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1. Introduction

Given α ∈ Rn and z ∈ Cn∗ , we put |zα| := |z1|α1 · · · |zn|αn whenever it makes
sense. Let Ar−,r+ = {z ∈ C | r− < |z| < r+} for −∞ < r− < r+ < ∞, r+ > 0.
By D we always denote the unit disc in C. For a domain D ⊂ Cn, D \ {0} is
denoted by D∗.

Following [Z2], for A = (A
j

k)j=1,...,m, k=1,...,n ∈ Zm×n and b = (b1, . . . , bm) ∈
Cm∗ we define:

ϕA(z) := zA := (zA
1
, . . . , zA

m

), z∈ Cn
∗ ,

ϕA,b(z) := (b1z
A1

, . . . , bmz
Am), z∈ Cn

∗ .

Such maps are called elementary algebraic (or briefly elementary maps).
The aim of this paper is to describe nonelementary proper holomorphic maps be-

tween nonhyperbolic Reinhardt domains in C2 as well as the corresponding pairs
of domains.

Recall that if D,G are Reinhardt domains and f : D → G is a biholomorphic
mapping, then f can be represented as composition of automorphism of D and
G and an elementary mapping between these domains (see [K] and [S2]). Thus,
the description of nonelementary biholomorphic mappings between Reinhardt do-
mains reduces to the investigation of their group of automorphisms. It is a general
problem of complex geometry of Reinhardt domains considered in many papers.
In [S1] the author used group-theoretic methods to investigate the holomorphic
equivalence of bounded Reinhardt domains in Cn not containing the origin and
thereby determined automorphisms of a certain class of Reinhardt domains. Sim-
ilar results were obtained by Barrett in [Ba], although his approach was analytic.
The groups of automorphisms of all bounded Reinhardt domains containing the
origin were determined in [Su]. This work has been extended in [K] by dropping
the assumption that the origin is included in the domain. The situation when do-
mainsD andGmay be unbounded were considered for example in [S3] and [EZ].

Obviously, the problem of describing proper holomorphic mappings is harder
to deal with. Proper maps between nonhyperbolic, pseudoconvex Reinhardt do-
mains have been considered in [EZ] and [Ko]. In the bounded case, partial results
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were obtained in [BP], [LSp], and [DSe]. The final result for bounded domains
in C2, which may be viewed as the completion of this research, was at last ob-
tained in the paper of Isaev and Kruzhilin [IK]. The authors explicitly described
all possibilities of existence of nonelementary proper holomorphic mappings be-
tween bounded Reinhardt domains in C2.

We generalize Isaev and Kruzhilin’s results to unbounded domains (except for
the case of domains whose logarithmic images of envelopes of holomorphy are
equal to R2). Additionally, we obtain some partial results for proper maps between
domains of the form C2∗ , C2, and C × C∗ , and we also give some more general
results related to proper holomorphic mappings.

2. Preliminaries and Statement of Results

It is well known that, for any pseudoconvex Reinhardt domainD in Cn, its logarith-
mic image logD is convex. Moreover, any proper holomorphic mapping between
domains D1,D2 in Cn can be extended to a proper map between the envelopes of
holomorphy D̂1, D̂2 of D1,D2, respectively (see e.g. [Ke]).

Let us introduce some notation. First we define

Vι := Cι−1 × {0} × Cn−ι ⊂ Cn, ι = 1, . . . , n,

M :=
n⋃
ι=1

Vι.
(1)

With a given Reinhardt domain D we associate the following constants:

d(D) := the maximal possible dimension of a linear subspace contained
in the logarithmic image of the envelope of holomorphy of D;

t(D) := the number of j such that D̂ ∩Vj �= ∅.
Moreover, in the case D ⊂ C2 we put

s(D) := the number of j = 1, 2 such that Vj ∩ D̂ is equal to C;
s∗(D) := the number of j = 1, 2 such that Vj ∩ D̂ is equal to C∗.

