϕ∂z
∣∣∣∣3

on ∂R and does not depend on the choice of defining functions ϕ(t, z) of ∂R and
where dsz is the arc length element of ∂R(t) at z.

The function k2(t, z) on ∂R is due to Maitani andYamaguchi in [4], which is based
on [3]. This variation formula is formally the same as that for the Robin constant
λ(t) (induced by the Green function g(t, z) onR(t)with logarithmic pole at z = 0)
in [4, Thm. 3.1]. The essential difference in the proofs for γ (t) and λ(t) is because,
unlike the Green function g(t, z), u(t, z) is not a defining function of ∂R.

Theorem 1.2. Under the same conditions as in Lemma 1.1, if R is pseudoconvex
over B × Cz then γ (t) is a Cω superharmonic function on B.

Remark 1. For Lemma 1.1, we assumed that R is unramified over B × Cz.

However, Lemma 1.1 (and hence Theorem 1.2) holds even if each R(t), t ∈B, has
a finite number of branch points ζk(t) (k = 1, . . . ,m) such that, for t ∈B, ζk(t) is
a holomorphic function on B with ζk(t) 	= ζl(t) (k 	= l ). The reason is that this
case can be reduced to Lemma 1.1 via the standard method by using Nishimura’s
theorem [5].

In the special case when R(t) is a planar Riemann surface, the L1-principal func-
tion u(t, z) induces a circular slit mapping f(t, z). That is, if we choose a branch
u∗(t, z) of a harmonic conjugate function of u(t, z) on R(t), t ∈B, such that

f(t, z) = eγ (t)−(u(t,z)+iu
∗(t,z))

is of the form

w = f(t, z) = z+
∞∑
j=2

bj(t)z
j on U0(t),

then f(t, z) conformally maps R(t) onto a circular slit domain {|w| < eγ (t)} \( ⋃ν
i=1 (i

)
, where (i(t) = f(t,Ci(t)) (an arc of the circle {|w| = eγ (t)−ai(t)). If R
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is pseudoconvex over B×Cz then eγ (t) is logarithmic superharmonic on B, so the
total space

⋃
t∈B{|w| < eγ (t)} is a Hartogs domain in B × Cw.

Remark 2. We note that the same property of radial slit mapping does not hold
for the radius r0(t). Indeed, as will be shown in the next section, there exist pseudo-
convex domains R in B × Cz such that the log r0(t) are neither superharmonic
nor subharmonic on B.

Under the same conditions as for the unramified domain R =⋃
t∈B(t,R(t)) in R̃

over B × Cz and for ∂R(t) = ∑ν
j=0 Cj(t), we assume that there exist two holo-

morphic sections,
*0 : z = 0 and *1 : z = ξ(t),

of R over B such that *0 ∩*1 = ∅. Let t ∈B be fixed. In the theory of one com-
plex variable, there exists a unique real-valued function p(t, z) on R(t) \ {0, ξ(t)}
satisfying the following four conditions:

(I) p(t, z) is harmonic on R(t) \ {0, ξ(t)} and continuous on R(t);
(II) p(t, z)− log 1

|z| is harmonic at z = 0 and

lim
z→0

(
p(t, z)− log

1

|z|
)
= 0;

(III) p(t, z)− log|z− ξ(t)| is harmonic at z = ξ(t);
(IV) for each j = 0,1, . . . , ν, we have

(i) p(t, z) = aj(t) : constant on Cj(t) and
(ii)

∫
Cj(t)
∗ dp(t, z) = 0.

We note that p(t, z) extends harmonically across ∂R(t) as a harmonic function
on V(t) such that ∂R(t) � V(t) � R̃(t), −∞ < p(t, z) < +∞, and −∞ <

aj(t) < +∞.

By (II), we find a neighborhood U0(t) of z = 0 such that

p(t, z) = log
1

|z| + h0(t, z) on U0(t), (1.3)

where h0(t, z) is harmonic for z on U0(t) and

h0(t, 0) = 0, t ∈B. (1.4)

By (III), we find a neighborhood Uξ(t) of z = ξ(t) such that

p(t, z) = log|z− ξ(t)| + α(t)+ hξ (t, z) on Uξ(t), (1.5)

where α(t) is a real constant, hξ (t, z) is harmonic for z on Uξ(t), and

hξ (t, ξ(t)) = 0, t ∈B. (1.6)

In this paper, we simply call p(t, z) the L1-principal function for (R(t), 0, ξ(t))
and call α(t) the L1-constant for (R(t), 0, ξ(t)).

Under this situation, we have the following.
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Lemma 1.3. It holds for t ∈B that

∂ 2α(t)

∂t∂t̄
= 1

π

∫
∂R(t)

k2(t, z)

∣∣∣∣∂p(t, z)∂z

∣∣∣∣2

dsz + 4

π

∫∫
R(t)

∣∣∣∣∂ 2p(t, z)

∂t̄∂z

∣∣∣∣2

dx dy.

Theorem 1.4. Under the same conditions as in Lemma 1.3, if R is pseudoconvex
over B×Cz then α(t) is a Cω subharmonic function on B. This is also true under
the same condition for R as in Remark 1.

As an application of Theorem 1.4, we demonstrate the following fact. Let B be
a simply connected domain in C t . Let π : S → B be a holomorphic family of
compact Riemann surfaces S(t) = π−1(t) over B such that each fiber S(t) is of
genus ≥ 2 and nonsingular in S. For a fixed t ∈B, we consider the Schottky cov-
ering S̃(t) of each S(t) (see [1, 19F, p. 241; 2, Sec. 101, p. 266]). We denote by S̃
the total space of the variation t ∈ B → S̃(t); namely, S̃ = ⋃

t∈B(t, S̃(t)). Then
we have our final result as follows.

Theorem 1.5. The total space S̃ consisting of the Schottky covering S̃(t) of com-
pact Riemann surfaces S(t) with one complex parameter t ∈B is holomorphically
uniformized to a univalent domain on B × P

1.

In [4], Maitani and Yamaguchi proved that, if R = ⋃
t∈B(t,R(t)) is an unrami-

fied pseudoconvex domain over B × Cz such that each R(t), t ∈B, is planar and
parabolic, then R is holomorphically uniformizable to a domain in B × P

1. Since
the Schottky covering S̃(t) of a compact Riemann surface S(t) of genus g ≥ 2 is
planar but not parabolic, their theorem and method cannot be applied to our case.
In [8], Yamaguchi discussed Theorem 1.5 and offered a rough sketch of the proof.
However, his sketch had a “gap”. This paper bridges that gap by establishing the
variation formula for L1-principal functions (Lemma 1.3), leading to Theorem 1.5.

