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On Volumes along Subvarieties of Line Bundles
with Nonnegative Kodaira–Iitaka Dimension

Gianluca Pacienza & Shigeharu Takayama

1. Introduction

We study the restricted volume along subvarieties of line bundles with nonnega-
tive Kodaira–Iitaka dimension. Our main interest is to compare it with a similar
notion defined in terms of the asymptotic multiplier ideal sheaf, with which it co-
incides in the big case. We shall prove that the former is nonzero if and only if the
latter is. We then study inequalities between them and prove that if they coincide
on every very general curve then the line bundle must have zero Kodaira–Iitaka
dimension or be big.

Let X be a smooth projective variety and L a divisor or a line bundle on X with
nonnegative Kodaira–Iitaka dimension: κ(L) ≥ 0. Let V ⊂ X be a subvariety
of dimV = d > 0 such that V �⊂ SBs(L), where SBs(L) := ⋂

m>0 Bs|mL|
is the stable base locus. We denote by H 0(X|V,mL) = Image[H 0(X,mL) →
H 0(V,mL)] the image of restriction maps. The restricted volume of L alongV is
defined to be

volX|V (L) = lim sup
m→∞

h0(X|V,mL)

md/d!
.

Similary, we define the reduced volume of L along V as follows:

µ(V,L) = lim sup
m→∞

h0(V, OV (mL)⊗ J (‖mL‖)|V )
md/d!

.

Here J (‖mL‖) = J (X, ‖mL‖) is the asymptotic multiplier ideal sheaf of mL for
every positive integer m [L, 11.1.2]. When L is big, µ(V,L) = volX|V (L) > 0 for
any V �⊂ NAmp(L) [ELMNP3, 2.13; T3, 3.1], where

NAmp(L) :=
⋂
m>0

SBs(mL− A)

for any given ample divisor A on X and is called the nonample locus of L (in
[L, 10.3.2], this is denoted by B+(L) and called the augmented base locus). In
the big case, the restricted volume has played an important role in the proof of
the boundedness of pluricanonical maps (cf. [HMc; T3; Ts2]) and the topic has
been systematically studied by Ein, Lazarsfeld, Mustaţă, Nakamaye, and Popa in
[ELMNP1; ELMNP2; ELMNP3; L]. On the other hand, very little is known in
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the general case κ(L) ≥ 0, and the present paper is an attempt to make the first
basic steps in this direction—and also with the hope that a better understanding of
the restricted volume in the case L = KX could possibly lead to further progress
in the study of pluricanonical maps for varieties with positive Kodaira dimension
(for an attempt to adapt the arguments of [HMc; T3; Ts2] to the case κ(X) ≥ 0,
see [Pa]; for results when κ(X) ≤ 2, obtained with different techniques, see [VZ]
and [To]).

Our main concern is about the relationship between volX|V (L) and µ(V,L) and
the geometric meaning of their discrepancy for a line bundleLwith κ(L) ≥ 0. The
basic relation b(|mL|) ⊂ J (‖mL‖) [L, 11.1.8], where b(|mL|) is the base ideal of
the linear system, leads to volX|V (L) ≤ µ(V,L). By definition, volX|V (L) > 0 im-
plies κ(L) ≥ dimV. However it is not clear at all that µ(V,L) > 0 for dimV > 0
implies κ(L) > 0. We have a natural product map

H 0(X|V, kL)×H 0(X|V,mL) → H 0(X|V, (k +m)L),
and also

b(|kL|) · b(|mL|) ⊂ b(|(k +m)L|).
However, we do not know whether there exists a natural product map for
H 0(V, OV (mL) ⊗ J (‖mL‖)|V ) except when V = X, because we only have
J (‖(k +m)L‖) ⊂ J (‖kL‖) · J (‖mL‖) [L, 11.2.4]. So we do not know about a
natural ring structure on

⊕
m≥0 H

0(V, OV (mL)⊗ J (‖mL‖)|V ). In spite of these
difficulties, we think it is worth studying H 0(V, OV (mL)⊗ J (‖mL‖)|V ), as well
as H 0(X|V,mL), because µ(V,L) is a direct generalization of the usual intersec-
tion number. In fact, in the case when L is semi-ample, µ(V,L) = Ld ·V for any
V ⊂ X (see Proposition 3.3 for a generalization to the case of a nef and abundant
line bundle) whereas volX|V (L) �= Ld · V in general (see [ELMNP3, 5.10]). We
first describe their asymptotic behaviors.

Theorem 1.1. Let X be a smooth projective variety, L a line bundle on X with
κ(L) ≥ 0, and f : X → Y the Iitaka fibration associated to L. Let V ⊂ X be a
subvariety such that V �⊂ SBs(L). Let q = dim f(V ) ≥ 0.

(1) Assume that V contains a general point of X. Then

0 < lim sup
m→∞

h0(X|V,mL)

mq
< +∞.

(2) Assume that V contains a very general point of X. Then

0 < lim sup
m→∞

h0(V, OV (mL)⊗ J (‖mL‖)|V )
mq

< +∞.

The following is the main consequence in this paper.

Corollary 1.2. Let X, L, and f : X → Y be as before. Let V ⊂ X be a sub-
variety that contains a very general point of X.

(1) The following three conditions are equivalent :

(o) the map f |V : V ��� f(V ) is generically finite;
(i) volX|V (L) > 0;

(ii) µ(V,L) > 0.
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(2) The condition lim supm→∞ h0(V, OV (mL) ⊗ J (‖mL‖)|V )/m = 0 implies
the boundedness of h0(V, OV (mL)⊗ J (‖mL‖)|V ) as m → ∞.

