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Positivity of Cotangent Bundles

Kelly Jabbusch

1. Introduction

Let X be a projective scheme over an algebraically closed field. Given a vector
bundle E on X, we can consider various notions of positivity for E, such as ample,
nef, and big. As a particular example, consider a smooth projective variety X and
its cotangent bundle �X. When �X is ample, X has some very nice properties.
For example, all subvarieties of X are of general type and X is algebraically hy-
perbolic; so, in particular, X does not contain rational or elliptic curves and there
do not exist nonconstant maps f : A → X where A is an abelian variety and X
is Kobayashi hyperbolic [3]. Requiring that the cotangent bundle be ample is cer-
tainly a very strong property, and for a long time there were few examples of such
varieties even though they were expected to be reasonably abundant. One such
example was constructed by Michael Schneider.

Theorem 1.1 [17]. Let f : X → Y be a smooth projective nonisotrivial mor-
phism, whereX and Y are smooth projective varieties over C of dimensions 2 and
1, respectively. Suppose that, for all y ∈ Y, the Kodaira–Spencer mapρf,y : TY,y →
H1(Xy , TXy ) is nonzero. Then �X is ample.

Note that certain Kodaira surfaces satisfy the stipulated conditions. In this paper,
we generalize Theorem 1.1 to varieties of higher dimensions. To do so, we will in-
troduce a slightly weaker notion of ampleness, which we call “quasi-ample” and
“quasi-ample with respect to an open subset U” (see Definitions 1.9 and 1.13).
Using this notion, we extend Schneider’s result to varieties of higher dimension.

Theorem 1.2. Let

Xn
fn �� Xn−1

fn−1
�� Xn−2

fn−2
�� · · · f3 �� X2

f2 �� X1,

where each Xi is a smooth projective variety over C of dimension i and each
fi : Xi → Xi−1 is a smooth projective morphism with Var(fi) = i −1. Then �Xn

is nef and quasi-ample with respect to an open Un (as defined precisely in Theo-
rem 2.11), and OP(�Xn )(1) is a big line bundle on P(�Xn).

We also extend this result to towers of varieties
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Xn
fn �� Xn−1

fn−1
�� Xn−2

fn−2
�� · · · f3 �� X2

f2 �� X1,

where thefi are not necessarily smooth (Theorem 2.16), and show that�1
Xn(logD)

is quasi-ample with respect to an open set, where D is a suitable divisor taking
into account the singularities of the given morphisms.

In Section 3 we construct a tower of varieties satisfying the conditions of
Theorem 2.12 by using a construction due to Kodaira that, for any n, produces
a g for which Mg contains a complete n-dimensional subvariety.

Acknowledgment. Many of the results that appear in this paper originally ap-
peared in my doctoral dissertation at the University of Washington. I would like
to thank my advisor Sándor Kovács for all his guidance and support.

Definitions and Examples

Recall that a vector bundle E on a proper scheme X is ample if, for every coher-
ent sheaf F, there is an integer m0 > 0 such that, for every m ≥ m0, the sheaf
F ⊗ SymmE is generated as an OX-module by its global sections. Equivalently,
E is ample if the tautological line bundle OP(E )(1) on P(E ) is ample.

A vector bundle E on a proper scheme X is nef (or semipositive) if, for every
complete nonsingular curve C and map γ : C → X, every quotient bundle Q of
γ ∗E has degree at least 0. Equivalently, E is nef if the tautological line bundle
OP(E )(1) on P(E ) is nef.

Vector bundles that are ample or nef have many nice properties. For example,
quotients of ample (resp. nef ) vector bundles are ample (resp. nef ), and extensions
of ample (resp. nef ) vector bundles are ample (resp. nef ). For more properties,
see [8] or [15, Sec. 6.1A and 6.1B].

Let E be a vector bundle of rank r on an irreducible projective variety X of di-
mension n. Following the work of Fulton and Lazarsfeld [5], we can introduce
a type of numerical positivity. More precisely, starting with a weighted homoge-
neous polynomial P ∈ Q[c1, . . . , cr ], we get a Chern number∫

X

P(c(E )) :=
∫
X

P(c1(E ), . . . , cr(E )).

Definition 1.3. Let �(n, r) be the set of all partitions of n by nonnegative in-
tegers less than or equal to r. Then for every λ = (λ1, . . . , λn) ∈ �(n, r) we can
form the Schur polynomial, sλ ∈ Q[c1, . . . , cr ], of weighted degree n, which is the
determinant of the n× n matrix∣∣∣∣∣∣∣∣∣

cλ1 cλ1+1 · · · cλ1+n−1

cλ2−1 cλ2 · · · cλ2+n−2

...
...

...
...

cλn−n cλn−n+1 · · · cλn

∣∣∣∣∣∣∣∣∣
,

where c0 = 1 and ci = 0 if i /∈ [0, r].
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In particular, if P is a positive linear combination of Schur polynomials and E is
ample (resp. nef ), then

∫
X
P(c(E )) > 0 (resp. ≥ 0).

We next generalize the notion of “big” for vector bundles. Recall that a divi-
sor D is big if there exists a c > 0 such that h0(X, OX(mD)) > cmn for m � 1.
Generalizing this notion to vector bundles is not consistent in the literature. As a
first definition, we generalize the notion as we did with ample and nef. This is the
definition given, for example, in [15] and [2].

Definition 1.4 [15, 6.1.23]. Let E be a vector bundle on X. Then E is L-big if
OP(E )(1) is a big line bundle on P(E ). (Here, L-big is used instead of big to avoid
confusion with Definition 1.6.)

Example 1.5. As an example, consider the rank-2 vector bundle

E = OP1 ⊕ OP1(1)

on P1. Since a direct sum of line bundles is L-big if and only if some N-linear com-
bination of the direct summands is a big line bundle [15, 2.3.2(iv)], we see that
E is L-big. Note that in this example E is L-big but has a quotient OP1, which is
not big.

It is also useful to see that OP(E )(1) is big in a slightly different way (which
we will refer to in Example 1.7). First note that P(E ) 
 P(E ′), where E ′ :=
E ⊗ OP1(−1) 
 OP1 ⊕ OP1(−1). Fix a section C0 of X = P(E ′) with OX(C0) 

OP(E′ )(1), and let f be a fiber. Then OP(E )(1) corresponds to a section C1, which
is linearly equivalent toC0 +f. GivenA = aC0 +bf ample, it follows that a > 0
and b > a [10, V.2.18]; hence bC1 − A = (b − a)C0 is effective and so OP(E )(1)
is big.

We next turn to a different generalization of big to vector bundles that was intro-
duced by Viehweg. To do so, we first need a generalization of nef.

Definition 1.6 [19]. Let E be vector bundle on a projective variety X, and let
H be an ample line bundle.

(i) E is weakly positive over an open U if, for every a > 0, there exists a
b > 0 such that Symab(E ) ⊗ H b is globally generated over U ; that is,
H 0(X, Symab(E )⊗ H b )⊗ OX → Symab(E )⊗ H b is surjective over U.

(ii) E is V-big (or ample with respect to U) if there exist an open dense U in X
and a c > 0 such that Symc E ⊗ H −1 is weakly positive over U.

Equivalently, a vector bundle E is ample with respect to U if and only if the tauto-
logical bundle OP(E )(1) is ample with respect to π−1(U) (where π : P(E ) → X);
see [21, 3.4]. At first glance it may seem that these two generalizations of big to
vector bundles may be equivalent. However, V-big is strictly stronger than L-big.