Acknowledgments. The author would like to offer thanks to Professor Hiroshi
Yamaguchi for invaluable discussions and comments. The author would also like
to express her gratitude to the referee, who read the manuscript with care.

2. Proof of Lemma 1.1

In the proof we put a0(t) ≡ 0 on C0(t), so that we can simply write

u(t, z) = ai(t) on Ci(t), i = 0,1, . . . , ν.

We divide the proof into two steps.

Step 1: For each t ∈B and i = 0,1, . . . , ν, it holds, along Ci(t), that

∂ 2u

∂t∂t̄

∂u

∂nz
dsz = 2k2(t, z)

∣∣∣∣∂u∂z
∣∣∣∣2

dsz + ∂ 2ai

∂t∂t̄

∂u

∂nz
dsz

+ 4 Im

{
∂u

∂t

∂ 2u

∂t̄∂z
dz

}
− 4 Im

{
∂ai

∂t

∂ 2u

∂t̄∂z
dz

}
. (2.1)
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Proof. Since R : t ∈B → R(t) is aCω smooth variation of unramified domains
R(t) with Cω smooth boundary over Cz, we remark from the standard argument
that u(t, z) is real-analytically extended for (t, z) beyond ∂R to a neighborhood
V = ⋃

t∈B(t,V(t)) of ∂R in R̃ such that, for each fixed t ∈ B, we have V(t) ⊃
∂R(t) and u(t, z) is harmonic for z ∈ R(t) ∪ V(t) \ {0}. (

This immediately im-

plies that γ (t) is also real-analytic on B, since γ (t) = 1
2π

∫ 2π
0 h(t, εeiθ ) dθ.

)
It suffices to prove (2.1) for t = 0 and at an arbitrary fixed point ζ on Ci(0). We

first prove (2.1) at (0, ζ) when

∂u

∂nζ
(0, ζ) > 0. (2.2)

In this case we have a neighborhood B0×V0 of (0, ζ) such that B0 � B and V0 �
V(t) for t ∈B0 and such that

u(t, z) < ai(t) on R(t) ∩V0 for t ∈B0,
u(t, z) = ai(t) on ∂R(t) ∩V0 for t ∈B0,
u(t, z) > ai(t) on R(t)c ∩V0 for t ∈B0.

It follows that u(t, z) − ai(t) is a Cω defining function of ∂R ∩ [B0 × V0 ]. We
simply set

ui(t, z) = u(t, z)− ai(t) in B0 ×V0.

Since k2(t, z) on ∂R does not depend on the choice of defining functions, it fol-
lows that on ∂R ∩ [B0 ×V0 ] we have

k2(t, z) =
(
∂ 2ui

∂t∂t̄

∣∣∣∣∂ui∂z

∣∣∣∣2

− 2 Re

{
∂ 2ui

∂t̄∂z

∂ui

∂t

∂ui

∂z̄

}
+

∣∣∣∣∂ui∂t

∣∣∣∣2
∂ 2ui

∂z∂z̄

)∣∣∣∣∂ui∂z

∣∣∣∣−3

.

Since ui(t, z) is harmonic for z and ai(t) is independent of z, we have

∂ 2ui

∂z∂z̄
= 0,

∂ui

∂z
= ∂u

∂z
and

∂ui

∂z̄
= ∂u

∂z̄
,

∂ 2ui

∂t̄∂z
= ∂ 2u

∂t̄∂z
.

Since ui(t, z) = 0 on Ci(t) and ui(t, z) < 0 on R(t) ∩V0, we have∣∣∣∣∂u∂z
∣∣∣∣ = ∣∣∣∣∂ui∂z

∣∣∣∣ = 1

2

∂ui

∂nz
= 1

2

∂u

∂nz
> 0 along Ci(t) ∩V0.

It follows that, along Ci(t) ∩V0,

∂ 2ui

∂t∂t̄
=

(
k2(t, z)

∣∣∣∣∂u∂z
∣∣∣∣3

+ 2 Re

{
∂ui

∂t

∂u

∂z̄

∂ 2u

∂t̄∂z

})∣∣∣∣∂u∂z
∣∣∣∣−2

= 1

2
k2(t, z)

∂u

∂nz
+ 2 Re

{
∂ui

∂t

∂ 2u

∂t̄∂z

/
∂u

∂z

}
,

so that

∂ 2u

∂t∂t̄
= ∂ 2ai

∂t∂t̄
+ 1

2
k2(t, z)

∂u

∂nz
+ 2 Re

{
∂(u− ai)

∂t

∂ 2u

∂t̄∂z

/
∂u

∂z

}
.

Consequently, along Ci(t) ∩V0 for t ∈B0, we have
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∂ 2u

∂t∂t̄

∂u

∂nz
dsz

=
[
∂ 2ai

∂t∂t̄
+ 1

2
k2(t, z)

∂u

∂nz
+ 2 Re

{
∂(u− ai)

∂t

∂ 2u

∂t̄∂z

/
∂u

∂z

}]
∂u

∂nz
dsz.

Since u(t, z) = ai(t) : constant on Ci(t) for each t ∈B0, we have

∂u(t, z)

∂nz
dsz = 2

i

∂u(t, z)

∂z
dz along Ci(t).

Since ∂u(t,z)

∂nz
dsz is real it follows that, along Ci(t) ∩V0 for each t ∈B0,

∂ 2u

∂t∂t̄

∂u

∂nz
dsz

= ∂ 2ai

∂t∂t̄

∂u

∂nz
dsz + 1

2
k2(t, z)

(
∂u

∂nz

)2

dsz + 2 Re

{
2

i

∂(u− ai)

∂t

∂ 2u

∂t̄∂z
dz

}
= ∂ 2ai

∂t∂t̄

∂u

∂nz
dsz + 2k2(t, z)

∣∣∣∣∂u∂z
∣∣∣∣2

dsz + 4 Im

{
∂(u− ai)

∂t

∂ 2u

∂t̄∂z
dz

}
.