Thus, the positivity of volX|V (L) and µ(V,L) are equivalent to each other, and
hence the weaker conditionµ(V,L) > 0 also implies κ(L) ≥ dimV.As for Corol-
lary 1.2(2) (which looks rather technical), it is the type of estimate appearing in
the work of Nakayama [Na, V.1.12], where it is used to prove the abundance con-
jecture in the case κ = 0.

We then try to describe their differences or the ratio µ(V,L)/volX|V (L) more
precisely. In two extreme cases, it is known that they coincide. Let us recall the
following.

Proposition 1.3. (1) [ELMNP3, 2.13; T3, 3.1]. Assume κ(L) = dimX. Then
µ(V,L) = volX|V (L) > 0 for any V �⊂ NAmp(L).

(2) [T1, 1.2]. κ(L) = 0 if and only if µ(C,L) = 0 (then, in particular,
volX|C(L) = 0) for any curve C �⊂ SBs(L).

We can read [T1, 1.2] as Proposition 1.3(2) because µ(C,L) = ‖L;C‖, where
‖L;C‖ is the “intersection number” in [T1, 2.7] (see Proposition 2.5 in this paper).
Moreover, by using the arguments in [T1, 3.1], we can show that κ(L) = 0 if and
only if µ(V,L) = volX|V (L) = 0 for any subvarietiesV �⊂ SBs(L). We can show
that these are the only cases when the two invariants are equal as follows.

Theorem 1.4. Let X be a smooth projective variety and L a line bundle on X
with κ(L) ≥ 0. Let x ∈X be a very general point. Assume µ(C,L) = volX|C(L)
for any curve C passing through x. Then either κ(L) = 0 or κ(L) = dimX.

In case L is semi-ample, this is quite easy. Our proof consists, in fact, of trying
to generalize the argument in this case. We show that an inequality µ(C,L) ≥
δ volX|C(L) holds for every curve C �⊂ SBs(L) when the map f |C : C ��� f(C)
is finite of degree δ.

Our methods in this paper depend on a careful study of various multiplier ideal
sheaves and dimension counting arguments. As mentioned in [L, 11.1.10], we do
not know whether the definition of the asymptotic multiplier ideal J (‖L‖) is in
the final form or not. This paper does not give a definitive answer on this. How-
ever, we hope some results in this paper will help us to understand it.

Notation and Conventions. Throughout this paper, we letX be a smooth pro-
jective variety, L a divisor or a line bundle on X with κ(L) ≥ 0, and f : X →Y

the Iitaka fibration associated to L ([I] or [L, 2.1.33]). The Iitaka fibration is de-
fined only up to birational equivalence. If a subvariety V ⊂ X with V �⊂ SBs(L)
is given then we take a birational morphism π : X ′ → X from a smooth projec-
tive variety X ′ with a projective morphism f ′ : X ′ → Y ′ to a smooth projective
variety Y ′, so that π is isomorphic over the generic point of V and f ′ is birational
to the Iitaka fibration f : X → Y associated to L. Then we understand dim f(V )

to be dim f ′(V ′) and also f |V : V ��� f(V ) to be f ′|V ′ : V ′ → f ′(V ′). A curve
in a general fiber of f |V : V ��� f(V ) will be a curve C whose strict transform
C ′ ⊂ V ′ is contained in a general fiber of f ′|V ′ . By a general (resp. very general )
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point onX, we mean a point that belongs to the complement of a (resp. a countable
union of) proper Zariski closed subset(s), which is determined by the divisor L.

Acknowledgments. A part of this work was done during the second author’s
stay in Strasbourg. He would like to thank the mathematical department of Stras-
bourg and IRMA for the support to stay there.

2. Volumes along Subvarieties

We shall study volumes along subvarieties and prove Theorem 1.1.

2.1. Intermediate Restricted Volumes

We shall prove Theorem 1.1(1). Let dim f(V ) = q. We note that the space
H 0(X|V,mL) is unchanged under a birational morphism π : X ′ → X from a
smooth projective variety X ′, which is isomorphic over the generic point of V (cf.
the proof of [ELMNP3, 2.4]). We may assume, by taking an embedded resolu-
tion of V, thatV is smooth and that there exists a projective morphism f : X →Y

to a smooth projective variety Y, so that f is the Iitaka fibration associated to L.

Positivity: lim suph0(X|V,mL)/mq > 0. Let AY be a very ample divisor on
Y. We see that 0 < lim sup� h0(f ∗AY , �L)/�κ(L)−1 < +∞. By the same argu-
ment as in Kodaira’s lemma, we have H 0(X, �L − f ∗AY ) �= 0 for some large
�. We take one such �. Then �L = f ∗AY + E for some effective divisor E on
X and H 0(Y,mAY ) ∼= H 0(X,mf ∗AY ) ⊂ H 0(X,m�L) for any m > 0. If V
contains a general point then we can assume V �⊂ E. (If L is big, this is equiv-
alent to saying that V �⊂ NAmp(L).) Since AY is ample, the restriction map
H 0(Y,mAY ) → H 0(f(V ),mAY ) is surjective for every large m. Then we have
an inclusion H 0(X|V,m�L) ⊃ (f |V )∗H 0(f(V ),mAY ) for every large m. Hence
there exists a constant c > 0 such that h0(X|V,m�L) ≥ cmq for every large m.

