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Chow Motive of
Fulton–MacPherson Configuration Spaces

and Wonderful Compactifications

Li Li

1. Introduction

The purpose of this paper is to study the Chow groups and Chow motives of the
so-called wonderful compactifications of an arrangement of subvarieties, in par-
ticular the Fulton–MacPherson configuration spaces.

All the varieties in the paper are over an algebraically closed field. Let Y be a
nonsingular quasi-projective variety. Let S be an arrangement of subvarieties of Y
(cf. Definition 2.2). Let G be a building set of S, that is, a finite set of nonsingu-
lar subvarieties in S satisfying Definition 2.3. The wonderful compactification YG
is constructed by blowing up Y along subvarieties in G successively (cf. Defini-
tion 2.5). There are different orders in which the blow-ups can be carried out; for
example, we can blow up along the centers in any order that is compatible with
the inclusion relation. There are many important examples of such compactifica-
tions: De Concini and Procesi’s wonderful model of a subspace arrangement, the
Fulton–MacPherson configuration spaces, the moduli space M0,n of stable ratio-
nal curves with n marked points, and others. These spaces have many properties
in common. Studying them with a uniform method gives us a better understanding
of these spaces. In this paper, we study their Chow groups and Chow motives.

If we assume that Y is projective, then the Chow motive of YG , denoted by
h(YG), can be decomposed canonically into a direct sum of the motive of Y and
the twisted motives of the subvarieties in the arrangement (see Section 2.1 for a re-
view of Chow motives). We will prove the following theorem, where the precise
definitions of the set MT and the subvarieties Y0T of Y are given in Section 3.

Main Theorem (Theorems 3.1and 3.2). LetY be a nonsingular quasi-projective
variety, let G be a building set, and let YG be the wonderful compactification YG .
Then we have the Chow group decomposition

A∗YG = A∗Y ⊕
⊕

T

⊕
µ∈MT

A
∗−‖µ‖

(Y0T ),

where T runs through all G-nests. Moreover, when Y is projective we have the
Chow motive decomposition
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h(YG) ∼= h(Y )⊕
⊕

T

⊕
µ∈MT

h(Y0T )(‖µ‖),

where T runs through all G-nests. In this case the correspondences giving the
previous isomorphism are canonical in the following sense: there is no canonical
order of blow-ups (in general ) to construct YG , and the correspondences turn out
to be independent of the order we choose.

The Fulton–MacPherson configuration space X[n] is one of the most interesting
examples of the wonderful compactification YG , where Y = Xn and G is the the
set of all the diagonals in Xn (see Section 4.1). Applying the main theorem to
X[n], we obtain the following theorem, where the precise definition of the nests
S, the polydiagonals �S , the integers c(S ), the sets of lattice points MS , and the
correspondences αS,µ and βS,µ are given in Section 4.1.

Theorem 4.2. Let X be a nonsingular projective variety. Then there is a canon-
ical isomorphism of Chow motives⊕

S

⊕
µ∈MS

αS,µ : h(X[n]) ∼=
⊕

S

⊕
µ∈MS

h(�S)(‖µ‖)

with the inverse
∑

S
∑

µ∈S βS,µ. Equivalently, we have the following decomposi-

tion of the Chow motive of X[n]:

h(X[n]) ∼=
⊕

S

⊕
µ∈MS

h(Xc(S ))(‖µ‖).

The first consequence of this theorem is that we can easily express the decompo-
sition of h(X[n]) using a generating function N(x, t), as follows.

Theorem 4.3. Define fi(x) to be the polynomials whose exponential generating
function N(x, t) = ∑

i≥1 fi(x)
t i

i! satisfies the identity

(1 − x)xdt + (1 − xd+1) = exp(xdN )− xd+1 exp(N ),

where d = dimX. Then

h(X[n]) =
⊕

1≤k≤n
i≥0

(h(Xk)(i))⊕[xit n/n!](N k/k!).

The second consequence is a decomposition of the Chow motive of the quotient
variety X[n]/Sn obtained from the natural symmetric group Sn action on X[n].
To make sense of the motive of a quotient variety, we assume the base field is
of characteristic 0. The correspondences appearing in Theorem 4.2 are canonical
and therefore symmetric with respect to the symmetric group Sn. It is then pos-
sible to compute the Sn-invariant part of h(X[n]), which is the Chow motive of
X[n]/Sn. As pointed out by [FM], unlike the isotropy groups of a point in Xn,
the isotropy group of any point in X[n] is always solvable; therefore, the singular-
ity of X[n]/Sn is “better” than the singularity of the symmetric product X(n) :=
Xn/Sn. It would be interesting to see how different the Chow motive h(X[n]/Sn)
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is from h(X(n)). In the following theorem, an unlabeled weighted forest is a for-
est whose nodes are not labeled and such that each nonleaf node is attached by a
positive integer called a weight. We call an unlabeled weighted forest of type ν :=
{n1, . . . , nr} if the forest is of the form n1T1+· · ·+nrTr , where the Ti are mutually
distinct unlabeled weighted trees.

Theorem 5.3. For any unordered set of positive integers ν = {n1, . . . , nr} and
any nonnegative integerm, let λ(ν,m) be the number of unlabeled weighted forests
with n leaves, of type ν, of total weight m, and such that—at each nonleaf v with
cv children—the weight mv satisfies 1 ≤ mv ≤ (cv − 1) dimX − 1. Then

h(X[n]/Sn) =
⊕
ν,m

[h(X(n1) × · · · ×X(nr ))(m)]⊕λ(ν,m).

The importance of all the preceding results on Chow motives can be seen through
a working principle.

Principle. A result proved for Chow motives is valid if we replace them by homo-
logical/numerical motives, Chow groups A∗

Q , cohomology groups H ∗
Q , Grothen-

dieck groups (the aforementioned groups are taken with Q-coefficients), Hodge
structures, and so forth.

Thus, for example, we have a decomposition for the Q-coefficient singular coho-
mology of YG , X[n], and X[n]/Sn.

The paper is organized as follows. Section 2 contains a review of motives and
the wonderful compactifications of arrangement of subvarieties. In Section 3, a
motivic decomposition for the wonderful compactifications is proved. In Sec-
tion 4 we give a motivic decomposition for the Fulton–MacPherson configuration
spaces. Finally, Section 5 gives a motivic decomposition for the quotient variety
X[n]/Sn.

Acknowledgments. The paper is based on part of the author’s thesis. In many
ways I am greatly indebted to Mark de Cataldo, my Ph.D. advisor. I would also
like to thank Blaine Lawson, Sorin Popescu, Dror Varolin, and Byungheup Jun
for encouragement and useful discussions. The author thanks the referee for a de-
tailed review of the first version that included many helpful suggestions to clarify
and simplify the paper.

2. Preliminaries

2.1. Motives

Given an algebraic variety X of dimension d, let AiX = Ad−iX be the Chow
group of codimension i (i.e., the group of algebraic cycles of codimension i in X
modulo rational equivalence). Define Ai

QX = AiX ⊗Z Q.
Let X and Y be two nonsingular projective varieties. The group of correspon-

dences of degree r from X to Y is defined as
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Corr r(X,Y ) := AdimX+r(X × Y ).

The group Corr rQ(X,Y ) denotes the tensor of Corr r(X,Y ) with Q.
The composition of two correspondences

f ∈ Corr r(X1,X2) and g ∈ Corr s(X2,X3)

is a correspondence in Corr r+s(X1,X3) defined as

g � f := π13∗(π∗
12f · π∗

23g),

where πij is the projection from X1 ×X2 ×X3 to Xi ×Xj .

A correspondence p ∈ Corr0(X,X) is called a projector of X if p2 = p (where
p2 := p �p). Let V denote the category of (not necessarily connected) nonsingu-
lar projective varieties over a field k.

Definition 2.1 [CH]. The category of Chow motives over k, denoted byCHM,
is defined as follows: an object ofCHM, called a Chow motive, is a triple (X,p, r)
for X a nonsingular projective variety, p a projector of X, and r an integer. The
morphisms in CHM are defined as

HomCHM((X,p, r), (Y, q, s)) := q � Corr s−r(X,Y ) � p.
The composition of morphisms is defined as the composition of correspondences.

For a Chow motive M = (X,p, r) and an integer %, we define

M(%) := (X,p, r + %).

There is a natural contravariant functor h from V to CHM that sends X to
(X, idX, 0) and also sends a morphism f : X → Y to&t

f : h(Y ) → h(X), the trans-
pose of the graph of f. Naturally, h(X)(%) stands for the Chow motive (X, idX, %).

According to [dBN], we can generalize the theory of Chow motives on non-
singular projective varieties to the one on varieties that are quotients of smooth
projective varieties by finite group actions. To be more precise, let V ′ be the cate-
gory of varieties of type X/G with X ∈ObV and G a finite group. We can define
the group of correspondences Corr rQ(X

′,Y ′) for X ′,Y ′ ∈ V ′ and the category of
Chow motivesCHM′ in a manner that is similar to the nonsingular case (the differ-
ence is that we must use Q-coefficients). There is a natural contravariant functor
h : V ′ → CHM′.

Define the G-average correspondence aveG as

aveG := 1

|G|
∑

[g] ∈ Corr0
Q(X,X),

where [g] is given by the graph of g in X × X. By [dBN, Prop. 1.2], there is an
isomorphism

h(X/G) ∼= (X, ave�) ∼= h(X)G.