It turns out that the objects we have just introduced are invariant under proper
holomorphic mappings f : D → G, whereD,G are Reinhardt domains in C2, ex-
cept for the case when αR+β ⊂ logD for some α ∈ Q2 and β ∈ R2. In particular,
we shall obtain the following result.

Theorem 1. Let D,G be Reinhardt domains in C2 such that the set of proper
holomorphic mappings from D onto G is nonempty. Then

d(D) = d(G). (2)

If, moreover, d(D) = d(G) = 0, then

(s(D), s∗(D), t(D)) = (s(G), s∗(G), t(G)). (3)
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Recall here that pseudoconvex Reinhardt domains that are algebraically biholo-
morphic to bounded Reinhardt domains have been described in [Z1]. This result
is of key importance for our considerations, so we quote it next.

Theorem 2. Assume that D is a pseudoconvex Reinhardt domain in Cn. Then
the following conditions are equivalent :

(i) D is Brody hyperbolic—that is, any holomorphic mapping from C to D is
constant ;

(ii) (a) logD contains no affine lines and
(b) D∩Vj is either empty or c-hyperbolic, j = 1, . . . , n (viewed as a domain

in Cn−1);
(iii) D is algebraically biholomorphic to a bounded Reinhardt domain—in other

words, there is an A ∈ Zn×n with |detA| = 1 such that ϕA(D) is bounded
and (ϕA)|D is a biholomorphism onto the image.

We say that a Reinhardt domain D is hyperbolic if its envelope of holomorphy
D̂ is algebraically equivalent to a bounded Reinhardt domain. Note that a Rein-
hardt domain D in C2 satisfies condition (ii) of Theorem 2 if and only if s(D) =
s∗(D) = d(D) = 0.

Let D1,D2 be Reinhardt domains in C2 and let f : D1 → D2 be a proper holo-
morphic mapping. Assume that f is nonelementary. Our aim is to derive the
explicit formulas for the mapping f as well as for the domains D1,D2.

In view of Theorem 2, we see that the case d(Di) = s(Di) = s∗(Di) = 0,
i = 1, 2, has been described in [IK]. Moreover, in [EZ] and [Ko] the authors
gave explicit formulas for all proper holomorphic mappings f : D1 → D2 be-
tween pseudoconvex Reinhardt domains D1 and D2 such that d(D1) = d(D2) =
1—that is, domains whose logarithmic image is equal to a strip or a half-plane.
One may apply direct and tedious calculations to determine all possibilities of
the form of Reinhardt domains D ′

1 and D ′
2 whose envelopes of holomorphy are

equal to D1 and D2, respectively, and such that the restriction f |D ′
1
: D ′

1 → D ′
2 is

proper.
On the other hand, there is no proper holomorphic mapping between hyperbolic

and nonhyperbolic domains (see Lemma 6), so we shall focus our considerations
on proper holomorphic mappings between nonhyperbolic domains.

Summing up, to obtain a desired description of the set of nonelementary proper
holomorphic mappings between nonhyperbolic Reinhardt domains D1,D2 in C2

whose envelopes of holomorphy do not contain C2∗ , it suffices to confine our-
selves to the cases when d(D1) = d(D2) = 0 and s(D1) = s(D2) �= 0 or
s∗(D1) = s∗(D2) �= 0.

We are now in position to formulate the main result of this paper.

Theorem 3. Let D1,D2 be nonhyperbolic Reinhardt domains in C2 such that
d(D1) = d(D2) = 0 and s(Di) �= 0 or s∗(Di) �= 0, i = 1, 2. Assume that there
is a proper, nonelementary holomorphic mapping f : D1 → D2. Then one of the
following two scenarios obtains.