Finiteness: lim suph0(X|V,mL)/mq < +∞. In case q = d = dimV, this is
well known. We may assume q < d. Suppose to the contrary that

lim suph0(X|V,mL)/mq = +∞.

We take a sufficiently general complete intersection W ⊂ V of dimW = q and
f(W ) = f(V ). By the same argument as in Kodaira’s lemma, the restriction map
H 0(X|V,mL)(⊂ H 0(V,mL)) → H 0(W,mL) has a nontrivial kernel for large m.
This means that there exists a nonzero s ∈H 0(X,mL) such that s|V is not zero and
vanishes alongW. We may take m so large that the map �|mL| : X ��� �|mL|(X)
is birational to the Iitaka fibration f : X → Y. Since f |V is not generically fi-
nite, it follows that (div s)|V, where s ∈H 0(X,mL) must be in the direction of the
ruling f |V : V → f(V ) plus some another fixed divisor Fm|V independent of s ∈
H 0(X,mL). On the other hand,W ⊂ V can be in arbitrary direction and f(W ) =
f(V ). The vanishing of s|V alongW imposes the vanishing of s|V onV. This is a
contradiction, which proves Theorem 1.1(1).
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Remark 2.1. Theorem 1.1(1) can be read as follows. Let X, L, f : X → Y, and
V ⊂ X be as in Theorem 1.1(1). Let p be an integer with 0 ≤ p ≤ d. Then the
following two conditions are equivalent:

(0) dim f(V ) = p;
(1) 0 < lim supm h0(X|V,mL)/mp < +∞.

2.2. Reduced Volumes

Here we collect basic properties of reduced volumes.

Lemma 2.2 (Homogeneity) [ELMNP3, 3.3]. Let V ⊂ X be a subvariety of
dimV = d > 0 such that V �⊂ SBs(L). Then µ(V,pL) = pdµ(V,L) for every
positive integer p.

Lemma 2.2 allows to define the quantity µ(V,L) for Q-divisors.

Lemma 2.3 (Projection formula). Let V ⊂ X be a subvariety of dimV = d > 0
such that V �⊂ SBs(L). Let π : X ′ → X be a birational morphism from a smooth
projective varietyX ′. Let V ′ ⊂ X ′ be a subvariety of dimV ′ = d with f(V ′) = V

and with V ′ �⊂ Exc(π) the exceptional locus of π. Then µ(V,L) = µ(V ′,π∗L).

Proof. Let e = e(L) ≥ 1 be the exponent of L, which is the smallest positive in-
teger such that h0(X,meL) �= 0 for all integer m > 0 [L, 2.1.1]. We denote by
L′ = π∗L. We see that e(L) = e(L′). We take a sufficiently large p such that
J (‖mL‖) = J (

m
ep

· |epL|) and J (‖mL′‖) = J (
m
ep

· |epL′|) [L, 11.1.5]. We note
the basic relations

J
( m
ep

· |epL′|
)

⊂ π−1J
( m
ep

· |epL|
)

· OX ′ and

J
( m
ep

· |epL|
)

= π∗
(
J

( m
ep

· |epL′|
)

⊗KX ′/X
)

(cf. [L, 9.5.8] and [L, 9.2.33], resp.). Here KX ′/X is the relative canonical bundle
of π. Since J (

m
ep

· |epL′|) ⊗KX ′/X is torsion free, the natural homomorphism

π∗
(
π∗

(
J

( m
ep

· |epL′|
)

⊗KX ′/X
))

→ J
( m
ep

· |epL′|
)

⊗KX ′/X

induces a homomorphism

π−1

(
π∗

(
J

( m
ep

· |epL′|
)

⊗KX ′/X
))

· OX ′ → J
( m
ep

· |epL′|
)

⊗KX ′/X,

which is generically an isomorphism because π is birational. Moreover, since
π−1

(
π∗

(J (
m
ep

· |epL′|) ⊗ KX ′/X
)) · OX ′ is torsion free, the last homomorphism is

injective. Putting everything together, we have

J (‖mL′‖) ⊂ π−1J (‖mL‖) · OX ′ → J (‖mL′‖)⊗KX ′/X,

where the last homomorphism is injective. Since KX ′/X is independent of m, it is
not difficult to see that
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µ(V ′,L′) = lim sup
h0(V ′, OV ′(mL′)⊗ J (‖mL′‖)|V ′ ⊗KX ′/X|V ′)

md/d!
.

Hence we obtain

µ(V ′,L′) = lim sup
h0(V ′, OV ′(mL′)⊗ π−1J (‖mL‖) · OV ′)

md/d!
.

The right-hand side is, in fact, µ(V,L) by Lemma 2.4, so we are done.

Lemma 2.4. Let V ⊂ X be a subvariety of dimV = d > 0 such that V �⊂
SBs(L), and let ν : V ′ → V (⊂ X) be a birational morphism from a proper vari-
ety V ′. Then, as m → ∞, one has

(1) lim
h0(V, OV (mL)⊗ J (‖mL‖)|V )

md/d!
= lim

h0(V ′, OV ′(mν∗L)⊗ ν−1J (‖mL‖) · OV ′)

md/d!
,

(2) lim
h0(V, OV (mL)⊗ J (‖mL‖)|V )

md/d!
= lim

h0(V ′, OV ′(mν∗L)⊗ ν−1J (‖mL‖) · OV ′)

md/d!
.