Example 1.7. Consider Example 1.5, where we view OP(E )(1) as C1 = C0 + f.

Then C1 is ample with respect to V = X − C0. But π(V ) = P1, so there is no
open U ⊂ P1 with π−1(U) = V. Thus E = OP1 ⊕ OP1(1) is L-big but not V-big.
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In general, we have that if E → Q is surjective over an open set U and if E is
ample with respect to U, then Q is also ample with respect to U [21, 3.30]. As
noted in Example 1.5, L-big does not have this property, so this again shows that
the notion of V-big is stronger than that of L-big.

Example 1.8. As a second example, let C be a curve of genus > 1 and let X =
C ×C, with projections p1 and p2. In this case the cotangent bundle �X is L-big
(i.e., OP(�X)(1) is a big line bundle on P(�X)), but since �X surjects onto p∗

1ωC

we see that �X is not V-big. Similarly, we can see that the two definitions of big
are not equivalent for the tangent bundle. Consider the smooth quadric surfaceQ;
here TQ is L-big, but TQ surjects onto p∗

1ω
−1
P1 and so is not V-big.

In view of these different definitions, we will avoid saying that a vector bundle E
on X is “big” and instead say either that OP(E )(1) is a big line bundle or that E is
ample with respect to some open set U.

We next define a new notion of positivity that is slightly weaker than ample but
stronger than nef.

Definition 1.9. A vector bundle E on X is quasi-ample if, for every noncon-
stant morphism γ : C → X from a complete nonsingular curve C, γ ∗E is ample
on C.

In the case where E is a line bundle, the terminology strictly nef has been used
[18]. Many properties of ample vector bundles carry over to quasi-ample vector
bundles, as the following theorem shows.

Theorem 1.10 [11, 4.3]. Let E and E ′ be vector bundles on X.

(i) If E is quasi-ample, then any quotient of E is quasi-ample.
(ii) If SymmE is quasi-ample for some m, then E is quasi-ample.

(iii) If E is quasi-ample, then SymmE and E m are quasi-ample for every m > 0
and �mE is quasi-ample for m = 1, 2, . . . , r, where r is the rank of E.

(iv) If E and E ′ are quasi-ample, then E ⊗ E ′ is quasi-ample.
(v) Let

0 −→ E ′ −→ E −→ E ′′ −→ 0

be an exact sequence of vector bundles on X. If E ′ and E ′′ are quasi-ample,
then E is quasi-ample.

(vi) Let E be quasi-ample, and let Y be a subscheme of X. Then E |Y is quasi-
ample on Y.

Proof. We give the proof of (i); the others follow similarly. LetE be a quasi-ample
vector bundle on X and let Q be a quotient of E. If γ : C → X is any nonconstant
morphism from a complete nonsingular curve, then γ ∗E is an ample vector bun-
dle with quotient γ ∗Q and so γ ∗Q is also ample. Hence Q is quasi-ample.

We also have the following criteria for when a quasi-ample bundle is ample, orig-
inally due to Gieseker; see [15, 6.1.7] for Gieseker’s original statement and proof
(or [11, 4.7]).
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Theorem 1.11. Let E be a vector bundle on X, where X is proper over a field k.
Then E is ample if and only if the two following conditions are satisfied :

(i) there exists an m0 > 0 such that SymmE is generated by global sections for
all m ≥ m0; and

(ii) E is quasi-ample.

Corollary 1.12. Let X be a complex projective variety with at most canonical
singularities. If ωX is quasi-ample and big, then ωX is ample.

Proof. Let KX be a canonical divisor corresponding to ωX. Since KX is quasi-
ample, it is nef. Thus 2KX − KX = KX is nef and big, so by the base point free
theorem [13, 3.3] it follows that |bKX| has no base points for b � 0. Thus ωb

X is
generated by global sections and so, by (1.11), ωX is ample.

In general, quasi-ample does not imply ample. Mumford constructs an example
of a quasi-ample vector bundle that is not ample; see [9, Ex. 10.6]. Namely, he
starts with a curve of genus > 2 and a rank-2 vector bundle E of degree 0 such
that Symm(E ) is stable for all m ≥ 0. Then OP(E )(1) is a quasi-ample line bun-
dle that is not big and hence cannot be ample. Ramanujam extends this example
to produce a quasi-ample and big line bundle that is not ample; see [9, Ex. 10.8].

However, in certain cases quasi-ample implies ample. For example, it is not
difficult to see that, for the tangent bundle of a projective variety, TX being quasi-
ample implies that TX is ample and hence X 
 P n. In the case of the cotangent
bundle, it is unknown whether �X being quasi-ample implies that �X is ample. It
also is unknown whether �X being quasi-ample with OP(�X)(1) big implies that
�X is ample with respect to an open set. (Note: In Example1.8, whereX = C×C,
�X is not quasi-ample.)

We can weaken the condition of quasi-ample as follows.

Definition 1.13. If U ⊆ X is an open set, then E is quasi-ample with respect to
U if, for every nonconstant morphism γ : C → X from a complete nonsingular
curve C with γ (C) ∩ U �= ∅, γ ∗E is ample on C.

We end this section by recalling the notions of isotriviality and maximum variation.

Definition 1.14. A morphismX → S, where S is a complete nonsingular curve,
is isotrivial if Xs 
 Xt for general s, t ∈ S.
Note that if X → S is a smooth projective isotrivial morphism then there exists an
étale cover S ′ → S such thatX×S S

′ → S ′ is trivial. If f : X → S is nonisotrivial
then, for general t ∈ S, the Kodaira–Spencer map at t, ρf,t : TS,t → H1(Xt , TXt

),
is nonzero.

More generally, let f : X → Y be a surjective morphism between smooth pro-
jective varieties; then Var(f ) denotes the number of effective parameters of the
birational equivalence classes of the fibers. For the rigorous definition of Var(f ),
see [12, 2.8] or [19, p. 329]. If Var(f ) = 0, then Xy 
 Xt for general y, t ∈ Y. If
Var(f ) = dimY, we say that f has maximum variation. If f is smooth and if for
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all y ∈ Y the set {p ∈ Y | Xp 
 Xy} is finite, then Var(f ) = dimY. Conversely,
if f is smooth and if Var(f ) = dimY, then there exists a moduli space for the
fibers of f and hence there exists an open set U ⊆ Y such that, for all y ∈U, the
set {p ∈U | Xp 
 Xy} is finite. In the case where a moduli space exists for the
fibers of f , the variation of f is equal to the rank of the Kodaira–Spencer map at a
general point of Y ; so, in particular, if Var(f ) = dimY then the Kodaira–Spencer
map at a general point of Y is injective.

2. Positivity of Cotangent Bundles

If X is a complex smooth projective variety, we can consider the case where the
cotangent bundle�X is ample. In this case,X is both algebraically and Kobayashi
hyperbolic [3] and so (a) X contains no rational or elliptic curves and (b) any map
from an abelian variety to X is constant. If we consider the weaker case of �X

being only quasi-ample, then X still has some nice properties.

Lemma 2.1. Let X be a smooth projective variety with quasi-ample cotangent
bundle �X. Then the following statements hold.

(i) If Y ⊂ X is a nonsingular subvariety, then Y has a quasi-ample cotangent
bundle �Y .

(ii) If f : Y → X is any morphism where Y is an abelian variety or P1, then f is
constant.