(i) Up to a permutation of the components of f and the variables, the map f has
the form
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f(z,w) = (µ1z
kB(C1z

p1wq1),µ2w
l), (4)

where k, l ∈ N, p1, q1 > 0 are relatively prime integers, B is a nonconstant
finite Blaschke product nonvanishing at 0, C1 > 0, and µ1,µ2 ∈ C∗. In this
case, the domains D1 and D2 have the form

Di = {(z,w)∈ C2 : Ci |z|pi|w|qi < 1, |w| < Ei}\(Pi×{0}), i = 1, 2, (5)

where E1,E2 > 0, p2, q2 > 0 are relatively prime integers satisfying the
equation q2/p2 = kq1/lp1, and P1 is any closed proper Reinhardt subset of
C. (Then, obviously, P2 is of the form {µ1ζ

kB(0) : ζ ∈P1}.)
(ii) Up to a permutation of the components of f and the variables, the map f has

the form

f(z,w) = ((e it1za1 + s)a2, eit2 exp(2 s̄e it1za1 + |s|2)−c2wc1c2), (6)

where a1, a2, c1, c2 ∈ N, s ∈ C∗ , and t1, t2 ∈ R. In this case, domains have
the forms

Di = {(z,w)∈ C2 : |w| < Ci exp(−Ei |z|ki )}, i = 1, 2, (7)

where k1 = 2a1, k2 = 2/a2, and C1,C2,E1,E2 > 0.

As mentioned before, in Section 4 we shall also obtain some results related to
proper mappings f : D → G in the case when d(D) = d(G) = 2. It is clear that,
for any pseudoconvex domain D in C2, d(D) = 2 if and only if logD = R2.

3. Proofs

We start with some preliminary results.

Lemma 4. Let ϕ : D1 → D2 be a proper holomorphic mapping, whereD1,D2 ⊂
Cn are pseudoconvex Reinhardt domains.

(i) Assume that d(D2) = 0 and suppose that there is a nonconstant holomorphic
mapping ψ : C → D1. Then ϕ(ψ(C)) ⊂ M.

(ii) If ψ̃ : C → D2 is a nonconstant holomorphic mapping and if d(D1) = 0,
then ϕ−1(ψ̃(C)) ⊂ M.

Proof. (i) By Lemma 6 in [JPf ], there exist a nonempty open set U ⊂ Rn and
a positive R such that, for any v ∈ U, the set logD2 is contained in {x ∈ Rn :
x1v1 + · · · + xnvn < R}. Thus, there are linearly independent α1, . . . ,αn ∈ Rn,
αι = (αι1, . . . ,αιn), such thatD2 is contained in {z∈ Cn : |zαι| < eR}, ι = 1, . . . , n.
Put

uι(z) = |ϕ(ψ(z))αι|, z∈ C, ι = 1, . . . , n. (8)

The uι are obviously bounded and subharmonic functions on C, so they are con-
stant; say, uι = ρι with ι = 1, . . . , n. It suffices to observe that ρι = 0 for some ι.
Indeed, if ρι �= 0 for every ι = 1, . . . , n, then clearly

∑n
j=1 α

ι
j log|ϕj(ψ(z))| =

log ρι. By applying Cramer rules we would find the mapping ϕ �ψ to be constant
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(recall that α1, . . . ,αn are linearly independent). However, this would be in contra-
diction with the properness of the mapping ϕ (since the mappingψ is unbounded).

(ii) Let α = (α1, . . . ,αn) ∈ Rn∗ and R > 1 be such that logD1 is contained
in {x ∈ Rn : x1α1 + · · · + xnαn < R} and, for any t ∈ R, the set {x ∈ Rn :
x1α1 + · · · + xnαn = t} ∩ logD1 is bounded. Put u(z) = |z1|α1 · · · |zn|αn for
z∈D1. It is well known that the function

v(z) = vα(z) = max u(ϕ−1(ψ̃(z))), z∈ C, (9)

is subharmonic. Because it is bounded, we find that v is constant. Let ρ be such
that v = ρ. Similarly as in the previous part of the proof, it is sufficient to show
that ρ is equal to 0.