Proof. (1) We denote by L′ = ν∗L. Let I ⊂ OV be the annihilator of ν∗OV ′/OV ,
and let I ′ = ν−1I · OV ′ ⊂ OV ′ . Then we have

H 0(V ′, OV ′(mL′)⊗ ν−1J (‖mL‖) · I ′) ⊂ ν∗H 0(V, OV (mL)⊗ J (‖mL‖)|V )
as subspaces of H 0(V ′, OV ′(mL′)); in particular,

h0(V ′, OV ′(mL′)⊗ ν−1J (‖mL‖) · I ′) ≤ h0(V, OV (mL)⊗ J (‖mL‖)|V ).
Since dim(Supp OV ′/I ′) < d, by an exact sequence argument we have

lim
h0(V ′, OV ′(mL′)⊗ ν−1J (‖mL‖) · OV ′)

md

= lim
h0(V ′, OV ′(mL′)⊗ ν−1J (‖mL‖) · I ′)

md
.

Hence we obtain

lim
h0(V ′, OV ′(mL′)⊗ ν−1J (‖mL‖) · OV ′)

md

≤ lim
h0(V, OV (mL)⊗ J (‖mL‖)|V )

md
.

The converse of this inequality follows from this elementary fact:

h0(V, OV (mL)⊗ J (‖mL‖)|V ) ≤ h0(V ′, OV ′(mL′)⊗ ν−1J (‖mL‖) · OV ′).

Thus we obtain our equality.
(2) is obtained by substituting “lim” for “lim” in the proof of (1).

When the subvariety V is a curve we have a more explicit description of the re-
duced volume, which will be used in the proof of Theorem 1.1(2). Let us first
recall the definition of ‖L;C‖ [T1, 2.7]. Let J ⊂ OC be an ideal sheaf. For the
normalization ν : C ′ → C, we define degC J as the degree of the invertible sheaf
ν−1J · OC ′ . Then mL · C + degC J (‖mL‖)|C ≥ 0 for any m > 0 [T1, 2.6(1)],
and we can define
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‖L;C‖ = L · C + lim sup
m→∞

1

m
degC J (‖mL‖)|C.

Proposition 2.5. Let C ⊂ X be a curve with C �⊂ SBs(L). Then µ(C,L) =
‖L;C‖ holds.

Proof. The proof will proceed in the same way as in [T2, 3.1]. Let ν : C ′ → C ⊂
X be the normalization. We consider a family of invertible sheaves {Gm}m∈N on
C ′, where Gm = OC ′(mν∗L) ⊗ ν−1J (‖mL‖) · OC ′ with degree dm := deg Gm ≥
0 [T1, 2.6(1)]. By the subadditivity J (‖(� + m)L‖) ⊂ J (‖�L‖) · J (‖mL‖)
[DEL; L, 11.2.4], it follows that d�+m ≤ d� + dm. Then, by [T2, 3.4], their limits
limm→∞ h0(C ′, Gm)/m and limm→∞ dm/m exist and coincide: limh0(C ′, Gm)/m =
lim dm/m. By definition, degC(OC(mL)⊗ J (‖mL‖)|C) = degC ′(OC ′(mν∗L)⊗
ν−1J (‖mL‖) · OC ′). Hence

lim
m→∞

h0(C ′, OC ′(mν∗L)⊗ ν−1J (‖mL‖) · OC ′)

m

= lim
m→∞

degC(OC(mL)⊗ J (‖mL‖)|C)
m

.

Then, by Lemma 2.4, we obtain our assertion.

2.3. Intermediate Reduced Volumes

We shall prove Theorem 1.1(2). We need a refinement of [T1, 3.1].

Lemma 2.6. Assume κ(L) = 0. Let C ⊂ X be a curve with C �⊂ SBs(L). Then
h0(C, OC(mL) ⊗ J (‖mL‖)|C) and degC(OC(mL) ⊗ J (‖mL‖)|C) are bounded
as m → ∞.

Proof. Let e = e(L) ≥ 1 be the exponent of L. Since κ(L) = 0, there exists a
nonzero effective divisorD ∈ |eL| such that |meL| is generated bymD for anym.
In general we have J (‖mL‖) = J (

1
pe

|pemL|) for sufficiently large p [L, 11.1.5]

and J (
1
pe

|pemL|) = J (
1
pe
pmD

) = J (
m
e
D

)
[L, 9.2.26].

We have at least J (‖mL‖) = J (
m
e
D

) ⊂ J (�m/e�D) = OX(−�m/e�D).
Here �a� denotes the integral part of a nonnegative number a. Then it is enough to
bound h0(C, OC(mL−�m/e�D)) and degC OC(mL−�m/e�D). Let ν : C ′ → C

be the normalization. We have h0(C, OC(mL−�m/e�D)) ≤ h0(C ′, OC ′(mν∗L−
�m/e�ν∗D)) and degC ′ OC ′(mν∗L−�m/e�ν∗D) = (m−e�m/e�)L·C. Since 0 ≤
m−e�m/e� < e, the invertible sheaves OC ′(mν∗L−�m/e�ν∗D) have nonnegative
bounded degrees asm → ∞. The following sublemma implies our assertion.

Sublemma 2.7. Let C be a smooth projective curve, and let {Gm}m be a family
of invertible sheaves on C with deg Gm ≥ 0. Then, asm → ∞, deg Gm is bounded
if and only if h0(C, Gm) is bounded.

Proof. We denote by g the genus of C, and we put χ(OC) = 1 − g and dm =
deg Gm ≥ 0.
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If dm is unbounded, then for every k > 0 we havemk such that dmk
> 2g−2+k.