In particular, putting (t, z) = (0, ζ) in this equality yields formula (2.1) at the point
ζ ∈Ci(0) in the case (2.2).

We next prove formula (2.1) at the point ζ ∈ Ci(0) when ∂u
∂nζ

(0, ζ) < 0. In
fact, we put q(t, z) := −u(t, z) in R so that ∂q

∂nζ
(0, ζ) > 0. Since q(t, z) is a con-

stant −ai(t) on ∂Ci(t), we can apply our reasoning from the first case for q(t, z)
and obtain equation (2.1) for q(t, z)—that is, for −u(t, z) (with −ai(t) instead
of ai(t)). On the other hand, the formula (2.1) for u(t, z) (with ai(t)) is identi-
cal to the formula (2.1) for −u(t, z) (with −ai(t)), so (2.1) for u(t, z) holds when
∂u
∂nζ

(0, ζ) < 0.
Finally, we prove formula (2.1) at the point ζ ∈Ci(0) when

∂u

∂nζ
(0, ζ) = 0

or, equivalently, ∂u
∂z
(0, ζ) = 0. Let ϕ(t, z) be a Cω defining function of ∂R. Since

u(t, z)− ai(t) ≡ 0 on ∂R ∩ [B0 ×V0 ], we find a neighborhood B1×V1 ⊂ B0 ×
V0 of (0, ζ) and a Cω function f(t, z) on B1×V1 such that

u(t, z)− ai(t) = f(t, z)ϕ(t, z) on B1×V1. (2.3)

By differentiating (2.3) with respect to z, we first have

∂u

∂z
= ∂f

∂z
ϕ + f

∂ϕ

∂z
on B1×V1.

Since
∂u

∂z
(0, ζ) = 0, ϕ(0, ζ) = 0, and

∂ϕ

∂z
(0, ζ) 	= 0,

we have f(0, ζ) = 0. Differentiating both side of (2.3) with respect to t, we
next have

∂u

∂t
− ∂ai

∂t
= ∂f

∂t
ϕ + f

∂ϕ

∂t
on B1×V1,



Variation Formulas for L1-Principal Functions 277

so that
∂u

∂t
(0, ζ)− ∂ai

∂t
(0) = ∂f

∂t
(0, ζ) · 0+ 0 · ∂ϕ

∂t
(0, ζ) = 0.

Together with ∂u
∂nζ

(0, ζ) = 0, this implies that both sides of (2.1) are zero at (0, ζ)
and thus completes the proof of Step 1.

Step 2: Lemma 1.1 is true.

Proof. We set
∂ 2u

∂t∂t̄
(t, 0) := ∂ 2γ (t)

∂t∂t̄
.

Then we see from (1.1) and (1.2) that the function ∂2u

∂t∂t̄
(t, z) for each fixed t ∈ B

is harmonic for z on the whole R(t). There exists a tubular neighborhood W0 of
∂R(0) such that u(0, z) is harmonic on R(0) ∪W0. Then we can take a neighbor-
hood B0 ⊂ B of t = 0 such that, for each t ∈ B0, W0 ⊃ ∂R(t) and u(t, z) is
harmonic in (R(0) ∪W0) \ {0, ξ(t)}.

For arbitrary fixed t ∈B0, it follows from Green’s formula that∫
Ci(0)−Ci(t)

∂u(t, z)

∂nz
dsz = 0.

On the other hand, we see from the condition (4)(ii) for the L1-principal function
u(t, z) that, for each fixed t ∈B0,∫

Ci(0)

∂u(t, z)

∂nz
dsz = 0 (i = 1, . . . , ν). (2.4)

Differentiating both sides of (2.4) with respect to t and t̄ then yields∫
Ci(0)

∂
( ∂2u(t,z)

∂t∂t̄

)
∂nz

dsz = 0 (i = 1, . . . , ν).

Hence,∫
∂R(0)

u(0, z)
∂
( ∂2u(t,z)

∂t∂t̄

)
∂nz

dsz =
ν∑

i=0

∫
∂Ci(0)

ai(0)
∂
( ∂2u(t,z)

∂t∂t̄

)
∂nz

dsz = 0. (2.5)

We draw a small disk Uε
0 = {|z| < ε} such that u(t, z) is harmonic for z in R(0) \

Uε
0 and ∂2u

∂t∂t̄
is harmonic for z in R(0). It follows from Green’s formula that∫

∂R(0)\Uε
0

∂ 2u

∂t∂t̄
(0, z)

∂u(0, z)

∂nz
dsz =

∫
∂R(0)\Uε

0

u(0, z)
∂
(
∂2u

∂t∂t̄
(0, z)

)
∂nz

dsz.

Letting ε→ 0, we see from (2.5) that∫
∂R(0)

∂ 2u

∂t∂t̄
(0, z)

∂u(0, z)

∂nz
dsz + 2π

∂ 2u

∂t∂t̄
(0, 0) = 0.

Thus,
∂ 2γ

∂t∂t̄
(0) = − 1

2π

∫
∂R(0)

∂ 2u

∂t∂t̄
(0, z)

∂u(0, z)

∂nz
dsz.
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By (2.1) we have

∂ 2γ

∂t∂t̄
(0) = − 1

2π

∫
∂R(0)

(
2k2(0, z)

∣∣∣∣∂u∂z
∣∣∣∣2

dsz + ∂ 2ai

∂t∂t̄

∂u

∂nz
dsz

+ 4 Im

{
∂u

∂t

∂ 2u

∂t̄∂z
dz

}
− 4 Im

{
∂ai

∂t

∂ 2u

∂t̄∂z
dz

})
= − 1

π

∫
∂R(0)

k2(0, z)

∣∣∣∣∂u∂z
∣∣∣∣2

dsz − 1

2π

∫
∂R(0)

∂ 2ai

∂t∂t̄

∂u

∂nz
dsz

− 2

π
Im

{∫
∂R(0)

∂u

∂t

∂ 2u

∂t̄∂z
dz

}
+ 2

π
Im

{∫
∂R(0)

∂ai

∂t

∂ 2u

∂t̄∂z
dz

}
≡ I1+ I2 + I3 + I4.