Suppose not. One could then see that there is a sequence {wµ}∞µ=1 ⊂ D1 such
that |wα

µ | = ρ for any µ∈ N and wµ → w0 ∈ ∂D1, µ → ∞. Moreover, |wα| ≤ ρ

for everyw such that ϕ(w)∈ ψ̃(C). Take the supporting hyperplaneH of logD1 at
the point logw0, and let β∈Rn be such thatH = {x∈Rn : x1β1+· · ·+xnβn = ρ̂}
for some ρ̂ ∈ R. Repeating the same reasoning as before (here the assumption
of the boundedness of H ∩ logD1 is unnecessary) but now applied to a function
v = vβ (see (9)), we find that there is a ρ̃ < eρ̂ such that |wβ | ≤ ρ̃ for any w ∈
ϕ−1(ψ̃(C)). However, |wβ

µ | → eρ̂ (µ → ∞), which immediately gives the de-
sired contradiction.

Corollary 5. Let D,G ⊂ Cn be pseudoconvex Reinhardt domains such that
d(D) = 0 and d(G) ≥ 1. Then the sets Prop(D,G) and Prop(G,D) are empty.

Proof. Take α = (α1, . . . ,αn)∈ Rn and β = (β1, . . . ,βn)∈ Rn such that αR+β ⊂
logG. Note that for any z∈G the setψz(C) is contained inG, whereψz is given by

ψz(ζ) = (z1e
α1ζ , . . . , zne

αnζ ), ζ ∈ C. (10)

Thus, if f : D → G (or g : G → D) is a proper holomorphic mapping then, by
Lemma 4, f −1(G) ⊂ M (respectively, g(G) ⊂ M). This immediately yields a
contradiction.

Lemma 6. Let D,G ⊂ Cn be domains. Assume that D is bounded and that G
is not Brody-hyperbolic. Then there is no proper holomorphic mapping from D

onto G.

Proof. Suppose that ϕ : D → G is a proper holomorphic mapping. Put A =
{z ∈ D : detϕ ′(z) = 0}. The set A is a variety in D and, by the properness
of ϕ, A �= D. Moreover, there is an integer m such that #ϕ−1(w) = m for any
w ∈G \ ϕ(A).

Put

πk(λ) =
∑

1≤i1<···<ik≤m
λi1 · · · λik , λ = (λ1, . . . , λm)∈ Cm, k = 1, . . . ,m

and π = (π1, . . . ,πm). Moreover, for zj = (z
j

1 , . . . , zjn)∈ Cn, j = 1, . . . ,m, define

σ(z1, . . . , zm) := (π(z1
1, . . . , zm1 ), . . . ,π(z

1
n, . . . , zmn )). (11)
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Obviously σ : (Cn)m → Cnm is a proper holomorphic mapping with multiplicity
equal to (m!)n.

Let ϕ−1(w) = {ζ1(w), . . . , ζm(w)} for w ∈G \ ϕ(A). Since ϕ is locally biholo-
morphic near any ζi(w), i = 1, . . . ,m, and since the mapping σ given by (11) is
symmetric, it follows that the mapping ψ = σ � (ζ1, . . . , ζm) is holomorphic in
G \ ϕ(A). Since ϕ(A) is analytic in G and since ψ is bounded, we may extend ψ
to a bounded holomorphic mapping on the whole G. Let ψ̃ be such an extension.
Take any γ : C → G nonconstant and holomorphic. Then ψ̃ � γ is bounded and
holomorphic on C; in particular, ψ̃ � γ is constant.

Take any z ′ ∈ C. If γ (z ′) belongs to G \ ϕ(A), then obviously ψ̃(γ (z ′)) =
σ(ζ1(γ (z)), . . . , ζm(γ (z))). Suppose now that γ (z ′) is a critical value of ϕ. Let
x = (x1, . . . , xm)∈ (Cn)m be such that ψ̃(γ (z)) = σ(x), z∈ C.

Take any ζ such that ϕ(ζ) = γ (z ′), and let (ζn) ⊂ D \A be such that ζn → ζ.

Observe that σ(ϕ−1(ϕ(ζn))) = ψ̃(ϕ(ζn)) → σ(x). In particular, using proper-
ness of σ, we find that ζ ∈ σ−1(σ(x)); thus we have shown that ϕ−1(γ (z ′)) ⊂
σ−1(σ(x1, . . . , x1)).