Then, by the Riemann–Roch theorem and vanishing,h0(C, Gm) = deg Gm+χ(OC),
which is unbounded.

Assume dm < b for anym. We claim that h0(C, Gm) ≤ max{b, 2g−1}+χ(OC).

Take m. If dm > 2g − 2, then Riemann–Roch and vanishing imply h0(C, Gm) =
deg Gm + χ(OC) ≤ b + χ(OC). If dm ≤ 2g − 2, we take an effective divisor Dm

on C with degDm + dm = 2g − 1. Then h0(C, Gm) ≤ h0(C, Gm ⊗ O(Dm)) =
2g − 1 + χ(OC).

For the finiteness we will need the following.

Proposition 2.8. Let x ∈ X be a very general point, and let C ⊂ X be a
curve passing through x. If µ(C,L) = 0, then h0(C, OC(mL)⊗J (‖mL‖)|C) and
degC(OC(mL)⊗ J (‖mL‖)|C) are bounded as m → ∞.

Proof. By virtue of Lemmas 2.3 and 2.4, possibly after taking a modification of
X, we may assume that C is smooth. We may also assume that there exists a pro-
jective morphism f : X → Y, to a smooth projective variety Y, that is birational
to the Iitaka fibration associated to L. Let Y0 be a countable union of subvarieties
of Y such that Xy is smooth and κ(Xy ,Ly) = 0 for any y ∈ Y \ Y0, where Xy =
f −1(y) and Ly = L|Xy . Let ey = e(Ly) be the exponent of Ly for y ∈ Y \ Y0. As
in the proof of Lemma 2.6, for every y ∈ Y \ Y0 we have By ∈ |eyLy | such that
J (Xy , ‖mLy‖) = J (

Xy , m
ey
By

)
for any m.

We fix m. Let e = e(L) be the exponent of L. We take a sufficiently large in-
teger p = pm such that J (X, ‖mL‖) = J (

X, 1
pe

|pemL|) and then take a general

member D = Dm ∈ |pemL| such that J (
X, 1

pe
|pemL|) = J (

X, 1
pe
D

)
. By the

generic restriction theorem [L, 9.5.35], there exists a subvarietyYm ⊂ Y such that
J (X, ‖mL‖)|Xy = J (

Xy , 1
pe
D|Xy

)
for any y ∈ Y \ Ym.

We then take a very general point y ∈ Y \ ⋃
m≥0 Ym. We can write e = eyqy for

a positive integer qy. For every m, |pmemLy | = |pmmqyeyLy | = 〈pmmqyBy〉.
HenceDm|Xy = pmmqyBy. Thus J (

Xy , 1
pme

Dm|Xy
) = J (

Xy , m
ey
By

)
. Finally, we

have J (X, ‖mL‖)|Xy = J (Xy , ‖mLy‖) for every m > 0.
By [T1, 1.3], µ(C,L) = 0 entails that C is contained in a fiber Xy = f −1(y),

where y ∈ Y is also very general. In particular, OC(mL) ⊗ J (X, ‖mL‖)|C =
OC(mLy)⊗J (Xy , ‖mLy‖)|C. Since we know the boundedness properties for Ly
by Lemma 2.6, we have our assertion.

Proof of Theorem 1.1(2). The positivity,

lim sup
m

h0(V, OV (mL)⊗ J (‖mL‖)|V )
mq

> 0,

follows from h0(V, OV (mL)⊗J (‖mL‖)|V ) ≥ h0(X|V,mL) and Theorem 1.1(1).
We shall prove the finiteness, lim supm h0(V, OV (mL)⊗J (‖mL‖)|V )/mq < +∞.

In the case q = d this is well known (by [I] or [L, 2.1.38]); hence we assume
q < d. The proof proceeds by induction on d − q ≥ 0. The first step, d − q = 0,
is already completed.
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We assume Theorem 1.1(2) to be true for any subvariety W ⊂ X containing a
very general point of X with dimW ≤ d − 1 and dim f(W ) = q (≤ d − 1).
Let V ⊂ X be a subvariety containing a very general point of X with dimV =
d and dim f(V ) = q. Let A be a very ample Cartier divisor on V. Let k be a
positive integer. We take a general member Wk ∈ |kA| such that f(Wk) = f(V ),
Wk is smooth where V is, and dim SingWk = dim SingV − 1 ≤ d − 2. For every
m > 0, we consider a restriction map rm : H 0(V, OV (mL) ⊗ J (‖mL‖)|V ) →
H 0(Wk , OWk

(mL)⊗ J (‖mL‖)|Wk
). By the induction hypothesis, we know that

0 < lim sup
m

h0(Wk , OWk
(mL)⊗ J (‖mL‖)|Wk

)

mq
< +∞.

If lim supm h0(V, OV (mL) ⊗ J (‖mL‖)|V )/mq = +∞, then there exists a posi-
tive integermk such that the map rmk

has a nontrivial kernel. We take suchmk and
a nonzero sk ∈ ker rmk

. We follow the same process for every k.
We can find a curve C in a very general fiber of f |V : V ��� f(V ) such that

C �⊂ Wk , C intersects Wk where V (and hence Wk) is smooth, and sk|C �≡ 0 for
all k > 0. Since dim f(C) = 0, we have ‖C;L‖ = 0 by [T1, 1.3]. From Proposi-
tion 2.5 we deduce thatµ(C,L) = 0. Let ν : C ′ → C (⊂ V ) be the normalization.
Then ν∗(sk|C) defines a nonzero element of

H 0(C ′, OC ′(mkν
∗L− kν∗A)⊗ ν−1J (‖mkL‖) · OC ′).