Such a definition is consistent with the realization functors and Q-coefficient Chow
groups.
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2.2. Wonderful Compactification of an Arrangement of Subvarieties

The wonderful compactification of an arrangement of subvarieties is introduced
in [L] as a generalization of De Concini and Procesi’s wonderful model of sub-
space arrangements. We briefly review the definition and some properties of such
compactifications. For details we refer to [L].

Definition 2.2. A (simple) arrangement of subvarieties of Y is a finite set S =
{Si} of nonsingular closed subvarieties of Y satisfying the following conditions:

(1) Si and Sj intersect cleanly (in other words, their intersection is nonsingular
and T(Si ∩ Sj ) = T(Si)|(Si∩Sj ) ∩ T(Sj )|(Si∩Sj )); and

(2) Si ∩ Sj is either empty or equal to some Sk ∈ S.

Definition 2.3. Let S be an arrangement of subvarieties of Y. A subset G ⊆ S is
called a building set of S if, for all S ∈ S, the minimal elements in the G that con-
tains S intersect transversally and their intersection is S (this condition is always
satisfied if S ∈ G). These minimal elements are called the G-factors of S. We call
a finite set G of subvarieties a building set if the set

S :=
{ ⋂
V∈F

V

}
F

(where F runs through all subsets of G)

is an arrangement and G is a building set of S (
for F = ∅ we set

⋂
V∈F V = Y

)
.

In this case we call S the induced arrangement of G.

Definition 2.4. Let G be a building set. A subset T ⊆ G is called G-nested (or
a G-nest ) if it satisfies one of the following equivalent relations.

(1) There is a flag of elements in S, S1 ⊆ S2 ⊆ · · · ⊆ Sk , such that

T =
k⋃
i=1

{A : A is a G-factor of Si}.

(We say that T is induced by the flag S1 ⊆ S2 ⊆ · · · ⊆ Sk.)

(2) Let A1, . . . ,Ak be the minimal elements of T ; then they are all the G-factors
of a certain element in S and, for each 1 ≤ i ≤ k, the set {A∈ T : A � Ai} is
also G-nested as defined by induction.

The wonderful compactification is defined as follows.

Definition 2.5. Denote Y ◦ = Y \ ⋃
G∈G G. There is a natural locally closed

embedding

Y ◦ ↪→ Y ×
∏
G∈G

BlGY.

The closure of this embedding, denoted by YG , is called the wonderful compacti-
fication of G.
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The wonderful compactification YG of G has the properties described in Theo-
rem 2.6, where parts (i) and (ii) are in [L, Thm. 1.2] and (iii) is clear from the
proof there.

Theorem 2.6. The variety YG is nonsingular. For each G∈ G, there is a nonsin-
gular divisor DG on YG such that the following statements hold.

(i) The union of the divisors DG is YG \ Y ◦.
(ii) Any collection of the divisors DG intersects transversally. An intersection

of divisors DT1 ∩ · · · ∩ DTr is nonempty exactly when {T1, . . . , Tr} forms a
G-nest.

(iii) Each DG is the unique connected component of π−1(G) that maps surjec-
tively to the subvarietyG, whereπ is the natural morphismYG → Y. (ThisDG

is called the dominant transform of G and is denoted by G̃ in [L].)

The dominant transform can also be defined as follows. Let π : Ỹ → Y be the
blow-up along a nonsingular subvariety G � Y. For any irreducible subvariety V
in Y, we define the dominant transform of V, denoted by Ṽ or V ,̃ to be the strict
transform of V when V � G and to be π−1(V ) when V ⊆ G. For a sequence of
N blow-ups YN → YN−1 → · · · → Y1 → Y0 and a subvariety V ⊆ Y0, we de-
fine the dominant transform Ṽ ⊆ YN to be the N th iterated dominant transform
(· · · ((V˜)̃ ) · · · )̃ .

It is known (see [L]) that YG can be constructed by a sequence of blow-ups as
follows. Let Y be a nonsingular variety, let S be an arrangement of subvarieties,
and let

G = {G1, . . . ,GN}
be a building set with respect to S. Suppose the subvarieties in G = {G1, . . . ,GN}
are indexed in an order that is compatible with inclusion relations (i.e., i ≤ j if
Gi ⊆ Gj). We define the triple (Yk , S (k), G (k)) inductively with respect to k, where
Yk is a nonsingular variety, S (k) is an arrangement of subvarieties of Yk , and G (k)

is a building set with respect to S (k).

(1) For k = 0, define Y0 = Y, S (0) = S, G (0) = G = {G1, . . . ,GN}, and G(0)
i = Gi

for 1 ≤ i ≤ N.

(2) Assume the triple (Yk , S (k), G (k)) has been constructed. Define Yk to be the
blow-up of Yk−1 along the nonsingular subvarietyG(k−1)

k , and defineG(k) to be
the dominant transform (G(k−1))̃ for all G∈ G. Then G (k) := {G(k)}G∈G is a
building set (by [L, Prop. 2.8]). We denote the induced arrangement by S (k).

(3) Continue the inductive construction until k = N. We obtain a nonsingular
variety YN and that all elements in the building set G (N ) are divisors. The re-
sulting variety is isomorphic to YG .

For any G-nest T , define
YkT =

⋂
G∈T

G(k).

The following property of YkT is used often throughout the paper.
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Proposition 2.7. Let 0 ≤ k ≤ N − 2 and let T ⊆ {Gk+2,Gk+3, . . . ,GN} be
a G-nest. Then Yk+1T is an irreducible nonsingular subvariety of Yk+1 with the
following property.

If {Gk+1} ∪ T is not a G-nest, then G(k)
k+1 ∩ YkT = ∅ and Yk+1T ∼= YkT ; other-

wise, the intersection G(k)
k+1 ∩ YkT is clean, Yk+1T is isomorphic to the blow-up of

YkT along G(k)
k+1 ∩ YkT with exceptional divisor G(k+1)

k+1 ∩ Yk+1T (where the inter-

section is transverse), and the codimension of G(k)
k+1 ∩ YkT in YkT is equal to{ dim

⋂
Gk+1�G∈T G− dimGk+1 if {G : Gk+1 � G∈ T } �= ∅,

dimY − dimGk+1 otherwise.

Proof. We prove the statement by induction on k. The case k = 0 is obvious. Now
assume that the statement is true for k.

(i) Suppose that {Gk+1}∪T is not a G-nest. We will show thatG(k)
k+1∩YkT = ∅.

As a consequence we have Yk+1T ∼= YkT , since the center of the blow-up is away
from YkT .

We prove by way of contradiction. Assume that G(k)
k+1 ∩ YkT �= ∅. Since T is

a G-nest, {G(k)}G∈T is a G (k)-nest by [L, Prop. 2.8(3)]. By Definition 2.4(1), the
nest {G(k)}G∈T is induced by a flag

S ′
1 ⊆ S ′

2 ⊆ · · · ⊆ S ′
l ,

where S ′
i ∈ S (k). We claim that {G(k)

k+1} ∪ {G(k)}G∈T ⊆ G (k) is a G (k)-nest induced
by the flag

(G
(k)
k+1 ∩ S ′

1) ⊆ S ′
1 ⊆ S ′

2 ⊆ · · · ⊆ S ′
l .

Indeed, since YkT = S ′
1, we know thatG(k)

k+1∩S ′
1 �= ∅. By [L, Lemma 2.4(ii)], the

G (k)-factors ofG(k)
k+1∩S ′

1 areG(k) and some G (k)-factors of S ′
1; hence our claim fol-

lows. Then [L, Prop. 2.8(3)] asserts that, since {G(k)
k+1} ∪ {G(k)}G∈T is a G (k)-nest,

{Gk+1} ∪ T must be a G-nest. But by assumption {Gk+1} ∪ T is not a G-nest—
contradiction.

(ii) Suppose that T ∪ {Gk+1} is a G-nest. Let the G (k)-factors of YkT be
G′

1, . . . ,G′
r . Then they are minimal elements in the G (k)-nest {G(k)}G∈T by the

definition of nest. Assume without loss of generality that the first m subvarieties
G′

1, . . . ,G′
m containG(k)

k+1. DefineA = ⋂m
i=1G

′
i andB = ⋂r

i=m+1G
′
i ; thenYkT =

A ∩ B is the G(k)
k+1-factorization of YkT by [L, Lemma 2.6.]

Observe that for p, q ≥ k + 2 and G(k)
p ⊆ G(k)

q we have G(k+1)
p ⊆ G(k+1)

q , be-
cause strict transforms keep the inclusion relation. Moreover, sinceG′

1, . . . ,G′
r are

the minimal elements in G (k) that contain YkT , the subvariety Yk+1T is the inter-
section

⋂r
i=1 G̃

′
i . Then

Ã =
m⋂
i=1

G̃′
i , B̃ =

r⋂
i=m+1

G̃′
i , (A ∩ B)̃ = Ã ∩ B̃ =

m⋂
i=1

G̃′
i

by [L, Lemma 2.9]. Thus Yk+1T = (YkT )̃ . By the definition of arrangement we
know that YkT and G(k)

k+1 intersect cleanly, so Yk+1T is the blow-up of YkT along
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the center G(k)
k+1 ∩ YkT . The exceptional divisor is the preimage of the center and

hence is G(k+1)
k+1 ∩ Yk+1T . Since G(k+1)

k+1 and Yk+1T intersect cleanly and since the

divisor G(k+1)
k+1 does not contain Yk+1T , it follows that the intersection G(k)

k+1 ∩ YkT
is actually transversal.