It follows that, for anyw ∈ γ (C),ϕ−1(w) is contained in the finite set σ−1(σ(x)).

Because the mapping γ is unbounded, we immediately get a contradiction with
the properness of ϕ.

Remark 7. Since the mapping C \ {0,1} � z → 1
z(z−1) ∈ C is proper, Lemma 6

does not hold if we assume only that the domain D is Brody-hyperbolic (instead
of bounded). On the other hand, in the class of pseudoconvex Reinhardt domains
we know that the property of Brody-hyperbolicity implies boundedness up to al-
gebraic mappings, so we easily see that there is no proper holomorphic mapping
between hyperbolic and nonhyperbolic pseudoconvex Reinhardt domains.

For a Reinhardt domain D in Cn, let I(D) denote the set of i = 1, . . . , n for which
the intersection Vi ∩D is not c-hyperbolic (viewed as a domain in Cn−1). Put

Dhyp = D
∖ ( ⋃

i∈I(D)
Vi

)
. (12)

It is clear that Dhyp = D if D is c-hyperbolic or D ⊂ Cn∗ . In the sequel, we use
D̂hyp to denote the set (D̂)hyp.

We are now in position to formulate the following statement.

Theorem 8. Let D1,D2 be pseudoconvex Reinhardt domains in C2 such that
logDi contains no affine lines, i = 1, 2 (i.e., d(D1) = d(D2) = 0). If ϕ : D1 →
D2 is a proper holomorphic mapping, then ϕ(Dhyp

1 ) ⊂ D
hyp
2 and the restriction

ϕ|
D

hyp
1

: Dhyp
1 → D

hyp
2 is proper.

Proof. It clearly suffices to prove the following statements.

(a) IfD1∩V1 ∈ {C, C∗}, then ϕ(D1∩V1) is contained either inV1 or inV2. In par-
ticular, ifD2 ∩V2 is, moreover, c-hyperbolic or empty, then ϕ(D1 ∩V1) ⊂ V1.

(b) If D2 ∩V1 ∈ {C, C∗} and D1 ∩V2 is neither C nor C∗ , then D1 ∩V1 ∈ {C, C∗}
and ϕ−1(D2 ∩V1) ⊂ V1.
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(a) From Lemma 4(i) applied to the mappingψ(z) = (0, ez), z∈ C, we get that
ϕ(D1 ∩V1) ⊂ M. It follows that ϕ1(0, z)ϕ2(0, z) = 0 for any z∈ C∗ , so ϕ1(0, ·) ≡
0 or ϕ2(0, ·) ≡ 0. The second statement is clear.

(b) If D1 ∩ V1 were neither C nor C∗ , then D1 would be biholomorphic to a
bounded domain, which clearly contradicts Lemma 6. Thus D1 ∩V1 ∈ {C, C∗}.

Suppose thatD1 ∩V2 is nonempty (otherwise, Lemma 4(ii) finishes the proof ).
Pseudoconvexity implies that π1(D1) is a bounded subset of C, where π1 : C2 →
C denotes a projection onto the first variable. Thus, the function given by

v(z) := max|π1(ϕ
−1(0, z))|, z∈ C∗ , (13)

is constant (because it is bounded and subharmonic). Moreover, from Lemma 4
we have that ϕ−1(D2 ∩V1) ⊂ M.

Now, one may easily verify that v = 0.

Corollary 9. Let D1,D2 ⊂ C2 be Reinhardt domains such that d(D1) =
d(D2) = 0. Assume that Prop(D1,D2) is nonempty. Then

(s(D1), s∗(D1), t(D1)) = (s(D2), s∗(D2), t(D2)). (14)

Proof. Any proper holomorphic map between domains D1,D2 may be extended
to the proper map between their envelopes of holomorphy D̂1, D̂2, respectively.
Moreover, it is well known (see [IK, Cor. 0.3]) that, if there exists a proper holo-
morphic mapping between two given bounded domains, then there also exists an
elementary algebraic proper holomorphic mapping between these domains.