In particular,

degC(OC(mkL)⊗ J (‖mkL‖)|C) ≡ degC ′(OC ′(mkν
∗L)⊗ ν−1J (‖mkL‖) · OC ′)

≥ kA · C
and hence is unbounded. It may be that lim supk mk/k = 0, but this contradicts
Proposition 2.8. Thus lim supm h0(V, OV (mL)⊗ J (‖mL‖)|V )/mq < +∞.

Proof of Corollary 1.2. (1) Assume (o) (resp. (i), resp. (ii)). Then q = dim f(V )

in Theorem 1.1 must be q = d = dimV. Then by Theorem 1.1, we have (i) and
(ii) (resp. (o) and (ii), resp. (o) and (i)).

(2) Assume lim supm h0(V,mL ⊗ J (‖mL‖))/m = 0. By Theorem 1.1(2) we
have q = dim f(V ) = 0, and then Theorem 1.1(2) with q = 0 implies the bound-
edness of h0(V,mL⊗ J (‖mL‖)).

3. Relations among Various Volumes along Subvarieties

3.1. Proof of Theorem 1.4

To prove Theorem 1.4, we introduce another, more geometric notion.

Notation 3.1. Let V ⊂ X be a subvariety of dimV = d > 0 such that V �⊂
SBs(L). Let m be a sufficiently large integer such that Bs|mL| = SBs(L) and
such that the rational map �|mL| : X ��� P = PNm with Nm = dim|mL| is bira-
tional to the Iitaka fibration f : X → Y associated to L. Let πm : Xm → X be
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a birational morphism from a smooth projective variety Xm such that π∗
m|mL| =

|Mm| + Fm, where |Mm| is base point free (the moving part) and Fm is the fixed
part. Denote by ψm = �|Mm| : Xm → P the induced morphism and by O(1) the
hyperplane bundle on P such that OXm(Mm) = ψ∗

mO(1). We can take πm such that
it is an isomorphism over the generic point of V. We then denote byVm ⊂ Xm the
strict transform of V.

Definition 3.2 [ELMNP3, 2.6, 2.7]. Let V ⊂ X be a subvariety of dimV =
d > 0 such that V �⊂ SBs(L). We define

‖Ld ·V ‖ := lim sup
m→∞

Md
m ·Vm
md

= lim sup
m→∞

#(V ∩Dm,1 ∩ · · · ∩Dm,d \ SBs(L))

md
.

HereDm,1, . . . ,Dm,d ∈ |mL| are general members. This number ‖Ld ·V ‖ is called
the asymptotic intersection number of L and V [ELMNP3, 2.6] or the asymptotic
moving intersection number for the right-hand side [ELMNP3, 2.7].

This ‖L · C‖ for curves is different from ‖L;C‖ in [T1, 2.7] in general. In case
L is big, ‖Ld · V ‖ = µ(V,L) = volX|V (L) holds for any subvariety V ⊂ X of
dimV = d > 0 with V �⊂ NAmp(L) [ELMNP3, 2.13; T3, 3.1]. In another ideal
case, these quantities relate to each other as follows. (See [L, 2.3.17] for nef and
abundant divisors.)

Proposition 3.3. Assume L is nef and abundant. Let V ⊂ X be a subvariety of
dimV = d > 0 such that V contains a general point of X (in particular, V �⊂
SBs(L)) and such that the map f |V : V ��� f(V ) is generically finite of degree δ.
Then µ(V,L) = δ volX|V (L) = ‖Ld ·V ‖.
Proof. By Kawamata [K, 2.1], there exists a birational morphism π : X ′ → X

from a smooth projective variety X ′, and a surjective morphism f : X ′ → Y with
connected fibers to a smooth projective variety Y with a nef and big divisor LY
on Y, such that π∗L ∼Q f ∗LY , where ∼Q denotes Q-linear equivalence. Because
V contains a general point, we may assume that π is an isomorphism over the
generic point of V. Hence, using this fact and the homogeneity of µ(V,L), we
may assume from the beginning that X ′ = X and also L = f ∗LY for a nef and
big divisor LY .

(1) We claim that volX|V (L) = volY |f(V )(LY ). This follows because there are
natural isomorphismsH 0(Y,mLY ) ∼= H 0(X,mL) by pull-back for allm and hence
H 0(Y |f(V ),mLY ) ∼= H 0(X|V,mL) for all m.

(2)We claim that ‖Ld ·V ‖ = δ‖LdY ·f(V )‖. This follows from the alternative def-
inition (Definition 3.2) of ‖Ld ·V ‖. By taking general members Dm,1, . . . ,Dm,d ∈
|mLY | (∼= |mL|) for every large m, we have

δ‖LdY · f(V )‖ = δ lim sup
m

#(f(V ) ∩Dm,1 ∩ · · · ∩Dm,d \ SBs(LY ))

md

= lim sup
m

#(V ∩ f ∗Dm,1 ∩ · · · ∩ f ∗Dm,d \ SBs(L))

md
= ‖Ld ·V ‖.
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(3) We claim that µ(V,L) = Ld · V. By Wilson [W, 2.2], since LY is nef and
big, there exists an effective divisorD onY such that the linear system |mLY −D|
is base point free for all sufficiently large m; hence so is |mL− f ∗D| for all suf-
ficiently large m. Then it is not difficult to see that J (X, ‖mL‖) = OX for all m.
Then µ(V,L) = lim supm h0(V, OV (mL))/(m

d/d!) = Ld ·V = δLdY · f(V ). We
can find this type of argument in [MoR, Sec. 2].