Proof. Let i : Y ↪→ X, where X has a quasi-ample cotangent bundle. Using I to
denote the ideal sheaf of Y, we have the short exact sequence

0 −→ I/I 2 −→ �X|Y −→ �Y −→ 0.

Because �X is quasi-ample, �X|Y is quasi-ample and hence so is �Y .

Suppose f : Y → X is a nonconstant morphism from an abelian variety Y to a
smooth projective variety X, with �X quasi-ample. Let C be a complete nonsin-
gular curve, and let γ : C → Y be a nonconstant morphism such that f γ : C → X

is also nonconstant. Then we have the commutative diagram

γ ∗f ∗�X

β
��

α

��

�C

γ ∗�Y

β ′
�� �C

with β and β ′ nonzero. Hence α : γ ∗f ∗�X → γ ∗�Y must also be nonzero. Since
�X is quasi-ample, Hom(γ ∗f ∗�X, OC) = 0, and since Y is an abelian variety,
γ ∗�Y 
 O ⊕d

C , where d is the dimension of Y. Thus Hom(γ ∗f ∗�X, γ ∗�Y ) = 0,
which forces α to be zero; this is a contradiction, so f : Y → X must be constant.
If f : P1 → X is nonconstant, we obtain a nonconstant map σ : f ∗�X → �P1.

If E is the image of σ, then E is ample because it is a quotient of f ∗�X. But then,
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since TP1 surjects onto E ∨, it follows that E ∨ is also ample, which leads to a con-
tradiction. Therefore, any f : P1 → X must be constant.

We now begin our generalization of Theorem 1.1.

2.1. Smooth Towers of Smooth Projective Varieties

Theorem 2.2. Let f : X → Y be a smooth projective morphism, where dimX =
dimY +1 and Var(f ) = dimY. Then, for all y ∈ Y, Xy is a curve of genus at least
2, and if dimY = 1 then the genus of Y is also at least 2. In particular, ωXy is an
ample line bundle on Xy for all y ∈ Y.
Proof. Suppose first that dimY =1, so dimX= 2. Then, by [1, III.15.4], g(Y )≥ 2.
Since f is flat, the genus of the fibers is constant. If the genus is 0 then all the fibers
are isomorphic to P1; hence f is isotrivial. By the existence of the J -fibration,
the genus of the fibers cannot be 1 [1, Chap. V, Secs. 9 and 14]. Thus the genus
of the fibers is at least 2. If dimY = n for n > 1, let S be a general curve in Y.
Restricting f to f −1(S) puts us in the previous case, so Xy must have genus at
least 2.

Given a surjective map of smooth projective varieties, f : X → Y, of rela-
tive dimension k, we will use the positivity of f∗ωm

X/Y and, more generally, of
f∗�k

X/Y (log/)m, where / is a normal crossing divisor on X. These deep results
are found in the work of Viehweg [20] and Kollár [12]. In particular, we will use
the following formulation.

Theorem 2.3. Let f : X → Y be a surjective map of smooth projective varieties
of relative dimension k, with Var(f ) = dimY.

(i) [24, 3.4] If f : X → Y is smooth and if ωX/Y is f -ample, then f∗ωm
X/Y is

ample with respect to an open dense V ⊂ Y for all m > 1, where f∗ωm
X/Y �=

0. Furthermore, we can take V to be the open set where the moduli map
η : V → Mh is quasi-finite over its image.

(ii) [24, 3.6] Let S ⊂ Y be a reduced normal crossing divisor containing the dis-
criminant locus, and let / := f ∗S be a normal crossing divisor. Let V :=
Y − S and U := X −/, so we have a smooth family U → V. Suppose that
ωU/V is f -semi-ample, that the smooth fibers of f are canonically polarized,
and that the moduli map η : V → Mh is quasi-finite over its image. Then,
for m sufficiently large and divisible, f∗�k

X/Y (log/)m is ample with respect
to V.

Theorem 2.4. Let f : X → Y be a surjective nonisotrivial morphism of smooth
projective varieties with dimY = 1, and let ωXy be an ample line bundle for all
y ∈ Y. Then ωX/Y is an ample line bundle.

Proof. The proof follows exactly as in [14, 2.5] once we know that f∗ωm
X/Y is

ample for some m > 0 (cf. [12; 20]).
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The following lemma is due to Gieseker.

Lemma 2.5 [6, Prop. 2.2]. Let C be a nonsingular curve. Suppose that F is
ample on C and that we have a nontrivial extension

0 −→ OC −→ E −→ F −→ 0.

Then E is ample.

We first consider Schneider’s original setup—that is, a nonisotrivial smooth pro-
jective morphism from a surface to a curve.

Lemma 2.6. Let X and Y be smooth projective varieties with dimY = 1, and let
f : X → Y be a smooth projective nonisotrivial morphism. Let B := {p ∈ Y |
α : H 0(Xp, f ∗TY |Xp) → H1(Xp, TXp) is not injective}. Then, for any y ∈ Y − B,
the short exact sequence

0 −→ f ∗�Y |Xy −→ �X|Xy −→ �X/Y |Xy −→ 0 (1)

does not split.

Proof. Let y ∈ Y − B; then α : H 0(Xp, f ∗TY |Xp) → H1(Xp, TXp) is injective.
To show that (1) does not split, it suffices to show that

0 −→ TXy −→ TX|Xy −→ f ∗TY |Xy −→ 0 (2)

does not split. Taking cohomology, we obtain

· · · −→ H 0(Xy , TX|Xy ) −→ H 0(Xy , f ∗TY |Xy )
−→ H1(Xy , TXy ) −→ H1(Xy , TX|Xy ) −→ · · · .

If (2) splits, then H 0(Xy , TX|Xy ) −→ H 0(Xy , f ∗TY |Xy ) is surjective and so the
image of α : H 0(Xy , f ∗TY |Xy ) −→ H1(Xy , TXy ) is zero. Thus im(α) = ker(α) =
0, so H 0(Xy , f ∗TY |Xy ) = 0—a contradiction. Therefore, (1) must not split.

Corollary 2.7. Let X and Y be smooth projective varieties over C of dimen-
sions 2 and 1, respectively, and let f : X → Y be a smooth projective nonisotrivial
morphism. Suppose γ : C → X is a nonconstant morphism from a complete non-
singular curve with γ (C) contained in a fiber of f , say Xy. Moreover, suppose
that α : H 0(Xy , f ∗TY |Xy ) −→ H1(Xy , TXy ) is injective. Then γ ∗�X is an ample
vector bundle on C.

Proof. Suppose γ (C) ⊆ Xy for some y ∈ Y. Since γ : C → Xy is finite and since
the pull-back of an ample line bundle by a finite map is ample, it suffices to show
that �X|Xy is ample. By Lemma 2.6,

0 −→ f ∗�Y |Xy −→ �X|Xy −→ �X/Y |Xy −→ 0

does not split. Since f ∗�Y |Xy 
 OXy and since �X/Y |Xy 
 ωXy is ample by The-
orem 2.2, it follows from Lemma 2.5 that �X|Xy is ample.

Theorem 2.8. Let f : X → Y be a smooth, projective nonisotrivial morphism,
with X and Y projective varieties over C of dimensions 2 and 1, respectively. Let
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B := {p ∈ Y | α : H 0(Xp, f ∗TY |Xp) −→ H1(Xp, TXp) is not injective}. Then �X

is quasi-ample with respect toU := f −1(Y −B) and, for all λ∈�(2, 2), the Schur
polynomial is positive; that is,

∫
X
sλ(�X) > 0. In particular, OP(�X)(1) is big.