Thus, our result is a direct consequence of Theorems 8 and 2 and properties of
algebraic mappings.

By applying the methods used in previous theorems, we may easily show the fol-
lowing result.

Proposition 10. There are no proper holomorphic mappings between domains
D,G and G,D in the following cases.

(i) There exist a nonconstant, negative, plurisubharmonic function on D and a
G = Cn \ E for some pluripolar set E in Cn.

(ii) D is hyperconvex (i.e., there is a negative plurisubharmonic exhaustion func-
tion for D) and G is not Brody-hyperbolic.

Proof. (i) Obviously Prop(Cn \ E,D) = ∅.
Suppose that ϕ : D → Cn \ E is proper and holomorphic. Let u ∈ PSH(D)

be nonconstant and negative. Put v(z) = max u(ϕ−1(z)), z ∈ Cn \ E. It is seen
that the function v is constant. In particular, there is a ρ < 0 such that u ≤ ρ and
u(w0) = ρ for some w0 ∈D; a contradiction.

(ii) It is clear that the set Prop(G,D) is empty. Suppose that ϕ : D → G is
proper and holomorphic. Let u be a negative plurisubharmonic exhaustion func-
tion forD and letψ : C → G be a nonconstant holomorphic mapping. Put v(ζ) =
max u(ϕ−1(ψ(ζ))), ζ ∈ C. The function v is subharmonic on C. Since v < 0, it
is constant. Hence we find that ϕ−1(ψ(C)) is a relatively compact subset of D; a
contradiction.
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Proposition11. LetD,G ⊂ C2 be pseudoconvex Reinhardt domains. Ifd(D) �=
d(G), then there is no proper holomorphic mapping between D and G.

Proof. In view of Corollary 5, it suffices to consider the case when d(D) = 2 or
d(G) = 2. The condition d(D) < 2 means that the logarithmic image of the en-
velope of holomorphy of domain D is contained in a half-space. More precisely,
D ⊂ {z ∈ C2 : |z1|α1|z2|α2 < r} for some α ∈ R2∗ , 0 < r < ∞. Therefore, the
assertion follows immediately from Proposition 10.

Proof of Theorem 1. This is a direct consequence of Corollary 9 and Proposi-
tion 11.

Proof of Theorem 3. Let f : D̂1 → D̂2 also denote the extension of the mapping f
to a proper mapping between the envelopes of holomorphy ofD1 andD2. By The-
orem 8, the restriction f |

D̂
hyp
1

: D̂hyp
1 → D̂

hyp
2 is proper.

If s(D1) = 2 or s∗(D1) = t(D1) = 1, then D̂hyp
1 would be contained in C2∗ and,

by Theorem 2 and the description in [IK], we find that f |
D̂

hyp
1

would be elementary
algebraic. It is clear that the identity principle gives a contradiction.

Therefore, we may assume that t(D1) = t(D2) = 2, s(D1) = s(D2) = 1, and
s∗(D1) = s∗(D2) = 0. Up to a permutation of components, we may suppose that
D̂i ∩ V2 = V2 and that D̂i ∩ V1 is bounded, i = 1, 2. Hence there are k1, k2 ∈
N such that D̂i is contained in {(z,w) ∈ C2 : |z||w|ki < ci} for some positive
constants ci, i = 1, 2. It follows that 8Ai

, where Ai = (
1 ki
0 1

)
, is a biholomorphic

mapping from D̂
hyp
i onto the bounded set 8Ai

(D̂
hyp
i ), i = 1, 2. In particular,

g := 8A2 � f �8A−1
1

: 8A1(D̂
hyp
1 ) → 8A2(D̂

hyp
2 ) (15)

is a proper holomorphic mapping between two bounded domains in C2. Now,
using the description in [IK], it is straightforward to observe that one of two pos-
sibilities may hold:

