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Iterates of Vinogradov’s Quadric
and Prime Paucity

Valentin Blomer & Jörg Brüdern

1. Introduction

Vinogradov’s quadric is the variety defined by the pair of equations

x 2
1 + x 2

2 + x 2
3 = y2

1 + y2
2 + y2

3, x1 + x2 + x3 = y1 + y2 + y3,

which is the special case k = 2 of the more general system

x1,1 + x2,1 + x3,1 = x1,j + x2,j + x3,j (2 ≤ j ≤ k),

x 2
1,1 + x 2

2,1 + x 2
3,1 = x 2

1,j + x 2
2,j + x 2

3,j (2 ≤ j ≤ k).
(1)

In this paper, we study the distribution of integral solutions to (1). Our first result
concerns the number Vk(N ) of such solutions inside the sphere

x 2
1,j + x 2

2,j + x 2
3,j ≤ 3N 2, 1 ≤ j ≤ k. (2)

Theorem 1. Let k ≥ 2 be a natural number. Then, for any real number δ with
0 < δ < 3/2k,

Vk(N ) = N 3Pk(logN)+O(N 3−δ), (3)

where Pk is a polynomial of degree 2k−1 − 1. In particular, P2(x) = 48(x + c),
where

c = γ + 1

2
log 2 + log 3 − 4

3
+ L′(1,χ)

L(1,χ)
− ζ ′(2)

ζ(2)

and where χ is the nontrivial character modulo 3. Moreover,

V2(N ) = N 3P2(logN)+O(N 2 logN). (4)

The error term in (3) stems from the use of Weyl’s bound for ζ(s) and L(s,χ) in
the critical strip, and it can be improved by working with a truncated version of
the Mellin integral (see equation (21) in Section 3) and with better bounds for ζ(s)
and L(s,χ). When k = 2, one can use fourth moments of these functions over
the critical line to obtain (4). If the Lindelöf hypothesis were true for ζ(s) and
L(s,χ), then for any k ≥ 3 the formula (3) would hold for any δ < 1.

From the point of view of arithmetic geometry it is perhaps more natural to
count solutions of (1) inside the box |xi,j | ≤ N. Let Ṽk(N ) denote the number
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of such solutions. Then, by (2), one has Vk
(
N/

√
3

) ≤ Ṽk(N ) ≤ Vk(N ), whence
Theorem 1 implies the bounds

Ṽk(N ) 
 N 3(logN)2k−1−1. (5)

This suffices for the applications that follow, but an asymptotic formula for Ṽk(N )

should be within reach of elementary methods. In fact, when k = 2, we ap-
plied a technique that is Dirichlet’s hyperbola method in disguise and obtained the
estimate

Ṽ2(N ) =
(

12

π

)2

N 3 logN + c̃N 3 +O(N 5/2 logN),

where

c̃ =
(

12

π

)2(
log 2 + 2γ − ζ ′(2)

ζ(2)
− 5

6

)

(see [3], the theorem and the following comment). Apparently, the reason for the
much superior error term in (4) is the smoother kernel in (21), which in turn results
from the spherical summation conditions (2).

A solution of the system (1) may be regarded as trivial if for some pair 1 ≤ j <

j ′ ≤ k the triple x1,j , x2,j , x3,j is a permutation of x1,j ′ , x2,j ′ , x3,j ′ , because such
solutions may be viewed as arising from the smaller system with k −1 in place of
k. Note that this remark, coupled with Theorem 1 or (5), shows that the number of
trivial solutions is of smaller order of magnitude than Vk(N ) or Ṽk(N ). However,
one may try to force the trivial solutions to dominate by restricting the variables to
a suitably thin set. If this is successful for prime variables, then we described the
effect as prime paucity in [1]. Here we follow an inquiry from Professor Wooley
and determine those systems (1) with prime paucity. Let �k(N ) denote the num-
ber of primes xi,j in the box 1 ≤ xi,j ≤ N (1 ≤ i ≤ 3, 1 ≤ j ≤ k) that satisfy (1),
and let Uk(N ) denote the number of such solutions that in addition satisfy

{x1,j , x2,j , x3,j} = {x1,j ′ , x2,j ′ , x3,j ′ } for all 1 ≤ j < j ′ ≤ k. (6)

Theorem 2. For any k ≥ 2,

Uk(N ) � N 3(logN)2k−1−1−3k(log logN)3k.