Proof. We first show that �X is quasi-ample with respect to U. Let γ : C → X

be a nonconstant morphism from a complete nonsingular curve C such that
γ (C) ∩ U �= ∅. If γ (C) is in a fiber of f then, by (2.7), γ ∗�X is ample.

Now suppose γ (C) is not in a fiber of f , so that f � γ : C → Y is nonconstant.
We have the following short exact sequence:

0 −→ γ ∗f ∗ωY −→ γ ∗�X −→ γ ∗ωX/Y −→ 0.

Because ωY is ample, γ ∗f ∗ωY is ample on C. By Theorem 2.4, ωX/Y is ample
on X; hence γ ∗ωX/Y is ample on C. Therefore, γ ∗�X is ample and so �X is
quasi-ample with respect to U. Note also that �X is an extension of two nef line
bundles (viz., f ∗ωY and ωX/Y ), so �X is nef.

We now will show that the Schur polynomials are positive. Let λ ∈ �(2, 2);
then λ = (1, 1) or λ = (2, 0), and by definition we have

s(1,1)(�X) = c1(�X)
2 − c2(�X) and s(2,0)(�X) = c2(�X).

Using the short exact sequence

0 −→ f ∗ωY −→ �X −→ ωX/Y −→ 0,

we see that

c1(�X) = c1(f
∗ωY )+ c1(ωX/Y ) and c2(�X) = c1(f

∗ωY ) · c1(ωX/Y ).

Thus,

s(1,1)(�X) = c1(�X)
2 − c2(�X) = c1(f

∗ωY ) · c1(ωX/Y )+ c1(ωX/Y )
2

and
s(2,0)(�X) = c1(f

∗ωY ) · c1(ωX/Y ).

Since ωY is ample, c1(ωY ) = ∑
mi[yi], where yi ∈ X are points and

∑
mi >

0. Since f is flat, c1(f
∗ωY ) = f ∗c1(ωY ) = ∑

ni[Xyi ]. Now, ωX/Y |Xy = ωXy is
ample for all y ∈ Y and deg(ωXy ) = 2g(Xy) − 2 ≥ 2 is constant for all y ∈ Y.

Thus, ∫
X

c1(f
∗ωY ) · c1(ωX/Y ) =

∑
ni(2g − 2) > 0.

Furthermore,ωX/Y is an ample line bundle onX by Theorem 2.4, so
∫
X
c1(ωX/Y )

2 >

0. Thus, ∫
X

s(1,1)(�X) =
∫
X

c1(f
∗ωY ) · c1(ωX/Y )+ c1(ωX/Y )

2 > 0,

∫
X

s(2,0)(�X) =
∫
X

c1(f
∗ωY ) · c1(ωX/Y ) > 0.

Since �X is nef, to show that OP(�X)(1) is big it suffices to show that OP(�X)(1)
has positive top intersection. But by [6, Lemma 1.8], this is equivalent to showing
that

∫
X
s(1,1)(�X) > 0; hence OP(�X)(1) is big.
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We will now consider the tower

Xn
fn �� Xn−1

fn−1
�� Xn−2

fn−2
�� · · · f3 �� X2

f2 �� X1,

where each Xi is a smooth projective variety over C of dimension i and where,
for 2 ≤ i ≤ n, fi : Xi → Xi−1 is a smooth projective morphism with Var(fi) =
dimXi−1.

We first prove the following generalization.

Theorem 2.9. Let

Xn
fn �� Xn−1

fn−1
�� Xn−2

fn−2
�� · · · f3 �� X2

f2 �� X1,

where each Xi is a smooth projective variety over C of dimension i and where
each fi : Xi → Xi−1 is a smooth projective morphism with Var(fi) = dimXi−1.

Then �Xn is nef and, for all λ ∈�(n, n), the corresponding Schur polynomial is
positive; that is,

∫
X
sλ(�Xn) > 0. In particular, OP(�Xn )(1) is big.

Proof. We will prove this by induction on n. By Theorem 2.8, the statement is
true for n = 2, and we assume it holds for n− 1. Let X := Xn; then we have the
short exact sequence

0 −→ f ∗
n �Xn−1 −→ �X −→ ωX/Xn−1 −→ 0.

Now �Xn−1 is nef by induction, so f ∗
n �Xn−1 is nef. Since fn is smooth and since

ωX/Xn−1 is fn-ample, it follows from [22, 6.22] that (fn)∗ωm
X/Xn−1 is nef for all

m > 0. Additionally, since ωX/Xn−1 is fn-ample, for m � 0 the natural map

f ∗
n (fn)∗ω

m
X/Xn−1 −→ ωm

X/Xn−1

is surjective. Thus ωX/Xn−1 is nef and hence �X is nef.
Let λ∈�(n, n). Define di := ci(�X), αi := ci(f

∗
n �Xn−1), and β := c1(ωX/Xn−1).

Then, from the short exact sequence

0 −→ f ∗
n �Xn−1 −→ �X −→ ωX/Xn−1 −→ 0,

we have

di = αi + αi−1β, where α0 = 1 and αi = 0 for i /∈ [0, n− 1].

Thus, by [4, 5.2, Ex. 4],

sλ(�X) = sλ(d1, . . . , dn)

= sλ(α1, . . . ,αn−1,β)

=
∑
µ⊂λ

sλ/µ(α1, . . . ,αn−1)sµ(β).

Now β = c1(ωX/Xn−1), so if µ = (µ1, . . . ,µn) and µ1 �= 1 then sµ(β) = 0. Also,
note that s(1k )(ωX/Xn−1) = c1(ωX/Xn−1)k. Therefore,
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sλ(�X) =
n∑
k=1

sλ/(1k )(f
∗
n �Xn−1) · c1(ωX/Xn−1)k.

Let 1 ≤ k ≤ n− 1 and µ∈�(n− k, n− k). Then

sµ · s(1k ) =
∑
ν

cνµ/(1k ) sν and sν/(1k ) =
∑
µ

cνµ/(1k ) sµ.

By [4, 1.1, Prop.], cνµ/(1k ) = 1 if ν can be obtained fromµ by adding k boxes, no two
of which are in the same row, and equals zero otherwise. Thus, setting ν = λ yields

sλ/(1k ) =
∑
µ

sµ,

where the sum is taken over µ∈�(n− k, n− k) such that µ can be obtained from
λ by subtracting k boxes, no two of which are in the same row. Therefore,

sλ(�X) =
n∑
k=1

(
c1(ωX/Xn−1)k

∑
µ∈�(n−k,n−k)

sµ(f
∗
n �Xn−1)

)
,

where the second sum is taken over µ ∈ �(n − k, n − k) such that µ can be ob-
tained from λ by subtracting k boxes, no two of which are in the same row.

Consider the first term, c1(ωX/Xn−1)
∑

µ sµ(f
∗
n �Xn−1). By induction, sµ(�Xn−1)

is a positive polynomial for µ ∈ �(n − 1, n − 1); that is, sµ(�Xn−1) = ∑
miyi,

where yi ∈ Xn−1 are points and
∑

mi > 0. Now ωX/Xn−1|Xy 
 ωXy is ample on
Xy for all y ∈Xn−1, so ∫

X

c1(ωX/Xn−1) · sµ(f ∗
n �Xn−1) > 0.