Here the integrand in Ik (k = 1, . . . , 4) is evaluated at t = 0 and z∈ ∂R(0).
We note that ai(t) does not depend on z and that a0(t) ≡ 0 on B. By condition

(4)(ii) for the L1-principal function u(t, z), we thus have

I2 = − 1

2π

ν∑
i=0

∂ 2ai

∂t∂t̄
(0)

∫
Ci(0)

∂u(0, z)

∂nz
dsz

= − 1

2π

(
0×

∫
C0(0)

∂u(0, z)

∂nz
dsz +

ν∑
i=1

∂ 2ai

∂t∂t̄
(0)× 0

)
= 0.

By (1.1) and (1.2) we see that, if we set ∂u
∂t
(t, 0) := ∂γ (t)

∂t
for each fixed t ∈ B,

then both ∂u
∂t
(t, z) and ∂u

∂t∂t̄
(t, z) are harmonic for z on the whole R(t). It follows

from Green’s formula and the harmonicity of u for z that

I3 = − 2

π
Im

∫∫
R(0)

d

(
∂u

∂t

∂ 2u

∂t̄∂z
dz

)
= − 2

π
Im

∫∫
R(0)

(
∂ 2u

∂t∂z̄

∂ 2u

∂t̄∂z
+ ∂u

∂t

∂ 3u

∂t̄∂z∂z̄

)
dz̄ ∧ dz

= − 4

π

∫∫
R(0)

∣∣∣∣ ∂ 2u

∂t̄∂z

∣∣∣∣2

dx dy.

Since 2 ∂u
∂z
dz = i ∂u

∂nz
+ du along Ci(0), we have

2
∫
Ci(0)

∂u

∂z
dz = i

∫
Ci(0)

∂u

∂nz
dsz +

∫
Ci(0)

du = i

∫
Ci(0)

∂u

∂nz
dsz.

It follows from (2.4) that, for each t ∈B0,∫
Ci(0)

∂u(t, z)

∂z
dz = i

2

∫
Ci(0)

∂u(t, z)

∂nz
dsz = 0 (i = 1, . . . , ν).

Hence, by an argument similar to that used for I2 = 0, we obtain

I4 = 2

π
Im

{ ν∑
i=0

∂ai

∂t
(0)

∫
Ci(0)

∂ 2u

∂t̄∂z
(0, z) dz

}
= 0.
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It turns out that

∂ 2γ

∂t∂t̄
(0) = − 1

π

∫
∂R(0)

k2(0, z)

∣∣∣∣∂u(0, z)

∂z

∣∣∣∣2

dsz − 4

π

∫∫
R(0)

∣∣∣∣ ∂u

∂t̄∂z
(0, z)

∣∣∣∣2

dx dy,

which proves Step 2—namely, Lemma 1.1.

Proof of Theorem 1.2. If R is pseudoconvex over B × Cz, then k2(t, z) ≥ 0 on
∂R. It follows from Lemma 1.1 that ∂2γ

∂t∂t̄
≤ 0. Thus, γ (t) is a superharmonic func-

tion on B.

Remark 3. In the theory of one complex variable, the circular slit mapping and
the radial slit mapping have good correspondence. But the same result for the cor-
responding radius of the radial slit mapping does not hold. In fact, we have two
counterexamples of pseudoconvex domains R in B × Cz.

(i) The radius of radial slit mapping is not superharmonic on B. Let

R = {|t | < 1
2

}× {|z| < 1} \ {
(t, z) :

∣∣z− 1
2

∣∣ ≤ |t | < 1
2

}
,

B = {|t | < 1
2

}
, R(t) = {|z| < 1} \ {∣∣z− 1

2

∣∣ ≤ |t |}.
The total space R =⋃

t∈B(t,R(t)) is a pseudoconvex domain in B × Cz.

Let C0 = {|z| = 1} and C(t) = {∣∣z − 1
2

∣∣ = |t |}, where 0 ≤ t < 1
2 ; that is,

∂R(t) = C0−C(t). There exists a unique harmonic function q(t, z) on R(t) \{0}
such that

q(t, z) = log|z| + λ(t)+ h(t, z) at z = 0, where h(t, 0) = 0;
q(t, z) = 0 on C0; and
∂q(t,z)

∂n
= 0 on C(t).

Note that q(0, z) = log|z| on R(0) and λ(0) = 0. The radial slit mapping f0(t, z)
for (R(t), 0,C0) is given by f0(t, z) = eλ(t)−(q(t,z)+iq∗(t,z)) on R(t), so the radius
r0(t) stated in Remark 2 is in this case equal to eλ(t). Our claim is thus to show
that λ(t) is not superharmonic on B.

Let z and z∗ be inverse points with respect to C(t). We use R∗(t) to denote
the domain obtained from R(t) by inversion with respect to C(t). If we define
q(t, z∗) := q(t, z) on R∗(t), then q(t, z) can be continued harmonically across
C(t) into the domain R∗(t) by a reflection principle due to Schwarz. More pre-
cisely, let R̂(t) := R(t) ∪ C(t) ∪ R∗(t) and let C∗0(t) (resp. α(t)) be the circle
(resp. point) obtained from C0 (resp. z = 0) by inversion with respect to C(t).

Here ∂R̂(t) = C0 − C∗0(t). Then q(t, z) on R(t) is harmonically extended to the
harmonic function q(t, z) on R̂(t) \ {0,α(t)} such that

q(t, z) = log|z| + λ(t)+ h(t, z) at z = 0, where h(t, 0) = 0;
q(t, z)− log|z− α(t)| is harmonic at z = α(t); and
q(t, z) = 0 on C0 ∪ C∗(t).

We note that C∗0(t) ⊂ C∗0
(

1
2

) = {∣∣z − 2
3

∣∣ < 1
3

} =: δ for t ∈ B. We set R0 :=
{|z| < 1} \ δ, so that R0 ⊂ R(t) for t ∈ B. If we put s(t, z) := q(t, z) − log|z|
and s(t, 0) = λ(t), then s(t, z) is harmonic on R̂(t) with pole log|z − α(t)| at
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α(t) and with boundary values 0 on C0 and −log|z| on C∗0(t), so that s(t, z) <
log 3 on C∗0(t). Further, we consider the harmonic function s̃(t, z) on R0 with pole
log|z−α(t)| at α(t) and with boundary values log 3 on ∂R0. Since s̃(t, z)− s(t, z)
is harmonic on the whole R0, whose boundary values ≥ 0, it follows from the
maximum principle that s̃(t, 0) ≥ s(t, 0) = λ(t). Since α(t) → 0 as |t | → 1

2 ,
we have s̃(t, 0) → −∞ and hence λ(t) → −∞ as |t | → 1

2 . Since λ(0) = 0, it
follows that λ(t) is not superharmonic on B.