(i) D̂
hyp
i = {(z,w) ∈ C2 : Ci |z|pi|w|piki+qi < 1, 0 < |w| < C ′

i }, where pi, qi
are relatively prime integers such that piki + qi > 0, pi > 0, qi ≤ 0, and
Ci,C ′

i > 0, i = 1, 2;
(ii) D̂

hyp
1 = {(z,w)∈ C2 : 0 < |w|< C1 exp(−E1|z|2a1|w|2k1a1−2b1)} and D̂hyp

2 =
{(z,w) ∈ C2 : 0 < |w| < C2 exp(−E2|z|2/a2 |w|2k2/a2−2b2/a2c2)}, where
ai, bi, ci ∈ N and Ci,Ei > 0 for i = 1, 2.

First suppose that (i) holds. From [IK] it follows that g must be of the form
g(z,w) = (λ1z

awbB(C1z
p1wq1), λ2w

c), (z,w) ∈ 8(D̂
hyp
1 ), where a, b, c ∈ Z ,

a, c > 0, aq1 − bp1 < 0, q2/p2 = (aq1 − bp1)/cp1, B is a Blaschke product non-
vanishing at 0, and λ1, λ2 ∈ C∗. Put q̃i = piki + qi. It is obvious that pi and q̃i
are relatively prime. Moreover, from the form of D̂i we get that q̃i > 0. An easy
computation gives

f(z,w) = (µ1z
awak1−ck2+bB(C1z

p1wq̃1),µ2w
c), (z,w)∈ D̂hyp

1 ,

for some constants µ1,µ2. Because f may be extended properly on D̂1, we have
ak1 − ck2 + b = 0. Moreover, it is clear that q̃2/p2 = aq̃1/cp1.
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It is straightforward to see that any Reinhardt subdomain of D̂1 mapped prop-
erly by f onto a Reinhardt domain and whose envelopes of holomorphy coincides
with D̂1 is equal to D̂1\ P1 × {0}, where P1 is any closed Reinhardt subset of C.

Now suppose that (ii) holds. Denote m1 := k1a1 − b1 and m2 := k2c2 − b2.

Similarly as before, by taking into account the form of D̂1 and D̂2 we can see that
m1,m2 ≥ 0.

For s ∈ C∗ and t1, t2 ∈ R, put

h1(z) := eit1z+ s and h2(z) = eit2 exp(2 s̄e it1z + |s|2), z∈ C.

An easy calculation and formula for the mapping g (see [IK]) then yield

f(z,w) = (h1(z
a1wm1)a2h2(z

a1wm1)m2w−m2c2,h2(z
a1wm2)−c2wc1c2),

(z,w)∈ D̂hyp
1 . (16)

Since f may be extended through V1, it follows that m1 = m2 = 0.
Finally, one may easily verify that any Reinhardt subdomain of D̂1 whose en-

velope of holomorphy coincides with D̂1 and that is mapped properly by f onto a
Reinhardt domain is equal to D̂1.

4. Remarks on the Proper Holomorphic Mappings
f : D →G between Reinhardt Domains

When d(D) = d(G) = 2

It is widely recognized that the structures of Aut(C2), Aut(C2∗), and Aut(C × C∗)
are complicated and that a full description of these groups seems to be not known.
Proper maps are harder to deal with, so describing the set of proper holomorphic
mappings between pseudoconvex Reinhardt domains D1 and D2 in the case when
logDi = R2, i = 1, 2, is more difficult.

In this section we present some partial results related to these problems.

Proposition 12. The sets Prop(C × C, C × C∗), Prop(C × C, C∗ × C∗), and
Prop(C × C∗ , C∗ × C∗) are empty.

Proof. First suppose that f : C2 → C × C∗ is proper and holomorphic. Obvi-
ously there exists a holomorphic mapping ψ : C2 → C2 such that f = (ψ1, eψ2).