Since f ∗
n �Xn−1 and ωX/Xn−1 are nef, for 2 ≤ k ≤ n − 1 and µ ∈ �(n − k,

n− k) as before we have∫
X

c1(ωX/Xn−1)k · sµ(f ∗
n �Xn−1) ≥ 0

and ∫
X

c1(ωX/Xn−1)n ≥ 0.

Therefore,
∫
X
sλ(�X) > 0. In particular, this holds for λ = (1n) and so, by [6,

Lemma 1.8], OP(�Xn )(1) is big.

We continue to assume that we have a tower of varieties

Xn
fn �� Xn−1

fn−1
�� Xn−2

fn−2
�� · · · f3 �� X2

f2 �� X1,

where eachXi is a smooth projective variety over C of dimension i and where each
fi : Xi → Xi−1 is a smooth projective morphism with the property that Var(fi) =
dimXi−1. For 1 ≤ i ≤ n− 1, define

Bi := {p ∈Xi | αi : H 0(Xi+1
p , f ∗

i+1TXi |Xi+1
p
) → H1(Xi+1

p , TXi+1
p
) is not injective}

⊂ Xi.
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Note that, since each fi+1 is of maximum variation, Xi −Bi is an open dense set.
Set U1 := X1, and for 2 ≤ i ≤ n define open sets Ui ⊂ Xi as

Ui := f −1
i (Ui−1 − Bi−1).

Lemma 2.10. In the setting just described, the moduli map

µi−1 : Vi−1 := Ui−1 − Bi−1 → Mg

induced by the family fi : Xi → Xi−1 is quasi-finite onto its image.

Proof. It suffices to show that Fi−1 := {y ∈ Xi−1 | Xi
y 
 Xi

p for infinitely many
p ∈Xi−1} ⊆ Bi−1. Let y ∈ Fi−1; then there exists a connected closed subscheme
Z ⊂ Xi−1 with y ∈ Z such that fZ : XZ := Xi ×Xi−1 Z → Z has variation 0. In
particular, H 0((XZ)y , f ∗

ZTZ|(XZ)y ) → H1((XZ)y , T(XZ)y ) is not injective. Then,
from the commutative diagram

H 0((XZ)y , f ∗
ZTZ|(XZ)y )

��

�

��

H1((XZ)y , T(XZ)y )

H 0(Xy , f ∗
i TY |Xy ) �� H1(Xy , TXy )

we see thatH 0(Xy , f ∗
i TY |Xy ) → H1(Xy , TXy ) cannot be injective; hence y ∈Bi−1.

Theorem 2.11. In the setting of Lemma 2.10, �Xn is quasi-ample with respect
to Un.

Proof. We will prove this by induction on n. By Theorem 2.8, the statement is
true for n = 2, and we assume it holds for n− 1. Let X := Xn; then we have the
short exact sequence

0 −→ f ∗
n �Xn−1 −→ �X −→ ωX/Xn−1 −→ 0.

Let γ : C → X be a nonconstant morphism from a complete nonsingular curve
C such that γ (C) ∩ Un �= ∅. Suppose first that γ (C) is contained in a fiber of
fn, say γ (C) ⊆ Xy for some y ∈Xn−1. Since γ : C → Xy is finite, it suffices to
show that �X|Xy is ample. Note also that since γ (C)∩Un �= ∅, it follows that y ∈
Un−1 − Bn−1. Let f2f3 · · · fn−1(y) = s ∈X1 and let h = f2f3 · · · fn−1fn : X =
Xn → X1. Then we have the short exact sequence

0 −→ TXs
|Xy −→ TX|Xy −→ h∗TX1|Xy −→ 0. (3)

I claim that (3) doesn’t split. Indeed, suppose it splits; then, given the long exact
sequence

· · · −→ H 0(Xy , TX|Xy ) −→ H 0(Xy ,h∗TX1|Xy )
−→ H1(Xy , TXs

|Xy ) −→ H1(Xy , TX|Xy ) −→ · · · ,
we have a surjection β : H 0(Xy , TX|Xy ) � H 0(Xy ,h∗TX1|Xy ). Consider the fol-
lowing commutative diagram:
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0

��

0

��

f ∗
n TXn−1/X1|Xy

��

0 �� TX/Xn−1|Xy ��

��

�� TX|Xy �� f ∗
n TXn−1|Xy

��

�� 0

0 �� TX/X1|Xy ��

��

�� TX|Xy �� h∗TX1|Xy

��

�� 0

f ∗
n TXn−1/X1|Xy

��

0

0

Taking cohomology then gives

· · · �� H 0(Xy , TX|Xy ) �� H 0(Xy , f ∗
n TXn−1|Xy )

��

αn−1
�� H1(Xy , TX/Xn−1|Xy )

��

�� · · ·

· · · �� H 0(Xy , TX|Xy )
β

�� H 0(Xy ,h∗TX1|Xy ) �� H1(Xy , TX/X1|Xy ) �� · · ·
Since y /∈ Bn−1, αn−1 is injective and hence imβ = 0. But β is surjective, so
H 0(Xy ,h∗TX1|Xy ) = 0—a contradiction. Thus (3) does not split and so neither
does

0 −→ OXy −→ �X|Xy −→ �Xs
|Xy −→ 0.

By Lemma 2.5, to show that �X|Xy is ample, it suffices to show that �Xs
|Xy is

ample.
We have

Xs = Xn
s

(fn)s �� Xn−1
s

(fn−1)s
�� · · · �� X3

s

(f3)s �� X2
s ,

where each Xi
s is a smooth projective variety over C of dimension i−1 and where

each (fi)s : Xi
s → Xi−1

s is a smooth projective morphism with the property that
Var(fi)s = dim(Xi−1)s . For 2 ≤ i ≤ n− 1, define

Bi,s := {p ∈Xi
s | αi,s : H 0(Xi+1

p , (fi+1)
∗
s TXi

s
|Xi+1

p
)

→ H1((Xi+1
s )p, T(Xi+1

s )p ) is not injective}.
Define open Ui,s ⊆ (Xi)s as follows:
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U2,s := X2
s ,

Ui,s := (fi)
−1
s (Ui−1,s − Bi−1,s) for 3 ≤ i ≤ n.

Then, by induction, �Xs
is quasi-ample with respect to

Un,s := (fn)
−1
s (Un−1,s − Bn−1,s).

I first claim that Bi,s ⊆ Bi ∩Xi
s . Indeed, we have the commutative diagram

0 �� TXi+1
s /Xi

s
|Xi+1

p
�� TXi+1

s
|Xi+1

p
��

�

��

(fi+1)
∗
s TXi

s
|Xi+1

p
��

�

��

0

0 �� TXi+1/Xi |Xi+1
p

�� TXi+1|Xi+1
p

�� f ∗
i+1TXi |Xi+1

p
�� 0

Hence, taking cohomology gives

H 0(Xi+1
p , (fi+1)

∗
s TXi

s
|Xi+1

p
)

�

��

αi,s
�� H1(Xi+1

p , TXi+1
p
)

H 0(Xi+1
p , f ∗

i+1TXi |Xi+1
p
)

αi �� H1(Xi+1
p , TXi+1

p
)

Thus, if αi is injective then αi,s is injective, so Bi,s ⊆ Bi ∩Xi
s .

I next claim that (Xi)s ∩Ui ⊆ Ui,s for i ≥ 2. Indeed, if i = 2 then this follows
from the definition of U2. Suppose it is true for i − 1; then

Ui ∩Xi
s = (fi)

−1
s ((Ui−1 ∩Xi−1

s )− (Bi−1 ∩Xi−1
s ))

⊆ (fi)
−1
s (Ui−1,s − Bi−1,s) = Ui,s .