The codimension of the center YkT ∩G
(k)
k+1 in YkT equals

codim(A ∩ B ∩G
(k)
k+1,A ∩ B) = codim(G(k)

k+1 ∩ B,A ∩ B) = codim(G(k)
k+1,A),

where the second equality follows from the transversality of the intersection
G
(k)
k+1 ∩ B. If no elements in T contain Gk+1, then A = Y and

codim(G(k)
k+1,A) = dimY − dimGk+1;

otherwise,

codim(G(k)
k+1,A) = codim

(
G
(k)
k+1,

m⋂
i=1

G′
i

)
= codim

(
Gk+1,

⋂
Gk+1�G∈T

G

)

= dim
⋂

Gk+1�G∈T
G− dimGk+1.

Thus the proof is complete.

3. The Motive of Wonderful Compactifications

Notation.

• Let Y be a nonsingular quasi-projective variety with an arrangement of subva-
rieties S, and let G be a building set with respect to S. Let YG be the wonderful
compactification. Let T be a G-nest.

• For T ∈ G, defineDT to be the divisor T (N ) inYG . When no confusion can arise,
we use the same notation DT for its restriction to a subvariety of YG .

• Denote by jT : YGT → YG the natural imbedding; denote by gT : YGT → Y0T
the restriction of the natural morphism YG → Y.

• Suppose j : B → C and g : B → D are two morphisms of varieties. Denote
by (j, g) : B → C ×D the composition of the diagonal map � with f × g,

(j, g) : B
�−−→ B × B

f×g−−→ C ×D.

• Given a ∈ A(P ), denote by {a}i the image of the projection A(P ) → Ai(P )

of the Chow ring to its degree-i direct summand (i.e., taking the codimension-i
part of a).

• We set
⋂

G�T ∈T T = Y if no T satisfies G � T ∈ T . Define

rG := dim

( ⋂
G�T ∈T

T

)
− dimG

and define

NG := NG

( ⋂
G�T ∈T

T

)∣∣∣
Y0T

,



Chow Motive of Fulton–MacPherson Configuration Spaces 573

which is the restriction to Y0T of the normal bundle of G in the ambient space( ⋂
G�T ∈T T

)
. Define

MT := {µ = {µG}G∈G : 1 ≤ µG ≤ rG − 1, µG ∈ Z},
and define ‖µ‖ := ∑

G∈G µG for µ∈MT .

Theorem 3.1. We have the Chow group decomposition

A∗YG = A∗Y ⊕
⊕

T

⊕
µ∈MT

A
∗−‖µ‖

(Y0T ),

where T runs through all G-nests.
Moreover, when Y is complete, we have the Chow motive decomposition

h(YG) = h(Y )⊕
⊕

T

⊕
µ∈MT

h(Y0T )(‖µ‖),

where T runs through all G-nests.

Theorem 3.2. The correspondence that gives each of the preceding direct sum-
mands can be explicitly expressed as

α : h(YG) → h(Y0T )(‖µ‖),

α = (jT , gT )∗
∏
G∈T

{
c

(
g∗

T (NG)⊗ O
(

−
∑
(�)

DG′

))
1

1 +DG

}
rG−1−µG

.

Here c is total Chern class, the subscript rG − 1 − µG means the codimension-
(rG − 1 − µG) part, and condition (�) is: G′ � G and T ∪ {G′} is a G-nest.

The inverse correspondence is

β : h(Y0T )(‖µ‖) → h(YG),

β = (gT , jT )∗
∏
G∈T

(−DG)
µG−1.

3.1. Proof of Theorem 3.1

Lemma 3.3. Suppose we have a G-nest T ⊆ {Gk+2, . . . ,GN}, and suppose that
T ′ := T ∪ {Gk+1} is also a G-nest. Define r = rk,T to be{ dim

⋂
Gk+1�G∈T G− dimGk+1 if {G : Gk+1 � G∈ T } �= ∅,

dimY − dimGk+1 otherwise.

Then the following Chow group decomposition holds:

A∗(Yk+1T ) = A∗(YkT )⊕
r−1⊕
t=1

A∗−t(YkT ′).

When Y is complete, we also have the motivic decomposition

h(Yk+1T ) = h(YkT )⊕
r−1⊕
t=1

h(YkT ′)(t).
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Proof. Applying the well-known blow-up formula for the Chow group and for the
Chow motive (Theorem A.2) to Proposition 2.7 immediately gives the conclusion.

Iteratively applying Lemma 3.3 yields the proof of Theorem 3.1, as follows.

Proof of Theorem 3.1. Define

M
(k)
T = {

µ = {µG}G∈G : 1 ≤ µG ≤ dim
( ⋂

T T
(k)

) − dimG(k) − 1, µG ∈ Z
}
,

where T runs through the subvarieties in T such that G(k) � T (k). Define ‖µ‖ :=∑
G∈G µG for µ∈M(k)

T .

We prove the following statement using a downward induction on k:

A∗YG = A∗Yk ⊕
⊕

T

⊕
µ∈M(k)

T

A
∗−‖µ‖

(YkT ), (3.1)

where T runs through all G-nests such that T ⊆ {Gk+1,Gk+2, . . . ,GN}.
The assertion for k = N is trivial because allG(N) are divisors in YG (and hence

of codimension 1) and M(k)
T = ∅.

Assume (3.1) has been proved for k + 1. In other words, assume that

A∗YG = A∗Yk+1 ⊕
⊕

T

⊕
µ∈M(k+1)

T

A∗−‖µ‖(Yk+1T ),

where T runs through all G-nests such that T ⊆ {Gk+2,Gk+3, . . . ,GN}. Applying
Lemma 3.3, we have

A∗YG = A∗Yk ⊕
( codim(Gk+1,Y )−1⊕

t=1

A∗−t(G
(k)
k+1)

)

⊕
(⊕

T

⊕
µ∈M(k+1)

T

A∗−‖µ‖(YkT )

)

⊕
(⊕

T

⊕
µ∈M(k+1)

T

rk+1,T −1⊕
t=1

A∗−‖µ‖−t(Yk({Gk+1} ∪ T ))

)
. (3.2)

This immediately gives the Chow group decomposition (3.1) for k. Indeed, any
G-nest contained in {Gk+1,Gk+2, . . . ,GN} must be one of {Gk+1}, a G-nest T con-
tained in {Gk+2,Gk+3, . . . ,GN}, or {Gk+1} ∪ T . These possibilities correspond
(respectively) to the second, third, and last summands in (3.2). (Notice that, by
Proposition 2.7, Yk({Gk+1} ∪ T )) = ∅ if {Gk+1} ∪ T is not a G-nest.)

Therefore, the Chow group decomposition (3.1) holds for all k; in particular,
the case k = 0 gives the desired Chow group decomposition. For the proof of
the Chow motive decomposition, we can either repeat the preceding proof nearly
verbatim or, as the referee pointed out, simply observe that the Chow motive de-
composition follows from the result on the Chow groups and Manin’s identity
principle.



Chow Motive of Fulton–MacPherson Configuration Spaces 575

3.2. Proof of Theorem 3.2

First, we introduce some notation for a given G-nest T .
• Define Tk := T ∩ {Gk+1,Gk+2, . . . ,GN} for 0 ≤ k ≤ N. Then we have a chain

of G-nests T0 ⊇ T1 ⊇ · · · ⊇ TN , where T0 = T and TN = ∅.
• For µ∈ MT and 1 ≤ i ≤ N, define

µi :=
{
µGi

if Gi ∈ T ,

0 otherwise.

• jkl and gkl (N ≥ k > l ≥ 0) are the natural morphisms, as seen in the following
diagram.

YNT0

�� ��
jT

��

��

��

gT

��

jN0 ��

gN0

��

YNT1
jN1 ��

gN1

��

... �� YNTN−1
jN,N−1

��

gN,N−1

��

YNTN
αN

��

YN−1T0
jN−1,0

��

gN−1,0

��

YN−1T1
jN−1,1

��

gN−1,1

��

... �� YN−1TN−1

βN

��

...

g20

��

...

g21

��

...

Y1T0
j10 ��

g10

��

Y1T1

α1

��

Y0T0

β1

��

(3.3)

Lemma 3.4. Denote by g : Yk → Yk−1 the natural morphism. Then, for l≤ k−1,

g−1(G
(k−1)
l ) = G

(k)
l .

Proof. First we claim that G(k−1)
l � G

(k−1)
k . Otherwise, Gl ⊇ Gk because they

are the respective images of G(k−1)
l and G(k−1)

k under Yk → Y0. But then, given
our assumption that the order of {Gi} is compatible with inclusion relations, we
obtain the contradiction l ≥ k.

Next, it is easy to see that G(k−1)
l � G

(k−1)
k because G(k−1)

l is a divisor. Now
we know that the two nonsingular subvarieties G(k−1)

l and G(k−1)
k intersect cleanly

and that neither one contains the other; hence they must intersect transversally.
Then it is standard to show by calculation of local coordinates that the following
isomorphism between ideal sheaves holds:

g−1I(G(k−1)
l ) · OYk

∼= I(G(k)
l ).