(ii) The radius of radial slit mapping is not subharmonic on B. Let

R =
⋃
t∈B
{|z| < r(t)} \ B × (C1 ∪ C2),

where C1 =
[

1
2 , 2

3

]
, C2 =

[
i
2 , 2i

3

]
in Cz, r(t) > 1, and log r(t) is superharmonic on

B. Thus R is a pseudoconvex domain in B × Cz. In this case the radial slit map-
ping f0(t, z) for (R(t), 0,C0(t)), where C0(t) = {|z| = r(t)}, is identical with z;
hence r0(t) = r(t) for t ∈B. Thus log r0(t) is not subharmonic on B.

3. Proof of Lemma 1.3

It suffices to prove the lemma for t = 0. We find a neighborhoodB0 = {|t | < r0} �
B of t = 0, a neighborhood V0 � R̃(0) of ∂R(0), and a neighborhood U

ρ0
ξ(0) :=

{|z− ξ(0)| < ρ0} � R(0) of ξ(0) such that:

(i) ξ(t)∈Uρ0
ξ(0), t ∈B0;

(ii) U
ρ0
ξ(0) ∩ {z = 0} = ∅;

(iii)
⋃

t∈B0
(t, ∂R(t)) ⊂ B0 ×V0; and

(iv) p(t, z), t ∈B0, is harmonically extended for z beyond ∂R(t) onto V0.

We see from (1.3), (1.4), and (1.5) that if we put

∂ 2p

∂t∂t̄
(0, 0) := ∂ 2h0

∂t∂t̄
(0, 0) = 0 and

∂ 2p

∂t∂t̄
(0, ξ(0)) := ∂ 2α

∂t∂t̄
(0)+ ∂ 2hξ

∂t∂t̄
(0, ξ(0))

then the function ∂2p

∂t∂t̄
(0, z) is harmonic for z in the whole R(0). We note that, for

arbitrary fixed t ∈B0 and j = 0, . . . , ν,∫
Cj(0)

∂p(t, z)

∂nz
dsz =

∫
Cj(t)

∂p(t, z)

∂nz
dsz = 0

by Green’s formula and the condition (IV)(ii) for theL1-principal functionp(t, z).
Thus, ∫

Cj(0)

∂

∂nz

(
∂ 2p(t, z)

∂t∂t̄

)
dsz = 0.

On each boundary component Cj(0), j = 0,1, . . . , ν, of R(0), we have p(0, z) =
constant = aj(0); therefore,
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∫
∂R(0)

p(0, z)
∂
( ∂2p

∂t∂t̄
(0, z)

)
∂nz

dsz =
ν∑

j=0

aj(0)
∫
Cj(0)

∂
( ∂2p

∂t∂t̄
(0, z)

)
∂nz

dsz = 0. (3.1)

We draw small disks Uε
0 = {|z| < ε} and Uε

ξ(0) = {|z − ξ(0)| < ε}, where
0 < ε < ρ0 and Uε

0 ∩ Uε
ξ(0) = ∅, so that p(t, z), t ∈ B0, is harmonic for z in

R(0) \ (Uε
0 ∪ Uε

ξ(0)). By Green’s formula we have∫
∂R(0)−∂Uε

0−∂Uε
ξ(0)

∂ 2p

∂t∂t̄
(0, z)

∂p(0, z)

∂nz
dsz

=
∫
∂R(0)−∂Uε

0−∂Uε
ξ(0)

p(0, z)
∂
( ∂2p

∂t∂t̄
(0, z)

)
∂nz

dsz.

Since p(0, z) has singularities (II) and (III) at z = 0 and z = ξ(0), respectively,

and since ∂2p

∂t∂t̄
(0, z) is harmonic on R(0), by (3.1) we have∫

∂R(0)

∂ 2p

∂t∂t̄
(0, z)

∂p(0, z)

∂nz
dsz − 2π

(
∂ 2α

∂t∂t̄
(0)+ ∂ 2hξ

∂t∂t̄
(0, ξ(0))

)
= 0

as ε tends to 0. Therefore,

∂ 2α

∂t∂t̄
(0)+ ∂ 2hξ

∂t∂t̄
(0, ξ(0)) = 1

2π

∫
∂R(0)

∂ 2p

∂t∂t̄
(0, z)

∂p(0, z)

∂nz
dsz.

Reasoning much as in the proof of (2.1),

∂ 2α

∂t∂t̄
(0)+ ∂ 2hξ

∂t∂t̄
(0, ξ(0))

= 1

2π

ν∑
j=0

∫
Cj(0)

(
2k2(0, z)

∣∣∣∣∂p∂z
∣∣∣∣2

dsz + ∂ 2aj

∂t∂t̄

∂p

∂nz
dsz

+ 4 Im

{
∂p

∂t

∂ 2p

∂t̄∂z
dz

}
− 4 Im

{
∂aj

∂t

∂ 2p

∂t̄∂z
dz

})

= 1

π

∫
∂R(0)

k2(0, z)

∣∣∣∣∂p∂z
∣∣∣∣2

dsz + 1

2π

ν∑
j=0

∫
Cj(0)

∂ 2aj

∂t∂t̄

∂p

∂nz
dsz

+ 2

π
Im

{∫
∂R(0)

∂p

∂t

∂ 2p

∂t̄∂z
dz

}
− 2

π
Im

{ ν∑
j=0

∫
Cj(0)

∂aj

∂t

∂ 2p

∂t̄∂z
dz

}
≡ J1+ J2 + J3 + J4.

By reasoning similar to the case I2 = I4 = 0 for i = 1, . . . , ν, we have J2 = J4 =
0 for j = 0,1, . . . , ν. Hence for proving the lemma it suffices to show that

J3 = 4

π

∫∫
R(0)

∣∣∣∣ ∂ 2p

∂t̄∂z

∣∣∣∣2

dx dy + ∂ 2hξ

∂t∂t̄
(0, ξ(0)). (3.2)

We remark that ∂2p

∂t̄∂z
(0, z) is regular on the whole R(0) and that ∂p

∂t
(0, z) is har-

monic on R(0) except at z = ξ(0). By Green’s formula we have



282 Sachiko Hamano∫
∂R(0)−∂Uε

ξ(0)

∂p

∂t

∂ 2p

∂t̄∂z
dz =

∫∫
R(0)−Uε

ξ(0)

d

(
∂p

∂t

∂ 2p

∂t̄∂z
dz

)

=
∫∫

R(0)−Uε
ξ(0)

∣∣∣∣ ∂ 2p

∂t∂z̄

∣∣∣∣2

dz̄ dz.