Thus, since y ∈Xs ∩ (Un−1 − Bn−1) ⊆ Un−1,s − Bn−1,s , we conclude that �Xs
|Xy

is ample.
Now suppose γ (C) is not in the fiber of fn, so that fn � γ : C → Xn−1 is non-

constant. Since γ (C) ∩ f −1
n (Un−1 − Bn−1) �= ∅, we have fnγ (C) ∩ Un−1 �= ∅.

Thus, by induction, γ ∗(f ∗
n �Xn−1) is ample. We have the short exact sequence

0 −→ γ ∗(f ∗
n �Xn−1) −→ γ ∗�X −→ γ ∗ωX/Xn−1 −→ 0,

so to show that γ ∗�X is ample it suffices to show that γ ∗ωX/Xn−1 is ample. By
Theorem 2.3, f∗ωm

X/Xn−1 is ample with respect to Xn−1 − Bn−1 for m > 1 where

f∗ωm
X/Xn−1 �= 0. Thus, since γ (C) ∩ f −1

n (Un−1 − Bn−1) �= ∅, we have that

γ ∗f ∗f∗ωm
X/Xn−1 is ample with respect to γ−1f −1(Xn−1 − Bn−1), an open dense

subset of the curve C. Hence, γ ∗f ∗f∗ωm
X/Xn−1 is ample on C. Furthermore, since

ωX/Xn−1 is fn-ample, it follows that

γ ∗f ∗
n (fn)∗ω

m
X/Xn−1 → γ ∗ωm

X/Xn−1

is surjective for sufficiently large m and so γ ∗ωX/Xn−1 is ample.
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Corollary 2.12. Let

Xn
fn �� Xn−1

fn−1
�� Xn−2

fn−2
�� · · · f3 �� X2

f2 �� X1,

where eachXi is a smooth projective variety over C of dimension i and where each
fi : Xi → Xi−1 is a smooth projective morphism with the property that, for all
y ∈Xi−1, αi : H 0(Xi+1

y , f ∗
i+1TXi |Xi+1

y
) → H1(Xi+1

y , TXi+1
y
) is injective. Then, �Xn

is quasi-ample and, for all λ∈�(n, n), the Schur polynomial is positive—that is,∫
X
sλ(�X) > 0. In particular, �Xn is quasi-ample and OP(�Xn )(1) is big.

Proof. By the assumption on each fi : Xi → Xi−1, the sets Bi ⊂ Xi are empty.
Hence each Ui = Xi and so, by Theorem 2.11, �Xn is quasi-ample. The second
statement follows from Theorem 2.9.

Let us also remark that the condition on the Kodaira–Spencer maps is necessary
for the cotangent bundle to be quasi-ample on all of Xn. As an example, consider
a nonisotrivial smooth projective morphism f : X → Y from a smooth projec-
tive surface to a smooth projective curve. Suppose there exists a y ∈ Y such that
the Kodaira–Spencer map ρf,y : TY,y → H1(Xy , TXy ) is zero. Then �X|Xy 

OXy ⊕�Xy , so �X|Xy is not ample.

2.2. Towers of Varieties Where the Morphisms Are Not Smooth

We next weaken the hypothesis on the fi. Let X be a smooth variety of dimension
n and let D ⊂ X be a reduced normal crossing divisor. Recall that �1

X(logD) is
the sheaf of 1-forms on X with logarithmic poles along D and is defined as fol-
lows: If z1, . . . , zn are local analytic coordinates on X with D = (z1 · · · zl = 0),
then �1

X(logD) is locally generated by
dz1

z1
, . . . ,

dzl

zl
, dzl+1, . . . , dzn. If D has nor-

mal crossings but is not reduced, we abuse notation and write �1
X(logD) for

�1
X(logDred).

Lemma 2.13. Let D = D1 +D2 be a normal crossing divisor on a smooth vari-
etyX, and suppose that �1

X(logD2) is quasi-ample with respect toX−D2. Then
�1
X(logD) is quasi-ample with respect to X −D.

Proof. Let γ : C → X be a nonconstant morphism from a complete nonsingular
curve such that γ (C)∩ (X−D) �= ∅. Without loss of generality, we may assume
that D1 and D2 do not contain any common components. If γ (C) ∩D1 = ∅ then
γ ∗�1

X(logD2) 
 γ ∗�1
X log(D) is ample. If γ (C)∩D1 �= ∅ then, since γ (C) �

D1, it follows that γ (C)∩D1 must consist of a finite number of points. Hence we
have the short exact sequence

0 −→ γ ∗�1
X(logD2) −→ γ ∗�1

X(logD) −→ γ ∗OD1(D2|D1) −→ 0

with γ ∗�1
X(logD2) and γ ∗OD1(D2|D1) ample. Thus γ ∗�1

X(logD) is also ample.

We consider the following:

Xn
fn �� Xn−1

fn−1
�� Xn−2

fn−2
�� · · · f3 �� X2

f2 �� X1,
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where eachXi is a smooth projective variety over C of dimension i. Suppose that,
for 2 ≤ i ≤ n:

(i) fi : Xi → Xi−1 is a flat projective morphism with Var(fi) = dimXi−1; and
(ii) ωXi

y
is ample for all y /∈/i−1,i, where

/i−1,i := {y ∈Xi−1 | f −1
i (y) is singular}.

Put /2,1 := f ∗
2/1,2, and define recursively, for all i < n,

/i,i−1 := f ∗
i ((/i−1,i−2 +/i−1,i )red) ⊂ Xi.

We will also write /i−1 := (/i−1,i−2 + /i−1,i )red ⊂ Xi−1, so that /i,i−1 =
f ∗
i (/i−1). Let /1,i be the discriminant locus of f2 � · · · � fi : Xi → X1; that is,
/1,i := {s ∈X1 | f −1

i · · · f −1
2 (s) is singular} and /i,1 := f ∗

i · · · f ∗
2/1,i .

Define

B ′
i := {p ∈Xi −/i,i+1 | αi : H 0(Xi+1

p , f ∗
i+1TXi |Xi+1

p
)

→ H1(Xi+1
p , TXi+1

p
) is not injective}.

Set B1 := B ′
1 and, for 2 ≤ i ≤ n, set

Bi := B ′
i + f −1

i (Bi−1).

In this setting we will show that, if /i and /i+1,i are normal crossing divi-
sors for 1 ≤ i ≤ n − 1, then �1

Xn(log/n,n−1) is quasi-ample with respect to
Xn −/n,n−1 −f −1

n (Bn−1). We follow the same ideas as before and will prove this
by induction. To prove the case where n = 2, we need the following lemma.

Lemma 2.14 [23, 1.4]. Let f : X → Y be a nonisotrivial morphism between
smooth projective varieties of dimensions 2 and 1, respectively. Let /1,2 ⊂ Y be
the discriminant divisor and let /2,1 := f ∗/1,2. Then 2g(Y )− 2 + deg/1,2 ≥ 1.

Theorem 2.15. Let f : X → Y be a flat nonisotrivial morphism between smooth
projective varieties over C of dimensions 2 and 1, respectively. Let /1,2 ⊂ Y be
the discriminant divisor and /2,1 := f ∗/1,2. Let B := B1 be as before. Suppose
that ωXy is ample for all y /∈/1,2 and that both/1,2 and/2,1 are normal crossing
divisors. Then �1

X(log/2,1) is quasi-ample with respect to X −/2,1 − f −1(B).