The desired conclusion follows from this isomorphism.
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Lemma 3.5. In (3.3), all squares are fiber squares. Moreover, for any N ≥ k >

l ≥ 0 we have:

(i) jkl is injective;
(ii) if Gk ∈ T , then gkl is the projection of a projective bundle with fiber isomor-

phic to a projective space of dimension rk,T − 1;
(iii) if Gk /∈ T but {Gk} ∪ Tl is a G-nest, then gkl is the blow-up of Yk−1Tl along

the center G(k−1)
k ∩ Yk−1Tl;

(iv) if {Gk} ∪ Tl is not a G-nest, then gkl is an isomorphism.

Proof. It is obvious that jkl is injective.
Now we show that gkl is the projection of a projective bundle if Gk ∈ T . By

Proposition 2.7, the varietyYkTk is the blow-up ofYk−1Tk along the centerYk−1Tk−1,
and the exceptional divisor is YkTk−1 (note that Yk−1Tk ∩ G

(k−1)
k = Yk−1Tk−1 and

YkTk ∩ G
(k)
k = YkTk−1). Therefore, gk,k−1 : YkTk−1 → Yk−1Tk−1 is a projective

bundle, and the dimension of a fiber is rk,T − 1. Next we show that, for any
l ≤ k−1, gkl is the restriction of gk,k−1 to a smaller base Yk−1Tl; this, in turn, will
show that gkl is also a projective bundle with fiber of the same dimension rk,T −1.
Fix k and use downward induction on l. By inductive assumption, gk,l+1 is a re-
striction of gk,k−1. Since

g−1
k,l+1(G

(k−1)
l+1 ∩ Yk−1Tl ) = G

(k)
l+1 ∩ YkTl

by Lemma 3.4, the restriction of the projective bundle gk,l+1 to a smaller base
space Yk−1Tl = Yk−1Tl+1 ∩G

(k−1)
l+1 is exactly gkl.

We now show that gkl is birational if Gk /∈ T . This is again implied by Proposi-
tion 2.7. Observe that G(k−1)

k is minimal in

T ′ := {G(k−1)
k } ∪ {G(k−1)}G∈Tl .

If T ′ is a G (k−1)-nest, then gkl : YkTl → Yk−1Tl is a blow-up along the center
G
(k−1)
k ∩Yk−1Tl; otherwise, gkl is an isomorphism. In both cases, gkl is birational.
Finally, all squares in (3.3) are fiber squares because gkl is a restriction of gk,l+1

for all l ≤ k − 2. The proof is complete.

The following lemma computes the composition of correspondences in certain dia-
grams. Thanks to the referee for suggesting a proof much simpler than the author’s
original.

Lemma 3.6. Let W,U,V,X,Y,Z be nonsingular quasi-projective varieties. Sup-
pose the square in the following diagram is a fiber square.

W
j3 ��

g3

��

�

U

g2

��

j2 �� X
α2

��

V
j1 ��

g1

��

Y

β2

��

α1

��

Z

β1

��



Chow Motive of Fulton–MacPherson Configuration Spaces 577

Suppose also that dimW − dimV = dimU − dimY and that jk , gk (1 ≤ k ≤ 3)
are proper. Take γ1, γ ′

1 ∈A(V ) and γ2, γ ′
2 ∈A(U) and define correspondences

αk = (jk , gk)∗γk and βk = (gk , jk)∗γ ′
k for k = 1, 2.

Then
α1α2 = (j2j3, g1g3)∗(j ∗

3γ2 · g∗
3γ1), (3.4)

β2β1 = (g1g3, j2j3)∗(g∗
3γ

′
1 · j ∗

3γ
′
2). (3.5)

Proof. By abuse of notation, for γ ∈A(V ) we use the same γ to denote the cor-
respondence (�V )∗(γ ) ∈ A(V × V ), where �V : V → V × V is the diagonal
embedding. For a map j : U → X, we denote by j∗ the correspondence &j (i.e.,
the graph of j) and by j ∗ the correspondence & ′

j (i.e., the transpose of &j ).
First observe that αk = gk∗ � γ � j ∗

k for k = 1, 2. Indeed, by properties of cor-
respondences (see e.g. [F, Prop. 16.1.1(c)]), we have &j � γ = (1U × j)∗γ and
γ � & ′

g = (g × 1U)∗γ, so

gk∗ � γk � j ∗
k = &gk � γk � &∗

jk
= (gk × jk)∗γk = (gk , jk)∗γk = αk for k = 1, 2.

Given this observation, (3.4) is equivalent to

g1∗γ1j
∗
1g2∗γ2j

∗
2 = (g1g3)∗(j ∗

3γ2 · g∗
3γ1)(j2j3)

∗;
hence it suffices to prove that

γ1j
∗
1g2∗γ2 = g3∗(j ∗

3γ2 · g∗
3γ1)j

∗
3 . (3.6)

For any u∈A(U), we have

γ1j
∗
1g2∗γ2(u) = γ1g3∗j ∗

3γ2(u) = g3∗(g∗
3γ1 · j ∗

3(γ2u)) = g3∗(g∗
3γ1 · j ∗

3γ2)j
∗
3(u),

where the first equality follows because dimW − dimV = dimU − dimY and
the second because of the projection formula. Then we apply Manin’s identity
principle to obtain (3.6) and hence (3.4). The identity (3.5) can be obtained by
transposing (3.4).

Now we state a simple lemma, omitting the proof.

Lemma 3.7. If A, Bi, and Cij are motives such that

(i)
⊕

i αi : A ∼= ⊕
i Bi is an isomorphism with inverse

∑
i βi and

(ii)
⊕

j αij : Bi
∼= ⊕

j Cij is an isomorphism with inverse
∑

j βij ,

then the correspondence
⊕

i,j αij � αi gives an isomorphism A ∼= ⊕
i,j Cij with

inverse
∑

i,j βi � βij .
For Gk ∈ T , define hk ∈ A1(YkTk−1) to be first Chern class of the invertible sheaf
O(1) of the projective bundle gk,k−1. Define

αk =


(jk,k−1, gk,k−1)∗1 if Gk /∈ T ,

(jk,k−1, gk,k−1)∗
({

g∗
k,k−1c(Nk)

1

1 − hk

}
rk−1−µk

)
if Gk ∈ T ,

where Nk := NYk−1Tk−1Yk−1Tk. Define
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βk =
{
(gk,k−1, jk,k−1)∗1 if Gk /∈ T ,

(gk,k−1, jk,k−1)∗h
µk−1
k if Gk ∈ T .

By the blow-up formula of motives (Theorem A.2), the correspondence

ak : h(YkTk)
( N∑

i=k+1

µi

)
→ h(Yk−1Tk−1)

( N∑
i=k

µi

)

expresses h(Yk−1Tk−1)
(∑N

k µi

)
as a direct summand of h(YkTk)

(∑N
k+1 µi

)
with

right inverse βk.
By Lemma 3.7, the correspondence

αT,µ : h(YG) → h(Y0T )(‖µ‖)
that gives the direct summand h(Y0T )(‖µ‖) in Theorem 3.1 can be expressed as
the composition α1 � α2 � · · · � αN with right inverse βN � · · · � β1. Therefore we
have the following result.

Proposition 3.8. Denote by fk : YNT0 → YkTk−1 the natural map in (3.3) (i.e.,
gk+1,k−1 � · · · � gN,k−1 � jN,k−2 � · · · � jN0). Then

α1 � · · · � αN = (jT , gT )∗
∏
Gk∈T

{
f ∗
k g

∗
k,k−1c(Nk)

1

1 − f ∗
k hk

}
rk−1−µk

,

βN � · · · � β1 = (gT , jT )∗
∏
Gk∈T

f ∗
k h

µk−1
k .

Proof. Combine Lemma 3.5 and Lemma 3.6 with the previous discussion.

The following two standard facts about normal bundles of subvarieties are used in
the proof of Theorem 3.2.

Fact 3.9. Let Z be a nonsingular variety. Let Y and W be nonsingular proper
subvarieties of Z and assume that Y intersects transversally with W. Let
π : Z̃ → Z be the blow-up of Z along W, and let Ỹ be the strict transform of
Y. Then

NỸ Z̃ � π∗NYZ.

Fact 3.10. Let W � Y � Z be nonsingular varieties and let π : Z̃ → Z be the
blow-up of Z along W. Denote by Ỹ the strict transform of Y, and denote by E
the exceptional divisor on Ỹ. Then

NỸ Z̃ � π∗NYZ ⊗ O(−E).
Proof of Fact 3.9 and Fact 3.10. Use local coordinates or see [F].

Proof of Theorem 3.2. To deduce Theorem 3.2 from Proposition 3.8, we proceed
in three steps.

Step 1. Show f ∗
k hk = −DGk

|YNT0 . Recall that, for Gk ∈ T , hk is first Chern
class of the invertible sheaf O(1) of the projective bundle gk,k−1.
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Consider the following diagram (not necessarily a fiber square), where π and j
are the natural morphisms.

YNT0
jT ��

fk

��

YN

π

��

YkTk−1
j

�� Yk .

By Proposition 2.7, we have that YkTk−1 is the exceptional divisor of the blow-up
gk,k−1: YkTk−1 → Yk−1Tk−1, so hk = −j ∗

k,k−1[YkTk−1]. Since YkTk−1 is the trans-

versal intersection YkTk ∩G
(k)
k , it follows that hk = −j ∗ [G(k)

k ]. Then

f ∗
k hk = −f ∗

k j
∗ [G(k)

k ] = −j ∗
T π

∗ [G(k)
k ] = −j ∗

T DGk
= −DGk

|YNT0 ,

where the third equality can be proved by successively applying Lemma 3.4.