Letting ε→ 0, we note that

lim
ε→0

∫∫
Uε
ξ(0)

∣∣∣∣ ∂ 2p

∂t∂z̄

∣∣∣∣2

dz̄ dz = 0

and

lim
ε→0

∫
∂Uε

ξ(0)

∂p

∂t

∂ 2p

∂t̄∂z
dz = −1

2
lim
ε→0

∫
∂Uε

ξ(0)

ξ ′(0)
z− ξ(0)

∂ 2p

∂t̄∂z
dz

= −πiξ ′(0) ∂
2p

∂t̄∂z
(0, ξ(0)).

Thus,∫
∂R(0)

∂p

∂t

∂ 2p

∂t̄∂z
dz = 2i

∫∫
R(0)

∣∣∣∣ ∂ 2p

∂t∂z̄
(0, z)

∣∣∣∣2

dx dy − πiξ ′(0)
∂ 2p

∂t̄∂z
(0, ξ(0)).

On the other hand, it follows from (1.6) that

∂hξ

∂t
(t, ξ(t))+ ∂hξ

∂z
(t, ξ(t))ξ ′(t) ≡ 0,

and then
∂ 2hξ

∂t∂t̄
(t, ξ(t))+ ∂ 2hξ

∂t∂z̄
(t, ξ(t))ξ ′(t)

+ ∂ 2hξ

∂z∂t̄
(t, ξ(t))ξ ′(t)+ ∂ 2hξ

∂z∂z̄
(t, ξ(t))|ξ ′(t)|2 ≡ 0

on B. Since hξ is harmonic for z, we have
∂2hξ

∂z∂z̄
(t, z) = 0. Hence,

∂ 2hξ

∂t∂t̄
(0, ξ(0))+ 2 Re

{
∂ 2hξ

∂t̄∂z
(0, ξ(0))ξ ′(0)

}
= 0.

Thus,

J3 = 2

π
Im

{∫
∂R(0)

∂p

∂t

∂ 2p

∂t̄∂z
dz

}
= 2

π
Im

{(
2i

∫∫
R(0)

∣∣∣∣ ∂ 2p

∂t∂z̄
(0, z)

∣∣∣∣2

dx dy

)
− πiξ ′(0)

∂ 2p

∂t̄∂z
(0, ξ(0))

}
= 4

π

∫∫
R(0)

∣∣∣∣ ∂ 2p

∂t∂z̄
(0, z)

∣∣∣∣2

dx dy − 2 Re

{
ξ ′(0)

∂ 2p

∂t̄∂z
(0, ξ(0))

}
= 4

π

∫∫
R(0)

∣∣∣∣ ∂ 2p

∂t∂z̄
(0, z)

∣∣∣∣2

dx dy + ∂ 2hξ

∂t∂t̄
(0, ξ(0)).

Therefore, we conclude (3.2), which implies Lemma 1.3.
Note that the same proof of Theorem 1.2 and Remark 1 under Lemma 1.1 im-

plies Theorem 1.4.
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4. Approximation Condition

Let R be a noncompact Riemann surface. Fix points a and b in R and let |z|< 1
(resp. |w| < 1) be a local coordinate of a (resp. b) such that a (resp. b) corresponds
to z = 0 (resp. w = 0). Let {Rn}n be a canonical exhaustion of R. In particu-
lar, Rn � Rn+1 � R, R = ⋃∞

n=1Rn, and ∂Rn consists of a finite number of Cω

smooth dividing closed curves {C(i)
n }i=1,...,νn such that each C(i)

n is homologous
to a finite number of dividing curves {C(ik)

n+1}k=1,...,iµ of ∂Rn+1; that is,

∂Rn =
νn∑
i=1

C(i)
n , C(i)

n ∼
iµ∑
k=1

C
(ik)
n+1. (4.1)

We assume that a, b ∈ R1 and {|z| < 1} ∪ {|w| < 1} � R1. On each Rn, we
uniquely have the principal function pn(z) such that:

(1) pn(z) is harmonic on Rn \{a, b} and is harmonically extended beyond ∂Rn in
a neighborhood Vn of Rn+1 such that ∂Rn � Vn � Rn+1;

(2) pn(z)− log 1
|z| is harmonic at z = 0;

(3) pn(w)− log|w| is harmonic at w = 0 and

lim
w→b

(pn(w)− log|w|) = 0;
(4) for each i = 1, . . . , νn, we have

(i) pn(z) = constant ai on C(i)
n and

(ii)
∫
C

(i)
n (t)
∗ dpn(z) = 0.

Thus we have

pn(z) = log
1

|z| + Re

{ ∞∑
k=1

a
(n)
k zk

}
and (4.2)

pn(z) = log|w| + αn + Re

{ ∞∑
k=1

b
(n)
k wk

}
, (4.3)

where αn is a real constant.
It is known that, for m ≥ n,

lim
n→∞‖d(pn(z)− pm(z))‖2

Rn

:= lim
n→∞

∫∫
Rn

[(
∂(pn − qm)

∂x

)2

+
(
∂(pn − qm)

∂y

)2]
dx dy = 0.

This implies that {pn(z)}n uniformly converges in any compact setK inR\{a, b}
to a harmonic function q(z) on R \ {a, b} such that {αn}n converges to a real con-
stant α and

lim
n→∞‖pn(z)− p(z)‖Rn

= 0. (4.4)

Therefore we have

p(z) = log
1

|z| + Re

{ ∞∑
k=1

ak z
k

}
near z = 0
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and

p(w) = log|w| + α + Re

{ ∞∑
k=1

bkw
k

}
near w = 0.

Let (R ,B,π) be a two-dimensional holomorphic triple: R is a two-dimensional
complex manifold, B = {|t | < ρ} is a disk, and π is a holomorphic mapping from
R onto B such that the fiber π−1(t) := R(t) over each t ∈ B is connected and
nonsingular in R. Thus R(t) is a Riemann surface. We can conventionally write

R =
⋃
t∈B

(t,R(t)).