In particular, we see that for 2 ≤ k ≤ 4 one has

Uk(N ) � N 3(logN)−5(log logN)12.

It is now straightforward to evaluate �k(N ). One chooses a triple of primes
x1,1, x1,2, x1,3 and permutes it k − 1 times to find 6k−1π(N )3 + O(N 2) “diago-
nal” solutions. By the argument preceding Theorem 2, the remaining solutions
are at most O(U2(N )+ · · · + Uk(N )) in number. For 2 ≤ k ≤ 4, it follows that

�k(N ) = 6k−1π(N )3 +O(N 3(logN)−5(log logN)12), (7)

which confirms prime paucity in these cases. For k = 2, a more general form of
(7) was obtained in [2].
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We shall deduce Theorem 2 from a simple version of Selberg’s sieve. With ex-
tra work along the lines of Rieger [10, pp. 94–96], the factor (log logN)3k could
be removed from the upper bound estimate. In an effort to keep the underlying
Diophantine considerations transparent, rather than disguised by elementary but
tedious technicalities, we have preferred to confine ourselves to this marginally
weaker result that still features the prime paucity effect for k ≤ 4. Probabilistic
heuristics and the approach of computing the major arc contribution in a circle
both suggest that the order of magnitude of Uk(N ) should be N 3(logN)2k−1−1−3k.

In particular, one would predict that U5(N ) � N 3, so it is likely that the vari-
ety (1) exhibits prime paucity if and only if 2 ≤ k ≤ 4.

One may compare our results with similar ones for sums of two squares. If one
counts the integral solutions of a system

x 2
1 + x 2

2 = x 2
3 + x 2

4 = · · · = x 2
2k−1 + x 2

2k

inside a sphere x 2
1 + x 2

2 ≤ N, then one must evaluate the moment∑
n≤N

r4(n)
k, (8)

where r4(n) is the number of representations n = x 2
1 +x 2

2 with x1, x2 ∈ Z , and one
finds an asymptotic formula by Dirichlet series techniques (see, most recently, [4]).
Also, one experiences prime paucity for k = 2 (Erdős [5]) and k = 3 (Brüdern
and Blomer [2]) but would not predict this effect for larger values of k. Rather than
working with the quadratic form x 2 + y2 of discriminant −4, we relate Vk(N ) to
moments similar to (8) but with q(x, y) = x 2 + xy+ y2 of discriminant −3 in the
role of sums of two squares.

For fixed a ∈ Z and b ∈ N0, consider the pair of equations

x1 + x2 + x3 = a, x 2
1 + x 2

2 + x 2
3 = b, (9)

and let R(a, b) denote the number of its solutions in x1, x2, x3 ∈ Z. Then

Vk(N ) =
∑
a∈Z

∑
0≤b≤3N 2

R(a, b)k. (10)

Note that (9) implies a ≡ b mod 2, so it suffices to sum over such pairs in (10).
Now substitute the linear equation in (9) into the quadratic one to see that (9) is
equivalent to

q(3x1 − a, 3x2 − a) = 1
2 (9b − 3a2), x1 + x2 + x3 = a. (11)

In particular, it follows that

R(a, b)

= #
{
(y1, y2)∈ Z2 : q(y1, y2) = 1

2 (9b − 3a2), y1 ≡ y2 ≡ a mod 3
}
, (12)

and by substituting this into (10) we obtain a formula for Vk(N ) that is not dis-
similar to (8). One may exploit this idea further and express Vk(N ) in terms of
certain weighted moments of the number of representations of integers by the
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form q(x, y). We present this in Section 2 and then, in Section 3, discuss the
relevant moments by classical Dirichlet series techniques; this will complete the
proof of Theorem 1. In Section 4 we review some arithmetical facts about the ring
Z

[
1
2

(
1 + √−3

)]
. The factorization described in Lemma 4 is an abstracted form

of the main idea in the sieve preparation work in our related recent paper [2], and
it is also fundamental for the proof of Theorem 2 in Section 5.