Step 2. Let 0 ≤ s < k ≤ N. Let gsk : YsTk → Ys−1Tk denote the natural map in-
duced fromYs toYs−1. We make the following claim. IfGk ∈ T (and hence Tk−1 =
Tk ∪ {Gk}), then the normal bundle NYsTk−1YsTk is isomorphic to{

g∗
s,k−1(NYs−1Tk−1Ys−1Tk)⊗ (−[G(s)

s ]|YsTk−1) if (∗∗) holds,

g∗
s,k−1(NYs−1Tk−1Ys−1Tk) otherwise,

where condition (∗∗) is: Gs � Gk and Tk ∪ {Gs} is a G-nest. For the proof, we
discuss three cases.

Case (i): condition (∗∗) holds. This is a direct conclusion of Fact 3.10. Indeed,
to apply Fact 3.10 we need to show that

Ys−1Tk ∩G(s−1)
s � Ys−1Tk ∩G

(s−1)
k � Ys−1Tk.

The second inequality is obvious. The first inclusion is strict for the following
reason: G(s−1)

s is a G (s−1)-factor of Ys−1Tk ∩ G(s−1)
s ; therefore, G(s−1)

k is not a
G (s−1)-factor because it strictly contains G(s−1)

s . On the other hand, G(s−1)
k is a

G (s−1)-factor of Ys−1Tk ∩G
(s−1)
k and so the first inclusion is strict.

Case (ii): Tk ∪{Gs} is not G-nested. In this case,G(s−1)
s ∩Ys−1Tk = ∅ by Propo-

sition 2.7. Hence no twisting is needed for the normal bundle.
Case (iii): Tk ∪ {Gs} is G-nested but Gs is not strictly contained in Gk. If

Tk−1 ∪{Gs} is not a G-nest, then G(s−1)
s ∩Ys−1Tk−1 = ∅ by Proposition 2.7. Hence

blowing up alongG(s−1)
s will not affect the normal bundle of Ys−1Tk−1, so no twist-

ing is needed. Otherwise, assume Tk−1 ∪ {Gs} is a G-nest. Both Gs and Gk are
minimal in the G-nest Tk−1 ∪ {Gs}. Then G(s−1)

s and G(s−1)
k are minimal in a nest,

and neither one contains the other; hence they intersect transversally by the defini-
tion of nest. Thus Ys−1Tk ∩G(s−1)

k and Ys−1Tk ∩G(s−1)
s , regarded as subvarieties of

the ambient space Ys−1Tk , intersect transversally. Therefore Fact 3.9 applies, and
no twisting is needed for the normal bundle.

Step 3. Apply the result of Step 2 successively for s = 1, 2, . . . , k−1. The nor-
mal bundle NYk−1Tk−1Yk−1Tk is isomorphic to
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(g∗
k−1,k−1 · · · g∗

1,k−1(NY0Tk−1Y0Tk))⊗
(

−
∑
(∗∗)

[G(k−1)
s ]|Yk−1Tk−1

)
,

where the sum is over all s that satisfy condition (∗∗). (Here we have used
Lemma 3.4.) Therefore,

f ∗
k g

∗
k,k−1c(NYk−1Tk−1Yk−1Tk)

= c

(
g∗

T (NY0Tk−1Y0Tk|Y0T )⊗ O
(

−
∑
(∗∗)

[DGs
]|YNTk−1

))
.

Notice that

(NY0Tk−1Y0Tk)|Y0T = NGk

( ⋂
Gk�G∈T

G

)∣∣∣
Y0T

,

which we denote byNGk
. The proof is as follows. Suppose T1, . . . ,Tm,Tm+1, . . . ,Tr

are the minimal elements of the nest Tk , where the first m elements contain Gk.

Then the minimal elements of the nest Tk−1 areGk , Tm+1, . . . , Tr . By the definition
of nest, Y0Tk is the transversal intersection T1 ∩ · · · ∩ Tm ∩ Tm+1 ∩ · · · ∩ Tr and
Y0Tk−1 is the transversal intersection Gk ∩ Tm+1 ∩ · · · ∩ Tr . Therefore,

NY0Tk−1Y0Tk = NGk
(T1 ∩ · · · ∩ Tm)|Y0Tk−1.

Since T1 ∩ · · · ∩ Tm = ⋂
Gk�G∈T G, the conclusion follows immediately.

Now substituting everything into Corollary 3.8, we have:

α1 � · · · � αN
= (jT , gT )∗

∏
Gk∈T

{
c(g∗

T (NGk
)⊗ O

(
−

∑
(∗∗)

[DGs
]|YNT

)
1

1 +DGk
|YNT

}
rk−1−µk

,

βN � · · · � β1 = (gT , jT )∗
∏
Gk∈T

(−DGk
)µk−1|YNT .

Finally, we show that (∗∗) can be replaced by the following condition:

Gs � Gk and T ∪ {Gs} is a G-nest. (�)

Indeed, (�) is stronger than (∗∗). However, for those Gs satisfying (∗∗) but not
(�), the divisor [DGs

]|YNT would be trivial because DGs
∩ YNT = ∅. Therefore,

replacing (∗∗) by (�) will not affect the resulting correspondence.
The proof is now complete.

We write the following direct conclusion from Step 3 for later use.

Corollary 3.11. Denote π : G(k)
k+1 → Gk+1. Then

c(N
G
(k)

k+1
Yk) = c

(
π∗N(Gk+1)Y ⊗

∑
Gk+1�G∈T

(−[DG])|
G
(k)

k+1

)
.

Proof. Apply Step 3 to the nest T = {Gk+1}.
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4. Fulton–MacPherson Configuration Spaces

Fix a nonsingular variety X of dimension d. The configuration space of n distinct
ordered points on X, denoted by F(X, n), can be naturally identified with an open
subvariety of the Cartesian product Xn:

F(X, n) := {(x1, x2, . . . , xn)∈Xn : xi �= xj for i �= j}.
In their celebrated paper [FM], Fulton and MacPherson discovered an interesting
compactification X[n] of the configuration space F(X, n). The compactification
is obtained by replacing the diagonals of Xn by a simple normal crossing divi-
sor. It has many attractive properties—for example, the geometry when n points
collide (i.e., the degenerate configuration) can be explicitly described using X[n].
Also,X[n] is closely related to the well-known compactification M0,n of the mod-
uli space of stable rational curves with n marked points. The reader is referred to
the beautiful paper [FM] for the original construction and various applications of
the Fulton–MacPherson configuration space.

The Fulton–MacPherson configuration spaceX[n] can be realized as a wonder-
ful compactification of an arrangement of subvarieties by taking Y to be Xn and
G to be the collection of all diagonals of Xn; hence, the induced arrangement is
the set of intersections of diagonals, which are called polydiagonals (see [L]).

4.1. Main Theorems

First we fix some additional notation.
(i) Denote [n] := {1, 2, . . . , n}. We call two subsets I, J ⊆ [n] overlapped if

I ∩J is a nonempty proper subset of I and J. For a set S of subsets of [n], we say
that I is compatible with S (denoted by I ∼ S ) if I does not overlap any element
in S.

A nest S is a set of subsets of [n] such that any two elements I �= J ∈ S are
not overlapped and all singletons {1}, . . . , {n} are in S. Notice that the nest defined
here, unlike the one defined in [FM], is allowed to contain singletons. Given a
nest S, define S ◦ = S \ {{1}, . . . , {n}}. In the description of nests by forests to fol-
low, S ◦ corresponds to the forest S cutting of all leaves.

A nest S naturally corresponds to a forest (i.e., to a not necessarily connected
tree) each node of which is labeled by an element in S. For example, the following
forest corresponds to a nest S = {1, 2, 3, 23,123}.

•
• •

• •2 3

123

123

��
��

�
��

��
�

��
��
�

��
��

�

Denote by c(S ) the number of connected components of the forest—that is, the
number of maximal elements of S. Denote by cI(S ) (or cI if no ambiguity will
arise) the number of maximal elements of the set {J ∈ S | J � I } (i.e., the num-
ber of “children” of the node I ). In the preceding example, c(S ) = 1 and c123 =
c23 = 2.
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(ii) For a subset I ⊆ [n] consisting of at least two elements, define the diagonal

�I := {(x1, . . . , xn)∈Xn : xi = xj if i, j ∈ I }.
It is shown in [FM] that a complement of F(x, n) in the Fulton–MacPherson com-
pactification X[n] is a union of normal crossing nonsingular divisors DI , indexed
by subsets I ⊆ [n] with at least two elements. More precisely, DI is the dominant
transform �̃I under the natural morphism X[n] → Xn.

For every nest S,X(S ) := ⋂
I∈S DI is a nonsingular subvariety ofX[n]. Define

jS : X(S ) ↪→ X[n] to be the natural inclusion.
Define �S := ⋂

I∈S �I . Define gS : X(S ) → �S to be the restriction of the
morphism π : X[n] → Xn to the subvariety X(S ).

(iii) Let pI : X[n] → X be the composition of π : X[n] → Xn with the pro-
jection Xn → X to the ith factor for an arbitrary i ∈ I. The choice of i ∈ I is
not essential: indeed, the only place we need pI is in the formulation of αS,µ that
follows, where we need the composition j ∗

Sp
∗
I . By the diagram

X(S ) jS ��

gS
��

X[n]

pi

��

�S
qi �� X

with i ∈ I, we have j ∗
Sp

∗
i = g∗

Sq
∗
i . But qi is independent of the choice of i ∈ I

since �S ⊆ �I , so j ∗
Sp

∗
I is independent of the choice of i ∈ I for pI .