We assume that R is a Cω topologically trivial triple in the sense that there exist
a noncompact Riemann surface R and a Cω topological mapping

T : (t,w)∈B × R �→ (t, z) = (t,ϕ(t,w))∈R;
here, for each t ∈ B, the mapping w ∈ R �→ z = ϕ(t,w) is a homeomorphism
from R onto R(t).

Let {Rn}n with R =⋃∞
n=1 Rn be a canonical exhaustion of R. We put

Rn = T(B × Rn) =:
⋃
t∈B

(t,Rn(t))

so that, for each t ∈ B, {Rn}n with R(t) = ⋃∞
n=1Rn(t) is a canonical exhaustion

such that each connected componentC i
n, i = 1, . . . , νn (which isCω smooth closed

dividing curve with νn independent of t ∈ B) of ∂R(t) moves real-analytically
smooth for t ∈B.

Assume that there exist two disjoint holomorphic sections γ and α of R over
B via π. In particular, let γ : t ∈ B → γ (t) ∈ R(t) and ζ : t ∈ B → ζ(t) be
holomorphic from B into R. Let B × {|z| < ρ0} and B × {|w| < ρ1} be local
coordinates of neighborhoods of γ and ζ in R such that γ and ζ correspond to
B × {z = 0} and B × {w = 0}, respectively. Then, by the previous argument, for
each fixed t ∈B we uniquely have the principal function p(t, z) on R(t) such that
p(t, z) is harmonic on R(t) \ {z = 0} ∪ {w = 0} and such that

p(t, z) = log
1

|z| + Re

{ ∞∑
k=1

ak(t)z
k

}
near z = 0

and

p(t,w) = log|w| + α(t)+ Re

{ ∞∑
k=1

bk(t)w
k

}
near w = 0,

where α(t) is a constant.
We shall prove the following statement.

Lemma 4.1. Assume that each Rn (n = 1, 2, . . . ) is pseudoconvex in Rn+1. Then
−α(t) is a subharmonic function on B.

Proof. Let Rn be fixed. We consider the principal function pn(t, z) on Rn(t) with
respect to z = 0 and w = 0. We denote by αn(t) the constant term of pn(t, z) at
z = 0:
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pn(t, z) = log
1

|z| + αn(t)+ Re

{ ∞∑
n=1

a
(n)
k zn

}
near z = 0.

By Nishimura’s theorem, we may assume that Rn is holomorphically equiva-
lent to a unramified domain Rn over B × Cζ such that B × {a} corresponds to
B × {a} and B × {b} corresponds to a holomorphic section ξ : z = ξ(t), t ∈ B,
where ξ(t) is a holomorphic function on B such that ξ(t) 	= 0. Let’s say that

Tn : (t, z)∈Rn �→ (t, ζ) = (t, fn(t, z))∈Rn.

Here Rn = ⋃
t∈B(t,Rn(t)) (where Rn(t) is equivalent to Dn(t) as Riemann sur-

faces) is a pseudoconvex domain with Cω boundary in Rn+1 and each ∂Dn(t) is
of class Cω in Dn+1(t). In Section 3, for each t ∈ B we constructed the princi-
pal function p̃n(t, ζ) for Dn(t) with respect to ζ = 0 and ζ = ξ(t). As usual, we
denote by α̃(t) the constant term of pn(t, ζ) at ζ = 0:

p̃n(t, ζ) = log
1

|ζ| + α̃(t)+ Re

{ ∞∑
k=1

a
(n)
k ζ k

}
.

It is not difficult to show that

α(t) = α̃(t)+ log

∣∣∣∣∂fn∂z
∣∣∣∣
z=0

.

Since ∣∣∣∣∂fn∂z
∣∣∣∣
z=0

	= 0,

we have
∂α(t)

∂t∂t̄
= ∂α̃(t)

∂t∂t̄
.

We showed in Lemma 4.1 that, since Rn is pseudoconvex, α̃n(t) is subharmonic
on B; it follows that αn(t) is subharmonic on B.

Furthermore, we showed that for each fixed t ∈B, αn(t) converges α(t). By its
proof we can also show that

lim
n→∞αn(t) = α(t) is uniform on B.

Hence α(t) is subharmonic on B.

5. An Example of Theorem 1.4

We begin with a simple example of our general result shown in this paper. Let
B = {|t | < ρ} be a disk in C t . For each t ∈ B, let R(t) be a disk {|z| < r(t)}
in Cz, where log r(t) is a superharmonic function on B. If we set the Hartogs do-
main of disks R = ⋃

t∈B(t,R(t)), then R is a pseudoconvex domain. Assume
that there exists a holomorphic section ξ : t ∈B �→ ξ(t) ∈R(t), where ξ(t) 	= 0.
We consider the following function:

f(t, z) = − 1

ξ(t)
· r(t)

2(z− ξ(t))

z(r(t)2 − ξ̄(t)z)
on R(t).
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Then f is a circular slit mapping on R(t) with a zero at z = ξ(t) and a pole at z =
0. The L1-constant λ(t) on B is written into

λ(t) = log

∣∣∣∣∂f∂z (t, ξ(t))
∣∣∣∣ = log

∣∣∣∣− 1

ξ(t)2
· r(t)2

r(t)2 − |ξ(t)|2
∣∣∣∣

= −2 log|ξ(t)| +
∞∑
n=1

1

n

( |ξ(t)|
r(t)

)2n

.

Since ξ(t) is holomorphic on B and since log r(t) is superharmonic on B, it fol-
lows that log |ξ(t)|

r(t)
is subharmonic on B and so is the second term on the right-hand

side. Hence, λ(t) is a subharmonic function on B.