2. Reduction to Binary Quadratic Forms

Let ω = 1
2

(
1+ √−3

)
. The integers in the number field Q(ω) form the ring Z[ω]

with unique factorization and six units ±1, ±ω, ±ω2. We will typically denote ele-
ments in Z[ω] with Greek letters and use lowercase Latin for rational integers. For
α = a + bω ∈ Z[ω], define the conjugate by ᾱ = (a + b) − bω = a + bω̄ and
the norm by Nα := αᾱ = q(a, b).

Let χ denote the nontrivial Dirichlet character modulo 3, and define the arith-
metical function r(n) = ∑

d |n χ(d ). Then 6r(n) equals the number of solutions
of q(x, y) = n in integers x, y; also, r(n) equals the number of ideals a ⊂ Z[ω]
of norm n. This much of the theory of Z[ω] is found in Hua [7], for example.

We are ready to rewrite Vk(N ) in terms of moments of r(n). Note that integers
y1, y2 satisfy y1 ≡ y2 ≡ a mod 3 if and only if y1 + y2ω ≡ a(1 + ω) mod 3 in
Z[ω]. By (12),

R(a, b) = #
{
δ ∈ Z[ω] : Nδ = 1

2 (9b − 3a2), δ ≡ a + aω mod 3
}
. (13)

However, if δ = r + sω then 3 | Nδ is equivalent to 3 | q(r, s), which in turn holds
if and only if r ≡ s mod 3. Hence, if 3 � a, then Nδ = 1

2 (9b − 3a2) implies that
δ is either in the class 1 + ω mod 3 or in 2(1 + ω) mod 3. Yet exactly three of
the units η ∈ Z[ω] satisfy η(1 + ω) ≡ 1 + ω mod 3, and the other three yield
η(1 + ω) ≡ 2(1 + ω) mod 3. Consequently, when 3 � a, we find that

R(a, b) = 1
2 #

{
a ⊂ Z[ω] : Na = 1

2 (9b − 3a2)
} = 3r

(
1
2 (9b − 3a2)

)
.

If 3 | a but a2 = 3b, then the same argument shows that 3 | δ whenever Nδ =
1
2 (9b − 3a2), and we may cancel a factor 9 in (13) to deduce that, whenever a =
3ã and a2 = 3b, one has

R(3ã, b) = #
{
a ⊂ Z[ω] : Na = 1

2 (b − 3ã2)
} = 6r

(
1
2 (b − 3ã2)

)
.

We next insert these formulas into (10). In the exceptional case where a2 = 3b
one trivially has R(a, b) = 1, so these terms contribute at most O(N) to (10). For
notational convenience, put r(n) = 0 when n ≤ 0. It then follows that

Vk(N ) = 6kV ′
k(N )+ 3kV ′′

k (N )+O(N), (14)

where
V ′
k(N ) =

∑
a∈Z

∑
0≤b≤3N 2

b≡amod 2

r
(

1
2 (b − 3a2)

)k

and
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V ′′
k (N ) =

∑
a∈Z
3�a

∑
0≤b≤3N 2

b≡amod 2

r
(

1
2 (9b − 3a2)

)k
.

In the sum defining V ′
k(N ) we fix a and substitute n = 1

2 (b − 3a2) for b to de-
duce that

V ′
k(N ) =

∑
a∈Z

∑
n≤(3/2)(N 2−a2)

r(n)k

=
∑

n≤(3/2)N 2

r(n)k
(
2
(
N 2 − 2

3n
)1/2 +O(1)

)
. (15)

Similarly, when 3 � a and a ≡ b mod 2, one may write 1
2 (9b − 3a2) = 3n with

3 � n. Substitute n for b in the sum defining V ′′
k (N ) and then use multiplicativity

for r. Since r(3) = 1, we find that

V ′′
k (N ) =

∑
a∈Z
3�a

∑
n≤(1/2)(9N 2−a2)

3�n

r(n)k

=
∑

n≤(9/2)N 2

3�a

r(n)k
(

4
3 (9N

2 − 2n)1/2 +O(1)
)
. (16)

It remains to evaluate the weighted moments that occur in (15) and (16). We
summarize the relevant asymptotics in the next lemma. The results feature the
Riemann zeta function ζ(s), the Dirichlet L-function L(s,χ), the logarithmic de-
rivative ψ(s) of the Gamma function, and the Euler–Mascheroni constant γ.