(4) For the nef and big LY , we know that LdY · f(V ) = volY |f(V )(LY ) =
‖LdY · f(V )‖ (cf. [ELMNP3, 2.13]). Then δLdY · f(V ) = δ volY |f(V )(LY ) =
δ‖LdY · f(V )‖. By (1) and (2), we have Ld ·V = δ volX|V (L) = ‖Ld ·V ‖. Then
we have our assertion by (3).

Remark 3.4. In a similar situation, if L = f ∗LY for a big (but not necessarily
nef ) divisor LY on Y, we have µ(V,L) ≥ δ volX|V (L) = ‖Ld ·V ‖. In fact, for LY
big it is known that volY |f(V )(LY ) = ‖LdY · f(V )‖ [ELMNP3, 2.13]. The claims
(1) and (2) in the preceding proof still hold because we do not require that L be
nef. Then we have δ volX|V (L) = ‖Ld ·V ‖. Since µ(V,L) ≥ ‖Ld ·V ‖ in general
(by Lemma 3.5 to follow), we have our assertion.

We shall study relationships among three notions of volumes along subvarieties in
case the divisor is neither big nor nef-abundant (i.e., in very bad situations) and
prove Theorem 1.4 as a consequence.

Lemma 3.5. Let V ⊂ X be a subvariety of dimV = d > 0 such that V �⊂
SBs(L). Then µ(V,L) ≥ ‖Ld ·V ‖.
Proof. We use Notation 3.1. We take a sufficiently large m. We denote by νm:
Vm → V ⊂ X the induced morphism and put L′ = π∗

mL. Let k be a positive
integer. We have OXm(−kFm) = b(|mL′|)k ⊂ b(|kmL′|), where b(|·|) stands
for the base ideal of a linear system, b(|kmL′|) ⊂ J (‖kmL′‖) [L, 11.1.8(iv)],
and J (‖kmL′‖) ⊂ π−1

m J (‖kmL‖) · OXm [L, 9.5.8]. Therefore OXm(kMm) =
OXm(kmL

′−kFm) ⊂ OXm(kmL
′)⊗π−1

m J (‖kmL‖) ·OXm , and then OVm(kMm) ⊂
OVm(kmL

′)⊗ (π−1
m J (‖kmL‖) · OXm)|Vm = OVm(kmL

′)⊗ ν−1
m J (‖kmL‖) · OVm.

Now we have

Md
m ·Vm = lim sup

k→∞

h0(Vm, OVm(kMm))

kd/d!

≤ lim sup
k→∞

h0(Vm, OVm(kmL
′)⊗ ν−1

m J (‖kmL‖) · OVm)

kd/d!
.

By Lemma 2.4, we know that the last term is µ(V,mL). Thus we have Md
m ·

Vm/m
d ≤ µ(V,L), and letting m → ∞ we have ‖Ld ·V ‖ ≤ µ(V,L).

Lemma 3.6. Let V ⊂ X be a subvariety of dimV = d > 0 such that V �⊂
SBs(L) and the map f |V : V ��� f(V ) is generically finite of degree δ. Then
δ volX|V (L) ≥ ‖Ld ·V ‖.
Proof. We use Notation 3.1. We may assume, by takingm to be large enough, that
ψm|Vm : Vm → ψm(Vm) ⊂ P is generically finite of degree δ. We take one such m.
We see that
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volX|V (L) = volXm|Vm
(mπ∗

mL)/m
d ≥ volXm|Vm

(Mm)/m
d.

We know by [ELMNP3, 2.5] that

vol(Vm,Mm|Vm) = δ vol(ψm(Vm), O(1)|Vm).
Since O(1) is ample, for every sufficiently large k we haveH 0(ψm(Xm), O(k)) =
H 0(P|ψm(Xm), O(k)) and H 0(ψm(Vm), O(k)) = H 0(P|ψm(Vm), O(k)); hence

H 0(ψm(Vm), O(k)) = H 0(ψm(Xm)|ψm(Vm), O(k)).
By pull-back, H 0(ψm(Xm), O(k)) ⊂ H 0(Xm, O(kMm)). Thus

h0(ψm(Vm), O(k)) ≤ h0(Xm|Vm, O(kMm)).

Then

δ volXm|Vm
(Mm) = δ lim sup

k

h0(Xm|Vm, O(kMm))/(k
d/d!)

≥ δ lim sup
k

h0(ψm(Vm), O(k)|ψm(Vm))/(kd/d!)

= δ vol(ψm(Vm), O(1)|Vm)
= vol(Vm,Mm|Vm) = Md

m ·Vm.
Hence δ volX|V (L) ≥ Md

m ·Vm/md.

Remark 3.7. We have an additional remark in the preceding proof. Denote by
ψm : Xm → Ym := ψm(Xm) ⊂ P. Let νm : Y ′

m → Ym be the normalization and
ψ ′
m : Xm → Y ′

m the induced morphism (with connected fibers!). Then

H 0(Xm, O(kMm)) = H 0(Xm,ψ ′∗
m ν

∗
mO(k))

= H 0(Y ′
m, ν∗

mO(k)) ⊃ H 0(Ym, O(k)).
We see that vol(Y ′

m, ν∗
mO(1)) = vol(Ym, O(1)), since O(1) is ample. Hence

lim sup
k

h0(Xm, O(kMm))

kd/d!
= vol(Ym, O(1))

with d = κ(L).