Proof. We have the short exact sequence

0 −→ f ∗�1
Y (log/1,2) −→ �1

X(log/2,1) −→ �1
X/Y (log/2,1) −→ 0.

Since �1
X/Y (log/2,1) is locally free, taking determinants gives �1

X/Y (log/2,1) 

ωX/Y ⊗ OY ((/2,1)red − /2,1) ⊆ ωX/Y . By Lemma 2.14, �1

Y (log/1,2) 
 ωY ⊗
OY (/1,2) is an ample line bundle on Y.

Let γ : C → X be a nonconstant morphism from a complete nonsingular curve
C such that γ (C) ∩ (X − /2,1 − f −1(B)) �= ∅. Suppose first that γ (C) is con-
tained in a fiber of f , say γ (C) ⊆ Xy. Since γ : C → Xy is finite, it suffices to
show that �X|Xy is ample. Note that y /∈ /1,2 and hence Xy ∩ /2,1 = ∅. Since
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y /∈B, the same argument as in the proof of Corollary 2.7 shows that the short
exact sequence

0 −→ TX/Y |Xy −→ TX|Xy −→ f ∗TY |Xy −→ 0

does not split. Hence,

0 −→ f ∗�1
Y (log/1,2)|Xy −→ �1

X(log/2,1)|Xy −→ �1
X/Y (log/2,1)|Xy −→ 0

does not split. Now f ∗�1
Y (log/1,2)|Xy 
 OXy , and �1

X/Y (log/2,1)|Xy 
 ωXy
is ample since y /∈ /1,2. Thus, by Lemma 2.5, �X|Xy is an ample vector bundle
on Xy.

Next suppose γ (C) is not contained in a fiber of f , so that f γ : C → Y is non-
constant. Since ωY ⊗OY (/1,2) is ample, γ ∗f ∗(ωY ⊗OY (/1,2)) is also ample. To
show that γ ∗�1

X(log/2,1) is ample, it suffices to show that γ ∗�1
X/Y (log/2,1) is

ample. We have a smooth family X −/2,1 − f −1B → Y −/1,2 − B that satis-
fies the conditions of Theorem 2.3(ii); thus, for m sufficiently large and divisible,
f∗�1

X/Y (log/2,1 + f −1B)m is ample with respect to Y −/1,2 −B. Furthermore,
for m sufficiently large,

f ∗f∗�1
X/Y (log/2,1 + f −1B)m → �1

X/Y (log/2,1 + f −1B)m

is surjective over X − /2,1 − f −1B. Since γ (C) ∩ (X − /2,1 − f −1(B)) �= ∅,
we find that γ ∗�1

X/Y (log/2,1 + f −1B)m is ample with respect to a dense open set
of the curve C and hence that γ ∗�1

X/Y (log/2,1 + f −1B) is an ample line bundle
on C. Since f −1B is reduced, γ ∗�1

X/Y (log/2,1 + f −1B) 
 γ ∗�1
X/Y (log/2,1) is

also ample.
Thus, we have the short exact sequence

0 −→ γ ∗f ∗�1
Y (log/1,2) −→ γ ∗�1

X(log/2,1) −→ γ ∗�1
X/Y (log/2,1) −→ 0,

with the outer terms ample, so γ ∗�1
X(log/2,1) is ample. Therefore,�1

X(log/2,1)

is quasi-ample with respect to X −/2,1 − f −1(B).

We now prove the general case.

Theorem 2.16. Let

Xn
fn �� Xn−1

fn−1
�� Xn−2

fn−2
�� · · · f3 �� X2

f2 �� X1,

where eachXi is a smooth projective variety over C of dimension i. Suppose that,
for 2 ≤ i ≤ n:

(i) fi : Xi → Xi−1 is a flat projective morphism with Var(fi) = dimXi−1; and
(ii) ωXi

y
is ample for all y /∈/i−1,i := {y ∈Xi−1 | f −1

i (y) is singular}.
Then, if /i and /i+1,i (as defined previously) are normal crossing divisors, the
sheaf �1

Xn(log/n,n−1) is quasi-ample with respect to Xn −/n,n−1 − f −1
n (Bn−1).

Proof. We will prove this by induction on n. By Theorem 2.15, the theorem is true
for n = 2. Suppose it is true for n−1. Let X := Xn; then we have the short exact
sequence
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0 −→ f ∗
n �

1
Xn−1(log/n−1) −→ �1

X(log/n,n−1) −→ �1
X/Xn−1(log/n,n−1) −→ 0.

Let γ : C → X be a nonconstant morphism from a complete nonsingular curve
C such that γ (C) ∩ (X − /n,n−1 − f −1

n (Bn−1)) �= ∅. Suppose first that γ (C) is
contained in a fiber of fn, say γ (C) ⊆ Xy for some y ∈Xn−1. We must show that
�X(log/n,n−1)|Xy is ample. Note that y /∈ Bn−1 ∪ /n−1 and, in particular, that
Xy ∩/n,n−1 = ∅.

Observe that /i,1 ⊆ /i,i−1 for all i, since if t ∈ /1,i, then f −1
i · · · f −1

2 (t) is
singular and hence there exists a y ∈ X

j
t for some 1 ≤ j ≤ i − 1 such that Xj+1

y

is singular (i.e., y ∈/j,j+1). Thus, /i,1 ⊆ f ∗
i /i−1 = /i,i−1. So if we define s :=

f2f3 · · · fn−1(y)∈X1, then s /∈/i,1 for all i ≤ n and so each Xi
s is a smooth pro-

jective variety over C of dimension i − 1. Let h = f2f3 · · · fn−1fn : X = Xn →
X1. Then we have the short exact sequence

0 −→ TX/X1(−log/n,n−1) −→ TX(−log/n,n−1) −→ h∗TX1(−log/1,n) −→ 0.

Restricting to Xs gives

0 −→ TXs
(−log(/n,n−1|Xs

)) −→ TX(−log/n,n−1)|Xs
−→ h∗TX1|Xs

−→ 0,

and restricting further to Xy gives

0 −→ TXs
|Xy −→ TX|Xy −→ h∗TX1|Xy −→ 0.

As in the smooth case of Theorem 2.11, we find that

0 −→ h∗�X1|Xy −→ �X|Xy −→ �Xs
|Xy −→ 0

does not split. Thus,

0 −→ OXy −→ �1
X(log/n,n−1)|Xy −→ �1

Xs
(log(/n,n−1|Xs

))|Xy −→ 0

does not split. To show that �1
X(log/n,n−1)|Xy is ample, it suffices to show that

�1
Xs
(log(/n,n−1|Xs

)|Xy is ample.
We have

Xs = Xn
s

(fn)s �� Xn−1
s

(fn−1)s
�� · · · �� X3

s

(f3)s �� X2
s ,

where each Xi
s is a smooth projective variety over C of dimension i − 1 and

where each (fi)s : Xi
s → Xi−1

s is a flat projective morphism with the property that
Var(fi)s = dim(Xi−1)s . Furthermore, ω(Xi

s )y
is ample for all y /∈/i−1,i |Xi−1

s
.

For 2 ≤ i ≤ n− 1, define

B ′
i,s := {p ∈Xi

s −/i,i+1|Xi
s
| αi,s : H 0(Xi+1

p , (fi+1)
∗
s TXi

s
|Xi+1

p
)

→ H1((Xi+1
s )p, T(Xi+1

s )p
) is not injective}.