Lemma 1. Let k ≥ 2 and K = 2k−1. Then∑
m≤M

r(m)k � M(logM)K−1, (17)

and there exist real polynomials Qk , Q̃k of degree K − 1 such that∑
m≤M

(M −m)1/2r(m)k = M 3/2Qk(logM)+O(M 3/2−η) (18)

and ∑
m≤M
3�m

(M −m)1/2r(m)k = M 3/2Q̃k(logM)+O(M 3/2−η) (19)

hold for any η < 3
4K . If k = 2, then (18) and (19) hold with η = 1

2 and one has

Q2(x) = 1

9

(
x + γ + 1

4
log 3 − ψ

(
5

2

)
+ 2

L′(1,χ)

L(1,χ)
− 2

ζ ′(2)
ζ(2)

)
,

Q̃2(x) = 2

27

(
x + γ + 3

4
log 3 − ψ

(
5

2

)
+ 2

L′(1,χ)

L(1,χ)
− 2

ζ ′(2)
ζ(2)

)
.
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With this lemma in hand, choose M = 3
2N

2 in (18) and M = 9
2N

2 in (19) to de-
termine asymptotic formulas for V ′

k(N ) and V ′′
k (N ). When substituted into (14),

Theorem 1 follows with

P2(x) = 108Q2
(
2x + log 3

2

) + 162Q̃2
(
2x + log 9

2

)
.

The explicit form of P2(x) in Theorem 1 is then found using the formula ψ
(

5
2

) =
8
3 −2 log 2−γ, which is derived from the standard formula forψ

(
1
2

)
and the func-

tional equation.

3. Moments of Representation Numbers

In this section we prove Lemma 1. Let k ≥ 2. Since r(n)k is multiplicative, we
may compare Euler products to find that

∞∑
n=1

r(n)k

ns
= Gk(s)(ζ(s)L(s,χ))

K, (20)

where K = 2k−1 as before and where

Gk(s) =
(

1 − 1

3s

)K−1 ∏
p≡1(3)

( ∞∑
m=0

(m+ 1)k

pms

)(
1 − 1

ps

)2K ∏
p≡2 (3)

(
1 − 1

p2s

)K−1

.

The function Gk is holomorphic, nonzero, and bounded uniformly in �s ≥ 1
2 + δ

for any fixed δ > 0; this follows, for example, from [9, Lemma 2] (with 2c = 2k

and cosφ = 0). The identity (20) now implies (17) (cf. [4, Thm. 1]).
For the asymptotic formula (18), we note that whenever M > 0 one has∫ M

0
(M − x)1/2x s−1 dx =

√
π,(s)

2,
(
s + 3

2

)Ms+1/2

in the right half-plane �s > 0 (see [6, (3.191.1)]). By Mellin inversion,∑
n≤M

(M − n)1/2r k(n)

= 1

2πi

∫
(2)

√
π,(s)

2,
(
s + 3

2

)Gk(s)(ζ(s)L(s,χ))
KMs+1/2 ds. (21)

Note that the integrand has a pole at s = 1 of orderK and residueM 3/2Qk(logM)

for some polynomial Qk of degree K −1. We wish to move the line of integration
in (21) to �(s) = σ with σ < 1 as small as possible. The familiar Weyl bound
coupled with the Phragmén–Lindelöf convexity principle gives

ζ(σ + it)L(σ + it,χ) �ε (1 + |t |)(2/3)(1−σ)+ε, 1
2 ≤ σ ≤ 1, t ∈ R,

and Stirling’s formula yields ,(s)/,
(
s + 3

2

) � |s|−3/2. Thus we may move the
line of integration to �(s) = σ whenever σ > 1 − 3

4K . The new integral is still
absolutely convergent, and it follows that∑

m≤M

(M −m)1/2r(m)k = M 3/2Qk(logM)+O(M 3/2−(3/4K)+ε).
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This establishes (18). For (19), we need only note that the condition 3 � n removes
the Euler factor for p = 3 from the generating function (20). Thus, no substanstial
changes are needed in the preceding argument to confirm (19) as well.