(iv) For a nest S �= {{1}, . . . , {n}} (i.e., S ◦ �= ∅), define

MS := {µ = {µI }I∈S◦ : 1 ≤ µI ≤ d(cI − 1)− 1, µI ∈ Z}
(recall that d = dimX and that cI = cI(S ) is defined in (i)) and define

‖µ‖ :=
∑
I∈S◦

µI ∀µ∈MS .

For S = {{1}, . . . , {n}}, assume that MS = {µ} with ‖µ‖ = 0.
We will show in the proof of Theorem 4.1 that MS is the special case of MT de-

fined in Section 3 where Y is Xn, G is the set of diagonals of Xn, and T is the set
of G-nests.

Define the function

ζ(x) :=
d∑
i=0

(1 + x)d−ici(TX).

Also define αS,µ ∈ Corr−‖µ‖
(X[n],�S), βS,µ ∈ Corr‖µ‖

(�S ,X[n]), and pS,µ ∈
Corr0(X[n],X[n]) as follows:

αS,µ = (jS , gS)∗j ∗
S

( ∏
I∈S◦

{
−p∗

I ζ

(
−

∑
J∼S
J�I

DJ

)cI−1 1

1 +DI

}
d(cI−1)−1−µI

)
;

βS,µ = (gS , jS)∗j ∗
S

( ∏
I∈S◦

D
µI−1
I

)
;

pS,µ = βS,µ � αS,µ.
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In these definitions of αS,µ and βS,µ, the products are set to be 1X(S ) ∈A0(X(S ))
if S ◦ = ∅.
The following are the main theorems on the Chow groups and Chow motives of
Fulton–MacPherson configuration spaces.

Theorem 4.1. Let X be a nonsingular quasi-projective variety. Then there is an
isomorphism of Chow groups,

A∗(X[n]) =
⊕

S

⊕
µ∈MS

A
∗−‖µ‖

(Xc(S )),

where S runs through all nests of [n].

Theorem 4.2. Let X be a nonsingular projective variety. Then there is a canon-
ical isomorphism of Chow motives⊕

S

⊕
µ∈MS

αS,µ : h(X[n]) ∼=
⊕

S

⊕
µ∈MS

h(�S)(‖µ‖)

with the inverse
∑

S
∑

µ∈S βS,µ. Equivalently, we have

h(X[n]) ∼=
⊕

S

⊕
µ∈MS

h(Xc(S ))(‖µ‖).

Remark. Observe that the two sets of correspondences {αS,µ} and {βS,µ} are
Sn-symmetric in the sense that the following diagram commutes for any σ ∈ Sn.

h(X[n])
αS,µ

��

σ

��

h(�S)(‖µ‖) βS,µ

��

σ

��

h(X[n])

σ

��

h(X[n])
ασ(S,µ)

�� h(�S)(‖µ‖) βσ(S,µ)

�� h(X[n])

Proof of Theorem 4.1. Apply Theorem 3.1 with the ambient space Y = Xn and
the building set

G = {�I }I⊆[n],|I |≥2.

First notice that a nest S of [n] gives a G-nest T = {�I }I∈S◦. Moreover, the
inverse is also true: a G-nest will give a nest of [n]. Indeed, given a partition
? = (I1, . . . , It ) of [n], a G-factor of �? by definition is a minimal element in
{G ∈ G : G ⊇ �?}. So {�I1, . . . ,�It } are all the G-factors of �?. By the defini-
tion of G-nest, T is induced from a flag of strata

�?1 ⊇ �?2 ⊇ · · · ⊇ �?t
.

Then
?1 ≥ ?2 ≥ · · · ≥ ?k.

(Here? ≥ ?′ means that? is a finer partition than?′; e.g., (12, 3, 4) ≥ (123, 4).)
The nest T is induced by “taking the union of all factors of each�?”, which corre-
sponds to “taking all I s that appear in any of the partitions?i”. Since the partitions
are totally ordered, the set of I s forms a nest of [n].
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Next we prove that the range of µ is as stated. Theorem 3.1 asserts that

1 ≤ µG ≤ rG − 1.

Now G = �I is a diagonal, so by definition we have

rG := dim

( ⋂
G�T ∈T

T

)
− dimG

= dim

( ⋂
I�I ′∈S

�I ′

)
− dim�I

= d(cI − 1).

Finally, observe that

Y0T =
⋂
G∈T

G =
⋂
I∈S

�I = �S ∼= Xc(S ).

Therefore, the expected conclusion is implied by Theorem 3.1.

Proof of Theorem 4.2. The statement of the motive decomposition is proved ex-
actly as in the proof of Theorem 4.1.

The correspondences are induced from Theorem 3.2. The improvement of this
theorem over Theorem 3.2 is that here we can say more about the Chern classes
appearing in the correspondence αS,µ.

First, given G = �I , let ? = (I1, . . . , IcI ) be the partition containing all chil-
dren of I in S. We compute the normal bundle NG := N�I

�?. Without loss of
generality, assume that I = (1, 2, . . . ,m) where m ≤ n.

Denote by pi : �I → X and qi : �? → X the projections induced from the
projection of Xn to the ith factor. For each 1 ≤ i ≤ cI , pick an ai ∈ Ii . Then

T�I
= p∗

1TX ⊕ p∗
m+1TX ⊕ · · · ⊕ p∗

nTX,

T�?
= q∗

a1
TX ⊕ · · · ⊕ q∗

acI
TX ⊕ q∗

m+1TX ⊕ · · · ⊕ q∗
nTX,

T�?
|�I

= p∗
1TX ⊕ · · · ⊕ p∗

1TX ⊕ q∗
m+1TX ⊕ · · · ⊕ q∗

nTX.

Therefore, c(NG) = p∗
1c(TX)

cI−1.

To compute the Chern classes of NG twisted by a line bundle L, we use the
Chern root technique. For any vector bundle N on X, define the Chern polyno-
mial as

cy(N ) := c0(N )+ c1(N )y + c2(N )y2 + · · · .
Define x = c1(L). Recall that the rank of NG is rG = d(cI − 1). Now

c(NG ⊗ L) = crG(NG)+ crG−1(NG)(1 + x)+ · · · + c0(NG)(1 + x)rG

= (x + 1)rGc1/(x+1)(NG)

= (x + 1)d(cI−1)p∗
1c1/(x+1)(TX)

cI−1

= p∗
1 [(x + 1)dc1/(x+1)(TX)]

cI−1 = p∗
1ζ(x)

cI−1.

Finally, by restricting to �S and pulling back to X(S ) we get the expected for-
mula for correspondences αS,µ.
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4.2. A Formula for the Generating Function of Chow Groups
and Chow Motive of X[n]

In this section, we express decompositions of the Chow groups (Theorem 4.1) and
the Chow motive (Theorem 4.2) in terms of exponential generating functions.

Define [xi] to be the function that picks up the coefficient of xi from a power
series. Define

[
xit n

n!

]
to be the function that picks up the coefficient of xit n

n! from a
power series with two variables x and t :[

xit n

n!

] ∑
j,m

ajm
xjt m

m!
:= ain.

The main theorem of this section is as follows.

Theorem 4.3. Define fi(x) to be the polynomials whose exponential generating
function N(x, t) = ∑

i≥1 fi(x)
t i

i! satisfies the identity

(1 − x)xdt + (1 − xd+1) = exp(xdN )− xd+1 exp(N ).

Then, for a nonsingular d-dimensional quasi-projective variety X,

A∗(X[n]) =
⊕

1≤k≤n
i≥0

A∗−i(Xk)⊕[xit n/n!](N k/k!).

Moreover, if X is projective then we have the motive decomposition

h(X[n]) =
⊕

?=(I1,...,Ik)

(h(�?)(i))
⊕[xi ](f|I1|(x)···f|Ik |(x))

=
⊕

1≤k≤n
i≥0

(h(Xk)(i))⊕[xit n/n!](N k/k!),

where ? is a partition of [n].

Remark. One can write down by hand the first several terms of N. Define σj =∑dj−1
i=1 xi (when d = 1, define σ1 = 0). Then

N = t + σ1
t 2

2!
+ (σ2 + 3σ 2

1 )
t 3

3!
+ (σ3 + 10σ1σ2 + 15σ 3

1 )
t 4

4!

+ (σ4 + 15σ1σ3 + 10σ 2
2 + 105σ 2

1 σ2 + 105σ 4
1 )
t 5

5!
+ · · · .

Proof of Theorem 4.3. We prove only the statement for motives, since the state-
ment for Chow groups can be proved by exactly the same method.

By Theorem 4.2, for any given i and k we want to count how many possible S
and µ∈ S satisfy c(S ) = k and ‖µ‖ = i. First, consider the case when c(S ) = 1
(i.e., when S is a connected forest).

Define
fn(x) :=

∑
S :c(S )=1

∑
µ∈MS

x
‖µ‖,

and define f1(x) = 1.
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For a nest S of [n] with c(S ) = 1, we have∑
µ∈MS

x
‖µ‖ =

∏
I∈S◦

σ(cI−1);

that is, I goes through all nonleaves of S (if n = 1, then the sum is set to be 1).
Since the children of the root of S correspond to a partition {I1, . . . , Ik} of [n], we
have following formula for n ≥ 2:

fn(x) =
∑
?

f|I1|f|I2| · · · f|Ik |σk−1,

where ? = {I1, . . . , Ik} is (as before) a partition of [n], σk = ∑dk−1
i=1 xi for k > 0,

and σ0 = 0. The equality does not hold for n = 1 when f1(x) = 1 and the right
side is 0, so one can define

f̃n(x) =
{
fn(x) if n > 1,

0 if n = 1.