For curves, we can show the converse of Lemma 3.6.

Lemma 3.8. Let C ⊂ X be a curve such that C �⊂ SBs(L) and such that the map
f |C : C ��� f(C) is finite of degree δ. Then δ volX|C(L) ≤ ‖L · C‖.
Proof. We may assume C is smooth by taking an embedded resolution of C and
using Lemma 2.3. Since dim f(C) > 0, we know that volX|C(L) > 0; in partic-
ular, we have lim supm h0(X|C,mL) = +∞. We use Notation 3.1 with V = C.

We denote by νm : C ′
m → ψm(Cm) = �|mL|(C) (⊂ P) the normalization and by

αm : Cm → C ′
m the induced morphism. We note that Cm

∼= C. We may assume,
by taking m to be large enough, that the map αm has degree δ. We have Mm|Cm =
α∗
mν

∗
mO(1) and degMm|Cm = δ deg ν∗

mO(1). Then
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H 0(X|C,mL) ∼= H 0(Xm|Cm,Mm) ⊂ α∗
mH

0(C ′
m, ν∗

mO(1)).
(We note that there is an isomorphism H 0(Xm|Cm,Mm)

∼−→H 0(X|C,mL).)
We note that lim supm h0(X|C,mL) = +∞ implies lim supm(degMm|Cm) =

+∞. In fact, since h1(Cm,Mm|Cm) = h0(Cm,KCm − Mm|Cm) ≤ h0(C,KC) is
bounded, it follows that if we had degMm|Cm < d0 for all m then the
Riemann–Roch theorem would imply that h0(Cm,Mm|Cm) ≥ h0(X|C,mL) is also
bounded. Thus we can take m so large that degMm|Cm > δ degKC. In particular,
deg ν∗

mO(1) > degKC ′
m
. Then, by Riemann–Roch and vanishing, we have

h0(Cm,Mm|Cm) = degMm|Cm + χ(OCm)

and
h0(C ′

m, ν∗
mO(1)) = deg ν∗

mO(1)+ χ(OC ′
m
).

Therefore,

δh0(C ′
m, ν∗

mO(1)) = δ(deg ν∗
mO(1)+ χ(OC ′

m
)) = degMm|Cm + δχ(OC ′

m
).

Hence δ 1
m
h0(X|C,mL) ≤ 1

m
degMm|Cm + δ

m
χ(OC ′

m
) ≤ 1

m
degMm|Cm + δ/m.

Since this holds for infinitely many m, by letting m → ∞ we have δ volX|C(L) ≤
‖L · C‖.
The previous three lemmas immediately imply the following.

Corollary 3.9. Let C ⊂ X be a curve such that C �⊂ SBs(L) and the map
f |C : C ��� f(C) is finite of degree δ. Then µ(C,L) ≥ δ volX|C(L) = ‖L · C‖
holds.

Corollary 3.10 (= Theorem 1.4). Let x ∈X be a very general point. Assume
µ(C,L) = volX|C(L) for any curve C passing through x. Then either κ(L) = 0
or κ(L) = dimX.

Proof. Assume 0 < κ(L) < dimX. Then we can find a curve C ⊂ X—for
example, as a general complete intersection over a general curve C ′ in Y, with
deg(f |C : C ��� C ′) > 1. By Corollary 3.9, we have µ(C,L) > volX|C(L) and
get a contradiction.

3.2. Concluding Remarks

Here are some remarks relevant to pursuing the previous arguments.

Remark 3.11. There is a missing piece for better understanding the asymptotic
property of linear series {|mL|}m>0 for general L with κ(L) ≥ 0. In case L
is big, there exists an effective (very ample) divisor G such that bm(−G) ⊂
J (‖mL‖)(−G) ⊂ bm for all m > 0 [ELMNP3, 3.1; L, 11.2.21], where bm =
b(|mL|) is the base ideal. This “uniformity” was crucial in the asymptotic study
of big divisors. We would like to see whether or not this uniformity still holds
when L is not big. A counterexample would also be interesting.

In any case, let us point out that one can argue as in the proof of [ELMNP3, 2.13]
to obtain the following.
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Proposition 3.12. Suppose there exists an effective divisor G on X such that
bm(−G) ⊂ J (‖mL‖)(−G) ⊂ bm for all m > 0. Then ‖Ld · V ‖ ≥ µ(V,L)
(which implies ‖Ld ·V ‖ = µ(V,L)) for any subvariety V of dimV = d > 0 such
that V �⊂ (SBs(L) ∪ SuppG).

It would also be interesting to understand whether the converse of Lemma 3.6
holds in general, as follows.

Question 3.13. Let V ⊂ X be a subvariety of dimV = d > 0 such that V �⊂
SBs(L) and the map f |V : V ��� f(V ) is generically finite of degree δ. In this
case, does the inequality δ volX|V (L) ≤ ‖Ld ·V ‖ hold?

Remark 3.14. Notice that if Question 3.13 is answered in the affirmative then
we would have µ(V,L) ≥ δ volX|V (L) = ‖Ld · V ‖ for V as in the question (cf.
Corollary 3.9) and thus obtain a natural generalization of Theorem 1.4. Precisely
the same arguments given in the proof of Corollary 3.10 would yield the follow-
ing. Let x ∈X be a very general point, and assume µ(V,L) = volX|V (L) for any
d-dimensional subvariety V passing through x. Then either κ(L) < d or κ(L) =
dimX.

Remark 3.15. A parallel analytic approach, in the spirit of [B], to the questions
studied in this paper would be possible.
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