As seen in Theorem 2.11, B ′
i,s ⊆ B ′

i ∩Xi
s . Set B2,s := B ′

2,s , and for 3 ≤ i ≤ n set

Bi,s := B ′
i,s + (fi)

−1
s (Bi−1,s).

Then, by induction, �1
Xs
(log(/n,n−1|Xs

)) is quasi-ample with respect to
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Xs − (fn)
−1
s (Bn−1,s)−/n,n−1|Xs

.

I claim that (fi)−1
s (Bi−1,s) ⊆ (fi)

−1
s (Bi−1 ∩ Xi−1

s ); indeed for i = 2 this is true
because B2,s = B ′

2,s , so

(fi)
−1
s (Bi−1,s) = (fi)

−1
s (B

′
i−1,s + (fi−1)

−1
s (Bi−2,s))

⊆ (fi)
−1
s (B

′
i−1 ∩Xi−1

s + f −1
i−1(Bi−2 ∩Xi−2

s ))

= (fi)
−1
s (Bi−1 ∩Xi−1

s ).

Thus, since

∅ �= Xy ∩ (X −/n,n−1 − f −1
n (Bn−1))

= Xy ∩ (Xs −/n,n−1|Xs
− f −1

n (Bn−1 ∩Xi−1
s ))

⊆ Xy ∩ (Xs − (fn)
−1
s (Bn−1,s)−/n,n−1|Xs

),

it follows that �1
Xs
(log(/n,n−1|Xs

)|Xy is ample.
Now suppose γ (C) is not in a fiber offn so thatfnγ : C → Xn−1 is nonconstant.

By induction, we have that �1
Xn−1(log/n−1,n−2) is quasi-ample with respect to

Xn−1 − /n−1,n−2 − f −1
n−1(Bn−2). Then, since /n−1 := (/n−1,n−2 + /n−1,n)red,

it follows from Lemma 2.13 that �1
Xn−1(log/n−1) is quasi-ample with respect to

Xn−1 −/n−1 − f −1
n−1(Bn−2).

Therefore, we have the short exact sequence

0 −→ γ ∗f ∗
n �

1
Xn−1(log/n−1) −→ γ ∗�1

X(log/n,n−1)

−→ γ ∗�1
X/Xn−1(log/n,n−1) −→ 0

with γ ∗f ∗
n �

1
Xn−1(log/n−1) ample, so it suffices to show γ ∗�1

X/Xn−1(log/n,n−1)

is ample.
As in Theorem 2.15, we have a smooth family X − /n,n−1 − f −1

n Bn−1 →
Y −/n−1 −Bn−1 that satisfies the conditions of Theorem 2.3(ii); thus, for m suf-
ficiently large and divisible, f∗�1

X/Y (log/n,n−1 + f −1B)m is ample with respect
to Y −/n−1 − Bn−1. Furthermore, for m sufficiently large,

f ∗f∗�1
X/Xn−1(log/n,n−1 + f −1Bn−1)

m → �1
X/Xn−1(log/n−1 + f −1Bn−1)

m

is surjective overX−/n−1,n−f −1Bn−1. Since γ (C)∩(X−/n−1,n−f −1Bn−1) �=
∅, we find that γ ∗�1

X/Xn−1(log/n−1 + f −1Bn−1) is an ample line bundle on C.

Because f −1Bn−1 is reduced, it follows that γ ∗�1
X/Xn−1(log/n−1 + f −1Bn−1) 


γ ∗�1
X/Xn−1(log/n−1). Therefore, �1

Xn(log/n,n−1) is quasi-ample with respect to
Xn −/n,n−1 − f −1

n (Bn−1).

3. Constructing Towers of Smooth Projective Varieties

In this section we construct a tower of smooth projective varieties over the com-
plex numbers as well as smooth morphisms between them of maximal variation.
We first recall a construction of Kodaira that, for any n, produces a g for which
Mg contains a complete n-dimensional subvariety (see [7; 16]).
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Lemma 3.1 [16]. Let K be a field, D a curve over K of genus g(D) ≥ 2, and
Q ∈D(K). Suppose char(K) �= 2, 3. Then there exists a finite extension K ⊂ L

and a covering C → D of degree 3, defined over L, that is totally ramified in C �
P �→ Q∈D and unramified elsewhere.

By keeping D fixed and letting the point Q vary, we construct a family of non-
singular projective curves parameterized by a covering D ′ of D whose image is a
complete curve in Mg(C), where g(C) = 3g(D)−1. Iterating this construction—
that is, considering all covers of degree 3 of curves in the family {Cλ} ramified
at one point—we obtain a complete 2-dimensional family of curves of genus
9g(D) − 4. In general, we obtain a complete n-dimensional family of curves of
genus 3ng(D)− (3n − 1)/2.

We now work over C and fix a curve C0 of genus 2. Consider {Cλ} the set of
degree-3 covers of C0 ramified in one point. These covers are parameterized by
some curve B0, a cover of C0. Thus we get a map g ′ : {Cλ} → B0 with fibers Cλ

for λ ∈ B0. Now {[Cλ]}, the image of {Cλ} in M5, is a complete curve; hence g ′
must be nonisotrivial.

For each λ∈B0, we can iterate this construction. For a fixed λ0 ∈B0, consider
{Cλ0,µ}, the set of degree-3 covers of Cλ0 ramified in one point and parameter-
ized by some curve Bλ0 . For this fixed λ0, {[Cλ0,µ]} is a complete curve in M14,
so fλ0 : {Cλ0,µ} → Bλ0 is nonisotrivial. Letting λ vary, we obtain a smooth pro-
jective morphism f : X → Y, where X = {Cλ,µ} and Y = {Bλ} are projective
varieties of dimension 3 and 2, respectively. I claim that for any p ∈ Y the set
{q ∈ Y | Xp 
 Xq} is finite, so in particular Var f = 2. Indeed, if p, q ∈ Bλ0 for
some λ0 then, since fλ0 is nonisotrivial, Xp is not isomorphic to Xq. Next sup-
pose that F1 is any fiber of f with F1 ∈Cλ1,µ; then, in particular, F1 is a covering
of Cλ1. But F1 can cover only finitely many curves, so F1 can be isomorphic to at
most finitely many other fibers Fi ∈ Cλi,µ. Thus any fiber of f is isomorphic to
finitely many other fibers and hence, for any p ∈ Y, the set {q ∈ Y | Xp 
 Xq} is
finite.

Let g : Y → B0 be the composition Y = {Bλ} → {Cλ} → B0. If Bλ 
 Bλ′ for
general λ, λ′ ∈ B0, then either Cλ 
 Cλ′ for general λ, λ′ ∈ B0 or Bλ covers infi-
nitely many nonisomorphic curves, which leads to a contradiction in either case.
Hence g : Y → B0 is nonisotrivial. Thus we have the tower

X
f

�� Y
g

�� B0

of smooth projective varieties with dimX = 3, dimY = 2, dimB0 = 1, and
smooth morphisms of maximal variation. One can iterate this construction to get
a tower

Xn
fn �� Xn−1

fn−1
�� Xn−2

fn−2
�� · · · f3 �� X2

f2 �� X1,

where eachXi is a smooth projective variety over C of dimension i and where, for
2 ≤ i ≤ n, fi : Xi → Xi−1 is a smooth projective morphism satisfying the prop-
erty that, for all y ∈Xi−1, the set {p ∈ Y | Xi

p 
 Xi
y} is finite and so, in particular,

Var(fi) = dimXi−1.
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