Then the following holds for any n ≥ 1:

f̃n(x) =
∑
?

f|I1|f|I2| · · · f|Ik |σk−1.

Recall the compositional formula of exponential generating functions (cf. [S,
Thm. 5.1.4]), which asserts that if an equation like the previous one holds then

Ef̃ (t) = Eσ(Ef (t)),

where

Ef̃ (t) = 1 + f̃1t + f̃2 t
2/2! + f̃3 t

3/3! + · · · ,
Eσ(t) = 1 + σ0 t + σ1t

2/2! + σ2 t
3/3! + · · · ,

Ef (t) = f1t + f2 t
2/2! + f3 t

3/3! + · · · .
By the definition of f̃ , we have Ef̃ = Ef − t + 1. If we denote N = Ef then

N − t + 1 = Eg(N ),

and standard computation shows that

Eg(N ) = 1 +N + 1

x − 1

[
1

xd
(ex

dN − 1)− xeN + x

]
.

Therefore,

(1 − x)xdt + (1 − xd+1) = exp(xdN )− xd+1 exp(N ).

Now consider the case when c(S ) is not necessarily 1—that is, the forest S
is not necessarily connected. For a partition ? = {I1, . . . , Ik} of [n], the num-
ber of times that h(�?)(i) appears in the decomposition of h(X[n]) is equal to
[xk ](f|I1|(x) · · · f|Ik |(x)), the coefficient of xk in the product. Denote by ak,i the
sum of these numbers for all partitions with k blocks. Then ak,i is the number of
times that h(Xk)(i) appears in the decomposition of H(X[n]).
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Define
Fn(y) =

∑
?

f|I1|f|I2| · · · f|Ik |y
k;

then the coefficient [y k ]Fn(y) = ∑
ak,i x

i. Using the compositional formula
again, we have

Fn =
[
t n

n!

]
exp(yN ).

Therefore,

[y k ]Fn(y) = [y k ]

[
t n

n!

]
exp(yN )

=
[
t n

n!

]
[y k ] exp(yN )

=
[
t n

n!

]
Nk

k!
.

This yields the formula for the decomposition of the Chow motive h(X[n]).

4.3. Description of X[n] for Small n

In this section we explain the previous theorems (Theorems 4.1, 4.2, and 4.3) about
Fulton–MacPherson configuration space X[n] for n = 2, 3, 4.

For unification of expression, assume d > 1 in the following examples. (The
case d = 1 is simpler but the expression would need to be modified.)

Example for n = 2. The morphism π : X[2] → X2 is a blow-up along the di-
agonal �12. Theorem 4.3 asserts that

h(X[2]) ∼= h(X2)⊕
d−1⊕
i=1

h(�12)(i) ∼= h(X2)⊕
d−1⊕
i=1

h(X)(i). (4.1)

There are two possible nests, S = {1, 2} and S = {1, 2,12}. Theorem 4.2 asserts
the following.

For the first nest, MS contains only one element µ with ‖µ‖ = 0. Therefore
α = &π , β = &t

π , and p = &t
π � &π , which together give the first direct summand

in the decomposition (4.1).
For the second nest we have S ◦ = {12} and 1 ≤ µ12 ≤ d −1, so there are d − 1

direct summands for this nest. Denoting j : D12 ↪→ X[2] and g : D12 → �12 as
the natural map, we have

αS,µ = −(j, g)∗j ∗
( d−1−µ12∑

i=0

p∗
1ci(TX)(−D12)

d−1−µ12−i

)
,

βS,µ = (g, j)∗j ∗(Dµ12−1),

pS,µ = βS,µ � αS,µ.

These terms give the direct summand h(�12)(µ12) in the decomposition (4.1).
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Example for n = 3. Applying Theorem 4.3, we have

h(X[3]) ∼= h(X3)⊕
d−1⊕
i=1

h(�12)(i)⊕
d−1⊕
i=1

h(�13)(i)⊕
d−1⊕
i=1

h(�23)(i)

⊕
2d−1⊕
i=1

(h(�123)(i))
⊕ min{3i−2,6d−3i−2}

∼= h(X3)⊕
d−1⊕
i=1

(h(X2)(i))⊕3 ⊕
2d−1⊕
i=1

(h(X)(i))⊕ min{3i−2,6d−3i−2}.

Now we write out all the correspondences that give the decomposition of motives.
There are eight possible nests, corresponding to eight trees (see the right side of
Figure 1).

23

13 23

12 13 23

123 12 123 13 123 23 123

1��	
��� 5��	
��� 2��	
��� 6��	
��� 3��	
��� 7��	
��� 4��	
��� 8��	
���

��
��

� ���
�

��
��

� ���
�

���

��
��

� ���
�

��� ���

��
��		

	



 ��� 


 ��� 


 ���

level 4

level 3

level 2

level 1

level 0

1��	
���
• • •
1 2 3

2��	
���
• •

• •
1 2

3��� ���
3��	
���

• •
• •
1 3

2��� ���
4��	
���

• •
• •
2 3

1��� ���

5��	
���
•

• • •
1 2 3
��

� ��
�

6��	
���
•

• •
• •
1 2

3
��� ���

��� ���

7��	
���
•

• •
• •
1 3

2
��� ���

��� ���

8��	
���
•

• •
• •
2 3

1
��� ���

��� ���

Figure 1 X[3] by the symmetric construction

The tree on the left side of Figure 1 helps us understand the relation between
subvarieties of different Yi (i.e., at different levels): each node with label I at level
k corresponds to the subvarietyYkI := (�I)

(k) inYk. The node at level k without a
label corresponds to Yk. For example, the root at level 4 corresponds to Y4, its two
successors correspond to Y3 and Y3(23), and the relation is that Y4 is the blow-up
of Y3 along Y3(23).

Here is a list of those correspondences α,β,p for the eight trees.
1��	
��� gives α = &π , β = &t

π , p = &t
π � &π.

2��	
��� ( 3��	
��� and 4��	
��� are similar) gives

αS,µ = (jS , gS)∗j ∗
S

({
−p∗

1ζ(−D123)
1

1 +D12

}
d−1−µ12

)
,

βS,µ = (gS , jS)∗j ∗
S(D

µ12−1
12 );

here X(S ) = D12 and 1 ≤ µ12 ≤ d − 1.
5��	
��� gives

αS,µ = (jS , gS)∗j ∗
S

({
−p∗

1ζ(O)2 1

1 +D123

}
2d−1−µ123

)
,

βS,µ = (gS , jS)∗j ∗
S(D

µ123−1
123 );

here X(S ) = D123 and 1 ≤ µ123 ≤ 2d − 1.
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6��	
��� ( 7��	
��� and 8��	
��� are similar) gives

αS,µ = (jS , gS)∗j ∗
S

({
p∗

1ζ(−D123)
1

1 +D12

}
d−1−µ12

·
{
p∗

1ζ(O)
1

1 +D123

}
d−1−µ123

)
,

βS,µ = (gS , jS)∗j ∗
S(D

µ12−1
12 D

µ123−1
123 );

here X(S ) = D12 ∩D123 and 1 ≤ µ12,µ123 ≤ d − 1.

Remark. If we used Fulton and MacPherson’s nonsymmetric construction of
X[3], then we would obtain another set of correspondences that also gives a de-
composition of the motive h(X[n]). This set of correspondences turns out to be
different than what we have already given: a straightforward calculation shows
that, by the nonsymmetric construction ofX[3], the correspondence that gives the
direct summand h(�12)(µ12) is

α : h(X[3]) → h(�12)(µ12),

α = (j12, g12)∗j ∗
12

({
p∗

1ζ(O)
1

1 +D12

}
d−1−µ12

)
;

here j12 : D12 ↪→ X[3] and g12 : D12 → �12 are the natural morphisms. However,
the correspondence giving the direct summand h(�13)(µ13) is

α ′ : h(X[3]) → h(�13)⊗ Lµ13 ,

α ′ = (j13, g13)∗j ∗
13

({
p∗

1ζ(−D123)
1

1 +D13

}
d−1−µ13

)
;

here j13 : D13 ↪→ X[3] and g13 : D13 → �13 are the natural morphisms. Notice
that α and α ′ are not of similar form (compare ζ(O) with ζ(−D123)). Hence the
nonsymmetry of the construction of X[3] induces the nonsymmetry of correspon-
dences. Actually, this is one reason why we choose the symmetric construction of
X[n] (cf. Remark 4.1).

Example for n = 4. We only look at one nest S:

S
• •

• • • •
1 2 3 4
��� ��� ��� ���

We have X(S ) = D12 ∩D34, 1 ≤ µ12,µ34 ≤ d − 1, and

αS,µ = (jS , gS)∗j ∗
S

({
p∗

1ζ(−D1234)
1

1 +D12

}
d−1−µ12

·
{
p∗

3ζ(−D1234)
1

1 +D34

}
d−1−µ34

)
,

βS,µ = (gS , jS)∗j ∗
S(D

µ12−1
12 D

µ34−1
34 ).
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Because �12 and �34 would not be disjoint in the procedure of blow-ups, we must
a priori decide whether to blow up along (the strict transform of)�12 first or rather
along (the strict transform of) �34 first. Although we must choose (noncanoni-
cally) an order so that we can compute the correspondences, it turns out that the
correspondences (hence projectors) that give the motive decomposition in Theo-
rem 4.2 are actually independent of the choice and thus “canonical”. This inde-
pendence is a special case of Remark 4.1: for σ = (13)(24) ∈ S4, the preceding
correspondences are invariant under the action induced by σ.