One can easily verify that the mapping ψ is proper; in particular, ψ is surjective.
Thus there is a discrete sequence (zn)n∈N ⊂ C2 such that ψ(zn) = (0, 2nπi) for
n ∈ N. It follows that f(zn) = (0,1) for n ∈ N. From this we immediately obtain
a contradiction.

To show that Prop(C2, C2∗) = ∅ we proceed similarly.
Now suppose that g : C × C∗ → C2∗ is holomorphic and proper. It can be

seen that there exists a holomorphic mapping ϕ : C2 → C2 such that g(z, ew) =
(eϕ1(z,w), eϕ2(z,w)) for z,w ∈ C.

Fix z ∈ C. Put g̃i = gi(z, ·) and ϕ̃i = ϕi(z, ·), i = 1, 2. Since g̃i(ew) = eϕ̃i(w),
we find that ϕ̃ ′

i(w) = ζi(e
w), w ∈ C, where ζi is a holomorphic function given by
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the formula ζi(λ) = λg̃ ′
i(λ)/g̃i(λ), λ∈ C∗. Expanding ζi to the Laurent series gives

ϕ̃i(w) = aiw + ∑
n∈Z∗ aine

nw for some ai = ai(z)∈ C and ain = ain(z)∈ C.

Thus, there is a holomorphic mapping ϕ̂i(·) = ϕ̂i(z, ·) on C∗ such that ϕ̃i(w) =
aiw + ϕ̂i(e

w), w ∈ C. Since eaiw = g̃i(e
w)/eϕ̂i(e

w), we immediately find that
ai ∈ Z , i = 1, 2.

Therefore, ϕi(z,w) = ai(z)w + ϕ̂i(z, ew) for z,w ∈ C and i = 1, 2. In par-
ticular,

g(z,w) = (wa1(z)eϕ̂1(z,w),wa2(z)eϕ̂2(z,w)), (z,w)∈ C × C∗. (17)

It is straightforward to verify that

ai(z) = 1

2πi

∫
∂D

∂gi

∂λ
(z, λ)

gi(z, λ)
dλ, z∈ C,

whence ai is constant (recall that ai(z) ∈ Z) and therefore ϕ̂i is holomorphic on
C × C∗ , i = 1, 2.

Note that we may assume that a2 = 0 (if a1a2 �= 0, then one may compose g
with a proper holomorphic mappingF : C2∗ → C2∗ given by the formulaF(z,w) =
(za2,wa1/za2)).

Put
h(z,w) = (wa1eϕ̂1(z,w), ϕ̂2(z,w)), (z,w)∈ C × C∗ ,

and observe that the mapping h : C × C∗ → C∗ × C is proper.
Now we may obtain a contradiction by proceeding exactly as in the case of

Prop(C2, C × C∗).

Corollary 13. Prop(A× C,A× C∗) is empty for any domain A ⊂ C.

Proof. If #(C \ A) ≤ 1 then the result follows directly from Proposition 12. So
assume that #(C \ A) > 1, and let f : A× C → A× C∗ be proper and holomor-
phic. By the uniformization theorem there exist a universal covering π : D → A

and a ψ ∈ O(D × C, D) such that

f(π(λ),w) = (π(ψ(λ,w)), f2(π(λ),w)) for any (λ,w)∈ D × C.

Fix any λ ∈ D and note that the mapping ψ(λ, ·) is constant. From the proper-
ness of f it easily follows that the mapping f2(π(λ), ·) : C → C∗ is proper; a
contradiction.

Remark 14. Because φ : C∗ � z → z + 1/z ∈ C is proper, there exist proper
holomorphic maps from C2∗ onto C2, from C2∗ onto C×C∗ , and from C×C∗ onto
C2. Clearly such maps cannot be elementary.

On the other hand, the preceding results and those obtained in [IK] and [Ko]
imply that, if there exists a proper holomorphic mapping between two Reinhardt
domains D1,D2 ⊂ C2 such that αR +β is not contained in logD1 for any α ∈ Q2

and β ∈ R2 (hence also in logD2; see [Ko]), then there also exists an elementary
algebraic mapping between these domains.
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