6. Proof of Theorem 1.5

First, we take the holomorphic sections ξ0 and ξ1 on B of S, and we may assume
that they are constant: z = 0 and z = 1 on B. We can make a canonical exhaustion
{S̃n(t)}n of the Schottky covering S̃(t) of S(t) for each t; namely, S̃j (t) � S̃j+1(t)

(j = 1, 2, . . . ) and
⋃∞

n=1 S̃n(t) = S̃(t) such that each
⋃

t∈B(t, S̃n(t)) = S̃n is a
smooth pseudoconvex domain and the projection of ∂S̃n to S(t) does not contain
0,1 in S(t). We thus have S̃ =⋃∞

n=1 S̃n. Let Ŝ = S̃ \ (B ×{0} ∪B ×{1}). We fix
two points 0,1 in S̃n(t) over 0,1 in S(t). We note that S̃n(t) is a planar Riemann
surface. Then, there exists an L1-principal function u1n(t, z) on S̃n(t) such that

u1n(t, z) =
{

log 1
|z| + h0n(t, z) on U0,

log|z− 1| + λn(t)+ h1n(t, z) on U1,

where h0n(t, 0) = 0 and h1n(t, 1) = 0. Then u1n(t, z) induces the circular slit map-
ping f1n(t, z) = eu1n(t,z)+iu∗1n(t,z) on S̃n(t) such that

f1n(t, z) =
{

1
z
+ A0n(t)+ A1n(t)z+ · · · on U0,

B1n(t)(z− 1)+ B2n(t)(z− 1)2 + · · · on U1,

where f1n(t, 1) = 0 and f1n(t, 0) = ∞. Since S̃n is pseudoconvex, Theorem 1.4
implies that λ1n(t) = log|B1n(t)| = log

∣∣ ∂f1n

∂z

∣∣(t, 1) is a subharmonic function on
B. As we have already shown, u1n(t, z) and hence f1n(t, z) uniformly converge
(respectively) to a harmonic function u1(t, z) and to a univalent holomorphic func-
tion f1(t, z) on every compact set in Ŝ such that

u1(t, z) =
{

log 1
|z| + h0(t, z) on U0,

log|z− 1| + λ(t)+ h1(t, z) on U1,

where h0(t, 0) = 0 and h1(t, 1) = 0, and

f1(t, z) =
{

1
z
+ A0(t)+ A1(t)z+ · · · on U0,

B1(t)(z− 1)+ B2(t)(z− 1)2 + · · · on U1.
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We note that limn→∞ λn(t) = λ(t) uniformly converges on B. It follows that
λ(t) = log

∣∣ ∂f
∂z

∣∣(t, 1) is a subharmonic function on B.

Next we shall show that log
∣∣ ∂f1(t,z)

∂z

∣∣ is a plurisubharmonic function on Ŝ. It is
enough to show that log

∣∣ ∂f1

∂z
(t, ξ(t))

∣∣ restricted to every holomorphic section ξ 	=
0, 1 of S̃ is subharmonic on B. In fact, we consider another slit mapping fξ (t, z)
on R(t) such that

fξ (t, z) =
{

1
z
+ C0(t)+ C1(t)z+ · · · on U0,

D1(t)(z− ξ(t))+D2(t)(z− ξ(t))2 + · · · on Uξ(t).

We consider the translation φ(t, z) = f1(t, z)−f1(t, ξ(t)) on R(t); then φ(t, z)
is a holomorphic mapping on R̃(t) such that

φ(t, z) =
{

1
z
+ Ã0(t)+ Ã1(t)z+ · · · on U0,

B̃1(t)(z− ξ(t))+ B̃2(t)(z− ξ(t))2 + · · · on Uξ(t).

We set w = fξ (t, z) on R̃(t) and ζ = φ(t, z) on R̃(t). Then, ζ = L(t,w) :=
φ(t, f −1

ξ (t,w)) is a univalent function on the domain fξ (t, R̃(t)) in P
1
w. By Koebe’s

theorem concerning Schottky covering, we see that L(t,w) is a fractional linear
transformation on P

1
w. Since L(t, 0) = 0 and L(t,w) = w + c0(t)w

2 + · · · at
w = ∞, it follows that L(t,w) ≡ w; that is,

fξ (t, z) = φ(t, z) = f(t, z)− f(t, ξ(t)), z∈ R̃(t).
Thus, we have

∂fξ

∂z
= ∂(f1− f1(t, ξ(t)))

∂z
= ∂f1

∂z
.

Moreover, we recall that λξ (t) = log
∣∣ ∂fξ
∂z
(t, ξ(t))

∣∣ is subharmonic on B, which
implies the assertion.

Finally, we show that f is a holomorphic function for t and z on Ŝ. In fact, if

we set p(t, z) := log
∣∣ ∂f1

∂z

∣∣ on Ŝ, then p is harmonic for z and hence we have
∂2p

∂z∂z̄
≡

0. Furthermore,

det


∂ 2p

∂t∂t̄

∂ 2p

∂t∂z̄

∂ 2p

∂t̄∂z

∂ 2p

∂z∂z̄

 ≥ 0

because p is a plurisubharmonic function on Ŝ. Therefore,
∂2p

∂t̄∂z
≡ 0; in other

words, the holomorphic function ∂p

∂z
for z is also holomorphic for t on Ŝ. Namely,

∂2f1

∂z2

/ ∂f1

∂z
is holomorphic for (t, z).

Now we show that
∂f1

∂z
is holomorphic for (t, z) on B×{|z|  1}. On the neigh-

borhood U0 of z = 0, we have
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f1 = 1

z
+ A0(t)+

∞∑
k=1

Ak(t)z
k,

∂f1

∂z
= − 1

z2
+ A1(t)+

∞∑
k=1

kAk(t)z
k−1,

∂ 2f1

∂z2
= 2

z3
+
∞∑
k=2

k(k − 1)Ak(t)z
k−2.

Thus,

− z

2

∂2f1

∂z2

∂f1

∂z

= 1+∑∞
k=2

k(k−1)
2 Ak(t)z

k+1

1−∑∞
k=2 kAk(t)z

k+1
.

The left-hand side of this last equality is holomorphic for (t, z), and hence so
is the right-hand side. Forming the Taylor expansion of the right-hand side on
{|z|  1}, we can inductively see that each Ak(t) is holomorphic for t. Therefore,
∂f1

∂z
is holomorphic for (t, z) onB×{|z|  1}. By the identity theorem,

∂f1

∂z
is holo-

morphic for (t, z) on Ŝ; hence
∫ z

1
∂f1

∂z
(t, z) dz is holomorphic for (t, z) on Ŝ. Since∫ z

1
∂f1

∂z
(t, z) dz = f1(t, z) − f1(t, 1) = f1(t, z), we conclude that f1(t, z) is holo-

morphic for (t, z) and obtain a simultaneous uniformization of S̃ by t = t,w =
f1(t, z).
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