Now suppose that k = 2. In this special case, the function G2(s) and its com-
panion can be made very explicit. In fact, one has

∞∑
n=1

r(n)2

ns
= (ζ(s)L(s,χ))2

(1 + 3−s )ζ(2s)
,

∞∑
n=1
3�n

r(n)2

ns
= (ζ(s)L(s,χ))2(1 − 3−s )

(1 + 3−s )ζ(2s)
.

One proceeds as before except now shifting the line of integration to �s = 1
2 .

Again, the integral remains in the range of absolute convergence owing to the clas-
sical upper bound∫ T

1
|ζ(1/2 + it)|2|L(1/2 + it,χ)|2 dt � T log T.

By the class number formula we haveL(1,χ) = π/3
√

3, so the residue at s = 1can
be written explicitly. This yields the formulas for Q2 and Q̃2, proving Lemma 1.

4. Preparation for the Sieve

We begin with some simple comments on the ring Z[ω]. For α = a+ bω ∈ Z[ω],
define the integers

Rα = a, Iα = b, Sα = −a − b.

Lemma 2. Let α,β ∈ Z[ω] and assume that

{R(αβ), I(αβ), S(αβ)} = {R(αβ̄), I(αβ̄), S(αβ̄)}.
Then all six integers

Rβ, Iβ, Sβ, Rα − Iα, 2Rα + Iα, Rα + 2Iα (22)

are nonzero.

Proof. This is straightforward to check using the formulas

(a + bω)(c + dω) = (ac − bd)+ (bc + ad + bd)ω,

(a + bω)(c + dω̄) = (ac + bd + ad)+ (bc − ad)ω.
(23)

For example, Rβ = 0 implies R(αβ) = S(αβ̄), I(αβ) = R(αβ̄), and S(αβ) =
I(αβ̄). The other five cases are similar.

Lemma 3. Let α,β ∈ Z[ω] and assume that the six integers in (22) are nonzero.
Then the integers

R(αβ), I(αβ), S(αβ), R(αβ̄), I(αβ̄), S(αβ̄)
are pairwise different.
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Proof. This is again straightforward to check using the formulas (23). For exam-
ple, R(αβ) = S(αβ̄) implies Rβ ·(2Rα+Iβ) = 0, contradicting the hypothesis.
The other cases are similar.

For k ∈ N, let K = 2k−1 and Ak := {0,1, . . . ,K −1}. We represent a typical mem-
ber n ∈Ak in 2-adic representation: n = ∑

aν2ν with aν ∈ {0,1}. For 1 ≤ j ≤ k

we define Bk,j ,Ck,j as follows:

Bk,1 := Ak , Bk,j :=
{
n =

k−2∑
ν=0

aν2ν
∣∣ ak−j = 0

}
if 2 ≤ j ≤ k;

Ck,1 := ∅, Ck,j :=
{
n =

k−2∑
ν=0

aν2ν
∣∣ ak−j = 1

}
if 2 ≤ j ≤ k.

Then, for any j ∈ {1, . . . , k}, the set Ak is the disjoint union of Bk,j and Ck,j .

Lemma 4. Let M ∈ N, and let α1, . . . ,αk ⊆ Z[ω] such that Nα1 = · · · = Nαk =
M. Then there are δ0, . . . , δK−1 ∈ Z[ω] such that

αj =
∏

n∈Bk,j
δn

∏
m∈Ck,j

δ̄m, 1 ≤ j ≤ k;

in particular, N(δ0 · · · δK−1) = M.

Note that we do not claim that the numbers δn are unique, and in general they are
not, not even up to units. But they are not “too far” from being unique. How-
ever, we need not investigate this any further. For the sieve argument in the next
section, the existence alone has an enveloping effect that suffices.

Proof of Lemma 4. We proceed by induction on k. There is nothing to show for
k = 1. Assume we have found suitable δ0, . . . , δK−1 for given numbers α1, . . . ,αk ,
and assume we add another αk+1 ∈ Z[ω] with Nαk+1 = M. By unique factor-
ization, αk+1 contains the same prime factors, with the same multiplicities as the
product of the δn, except that some of the prime factors may be conjugated. Hence,
for 0 ≤ n ≤ K −1 we can decompose δn in the form δn = δ ′

2nδ
′
2n+1, where δ ′

2n is
the product of all prime factors of δn that also divide αk+1. Now

αk+1 = δ ′
0 δ̄

′
1 · δ2 δ̄

′
3 · · · δ ′

2K−2 δ̄
′
2K−1,

and the collection δ ′
0, . . . , δ ′

2K−1 gives the desired elements.

Before we move on to the sieve, we also recall the well-known bound #{δ ∈ Z[ω] :
Nδ ≤ X} � X. By a standard divisor estimate, this yields∑

δ0,...,δm−1∈Z[ω]
N(δ0···δm−1)≤X

1 �m X(logX)m−1 (24)

for any fixed value of m∈ N.
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5. An Upper Bound Sieve Estimate

We derive Theorem 2 from the following consequence of Selberg’s sieve.

Lemma 5. Letm∈ N, and let r1, . . . , rs ∈ Z be pairwise distinct. Then the number
of positive integers n ≤ X such that 1

m
(n+ rj ) is simultaneously a prime number

for 1 ≤ j ≤ s does not exceed

O
(
X(logX)−s

(
log log

(
3 + max

1≤j≤s
|rj |

))s)
.

The implicit constant depends only on s.

Proof. For m = 1, this is a special case of [8, Satz 2.4.2]. The case m > 1 is eas-
ily reduced to the case m = 1: we observe that the lemma is trivial unless r1 ≡
· · · ≡ rs ≡ r (mod m) for some r ∈ {0, . . . ,m − 1}, in which case we write n as
mn′ − r.

We are ready to estimate Uk(n). Eliminate x3 from (11), where x1, x2, x3 are ra-
tional primes in the current context. This shows that

Uk(N ) =
∑
a∈Z

∑
0≤b≤3N 2

b≡amod 2

Uk(N; a, b),

where Uk(N; a, b) is the number of 2k-tuples p1,1,p2,1, . . . ,p1,k ,p2,k of primes
such that a − p1,j − p2,j is also prime for 1 ≤ j ≤ k, such that

N(3p1,j − a + (3p2,j − a)ω) = 1
2 (9b − 3a2)

holds for all j, and that satisfy the nontriviality conditions (6). The latter now read

{p1,j ,p2,j , a − p1,j − p2,j} = {p1,j ′ ,p2,j ′ , a − p1,j ′ − p2,j ′ } (25)

for all 1 ≤ j < j ′ ≤ k. By Lemma 4 and the notation in the paragraph preceding
it, an upper bound for this quantity is given by

Uk(N; a, b) ≤
∑

δ0,...,δK−1

1, (26)

where the δ0, . . . , δK−1 run over elements of Z[ω] subject to N(δ0 · · · δK−1) =
1
2 (9b − 3a2) and the condition that the rational numbers

p1,j = 1

3

(
R

( ∏
n∈Bk,j

δn
∏

m∈Ck,j
δ̄m

)
+ a

)
, (27a)

p2,j = 1

3

(
I
( ∏
n∈Bk,j

δn
∏

m∈Ck,j
δ̄m

)
+ a

)
, and (27b)

p3,j = a − p1,j − p2,j = 1

3

(
S
( ∏
n∈Bk,j

δn
∏

m∈Ck,j
δ̄m

)
+ a

)
(27c)
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are prime for 1 ≤ j ≤ k and satisfy (25). Now sum (26) over a and b, and inter-
change the order of summation. Then

Uk(N ) ≤
∑

δ0,...,δK−1

∑
a≤

√
9N 2−(2/3)N(δ0··· δK−1)

1 ≤
∑

N(δ0··· δK−1)≤(27/2)N 2

∑
a≤3N

1,

where the sums over a are subject to the conditions (27) and (25). We are now in
a position to apply Lemma 5 to the inner sum with m = 3 and s = 3k. We ob-
serve that (25) when combined with Lemmas 2 and 3 guarantees the applicability
of Lemma 5. Thus we obtain

Uk(N ) � k

N(log logN)3k

(logN)3k

∑
N(δ0··· δK−1)≤(27/2)N 2

1,

and Theorem 2 now follows from (24).
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