One application of Theorem 4.3 is to computing the rank of A(X[n]) as an
abelian group; we need only the ranks of A(Xk) for all 1 ≤ k ≤ n (assuming that
the ranks of theA(Xk) are finite). Let us take P d [5] as an example. Since the rank
of A((P d)k) is (d + 1)k, Theorem 4.3 implies that the rank of A(P d [5]) is∑

1≤k≤5

(d + 1)k
([

t 5

t!

](
Nk

k!

∣∣∣
x=1

))
.

By Remark 4.2, we can compute

N 2

2!
= t 2

2!
+ 3σ1

t 3

3!
+ (15σ 2

1 + 4σ2)
t 4

4!
+ (105σ 3

1 + 60σ1σ2 + 5σ3)
t 5

5!
+ · · · ,

N 3

3!
= t 3

3!
+ 6σ1

t 4

4!
+ (45σ 2

1 + 10σ2)
t 5

5!
+ · · · ,

N 4

4!
= t 4

4!
+ 10σ1

t 5

5!
+ · · · ,

N 5

5!
= t 5

5!
+ · · · .

Now plug in x = 1 to obtain σj = dj −1. The sum just displayed is a polynomial
of d as follows:

(d + 1)5 + (d + 1)410σ1 + (d + 1)3(45σ 2
1 + 10σ2)

+ (d + 1)2(105σ 3
1 + 60σ1σ2 + 5σ3)

+ (d + 1)(σ4 + 15σ1σ3 + 10σ 2
2 + 105σ 2

1 σ2 + 105σ 4
1 ).

In particular, the rank of A(P1[5]) is 178 and the rank of A(P2[5]) is 7644.

Remark. For the example X = P d, since X[n] has an affine cell decomposition
it follows that the rank of the Chow groupAk(X[n]) coincides with the 2kth Betti
number of X[n]. Hence we could also derive the ranks reported here by using the
Poincaré polynomial of X[n] computed in [FM]. However, the rank of A(X[n])
for a general variety X is not implied by the Poincaré polynomial of X[n].

5. Chow Motives of X[n]/Sn

It is proved in [FM] that the isotropy group of any point in X[n] is a solvable
group. It is natural to consider the quotient space X[n]/Sn. In this section, we
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compute its Chow motive in terms of the Chow motives of the Cartesian products
of symmetric products of X.

The base field is of characteristic 0 throughout this section.

Lemma 5.1. Suppose a finite group G acts on a nonsingular projective variety Y.
Suppose p1, . . . ,pk are orthogonal projectors of Y such that :

(i) σpi = piσ for all 1 ≤ i ≤ k and for all σ ∈G; and
(ii) p1 + p2 + · · · + pk = �Y .

Then ave�Y = ∑
ave�pi, where ave�p1, . . . , ave�pk are orthogonal projectors.

Consequently, h(Y ) = ⊕
(Y, ave � pi).

Proof. We have

(avepi)(avepj ) =
(

1

|G|
∑
σ

σpi

)(
1

|G|
∑
τ

τpj

)

= 1

|G|2
∑
σ,τ

στpipj = 1

|G|
∑
σ

σδijpi = δij(avepj ).

Hence the lemma follows.

Lemma 5.2. Suppose Y andZ are nonsingular (not necessarily connected ) pro-
jective varieties with finite group G actions. Suppose that α ∈ Corr−m(Y,Z) has
an inverse β ∈ Corrm(Z,Y ) and that α gives an isomorphism of Chow motives

(Y,p) ∼= h(Z)(m),

where p = βα and where ασ = σα and βσ = σβ for all σ ∈G. Then

(Y, ave � p) ∼= h(Z/G)(m).

Proof. Much as in the proof of Lemma 5.1, we have (avep)2 = avep and the
following commutative diagram.

Y
aveα ��

avep

��

Z
aveβ

��

ave�Z

��

Y

avep

��

Y aveα
�� Z

aveβ
�� Y

Therefore, (Y, avep) ∼= (Z, ave�Z)(m) ∼= h(Z/G)(m).

Now we consider the quotient variety X[n]/Sn. For convenience, define G :=
Sn. There is a natural action of G on the set {(S,µ)}, where S are nests and
µ∈MS . Define the subgroup GS,µ of G as

GS,µ = {σ ∈ Sn : σ(S,µ) = (S,µ)}.
Define (S,µ) to be the class of G-orbit G · (S,µ). Then
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�Y =
∑
S,µ

pS,µ =
∑
(S,µ)

∑
σ∈G/GS,µ

pσ(S,µ).

Since both {αS,µ} and {βS,µ} are Sn-symmetric (see the Remark following Theo-
rem 4.2), it is easy to check that

∑
σ∈G/GS,µ

pσ(S,µ) commutes with every τ ∈G.
By Lemma 5.1,

h(X[n]/G) ∼= (Y, ave ��Y ) ∼=
⊕
(S,µ)

(
Y, ave �

∑
σ∈G/GS,µ

pσ(S,µ)

)
.

Since (
Y,

∑
σ∈G/GS,µ

pσ(S,µ)

)
∼=

( ⊔
σ∈G/GS,µ

�σ(S )

)
(‖µ‖),

by Lemma 5.2 we have(
Y, ave �

∑
σ∈G/GS,µ

pσ(S,µ)

)
∼= h

(( ⊔
σ∈G/GS,µ

�σ(S )

)/
G

)
(‖µ‖)

∼= h(�S/GS,µ)(‖µ‖).
The space �S/GS,µ can be described as follows. Each (S,µ) corresponds to a

labeled “weighted” forest, with the correspondence given by attaching an integer
µI to each nonleaf node I of the labeled forest S. Forgetting all the labels on the
nodes of S, we obtain an unlabeled weighted forest of the form n1T1 + · · · + nrTr ,
where the Ti are mutually distinct unlabeled weighted trees (we say that such a
tree is of type {n1, . . . , nr}). Then

�S/GS,µ
∼= X(n1) × · · · ×X(nr ).

Figure 2 gives an example of a labeled weighted forest and the corresponding un-
labeled weighted forest. The weights a, b are integers.

Labeled weighted forest Unlabeled weighted forest

•
• •

• •2 3

123 a

123 b

��
��

�
��

��
�

��
��
�

��
��

�

•
• •

• •
a

b

��
��

�
��

��
�

��
��
�

��
��

�

Figure 2 Labeled and unlabeled weighted forests

We have therefore proved the following decomposition of the Chow motive of
X[n]/Sn.

Theorem 5.3. For any unordered set of integers ν = {n1, . . . , nr} and any non-
negative integerm, let λ(ν,m) to be the number of unlabeled weighted forests with
n leaves, of type ν, of total weight m, and such that—at each nonleaf v with cv
children—the weight mv satisfies 1 ≤ mv ≤ (cv − 1) dimX − 1. Then

h(X[n]/Sn) =
⊕
ν,m

[h(X(n1) × · · · ×X(nr ))(m)]⊕λ(ν,m).
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Remark. We offer the following application of this theorem. MacDonald proved
a formula that relates the Betti number of X and its symmetric powers:

∞∑
n=0

PtX
(n) · T n = (1 + tT )b1(1 + t 3T )b3 · · ·

(1 − T )b0(1 − t 2T )b2 · · · ,

where bi is the ith Betti number of X. By the decomposition of the de Rham
cohomology ofX[n]/Sn induced by the motivic decomposition formula in Theo-
rem 5.3, we can compute the Betti number ofX[n]/Sn (modulo the combinatorial
difficulty of calculating λ(ν,m)).

Examples. Here are some examples ofh(X[n]/Sn) for smalln. Let d = dimX.

(i) n = 2. There are d different forests as follows, where each weight a ∈ Z
(1 ≤ a ≤ d − 1) gives a forest.

• •
ν = {2}

•a
• •

 ��
��

ν = {1}
Therefore,

h(X[2]/S2) ∼= h(X(2))⊕
d−1⊕
a=1

h(X)(a).

(ii) n = 3. The forests are as follows.

• • •
ν = {3}

•a
• •

•
��
�� 		
		

ν = {1,1}

•b
• • •��

�� ��
��

ν = {1}

•
• •

• •

c

e



��
��

��
�� 		
		

ν = {1}

Here the weights a, b, c, e ∈ Z satisfy 1 ≤ a, c, e ≤ d − 1 and 1 ≤ b ≤ 2d − 1.
Then

h(X[3]/S3) ∼= h(X(3))⊕
d−1⊕
i=1

(h(X2)(i))⊕3 ⊕
2d−1⊕
i=1

(h(X)(i))⊕ min{i,2d−i}.

(iii) n = 4. The varieties that appear in the decomposition of h(X[4]/S4) are

X(4), X ×X(2), X2, X(2), X.

The decomposition is a bit nasty to be written here, so we limit ourselves to point-
ing out one fact. Consider the forest in Figure 3, where a, b ∈ Z and 1 ≤ a, b ≤
d−1. For any a < b, the weighted forest is of type ν = {1,1} and therefore gives a
summand h(X2)(a+b). However, for a = b, this weighted forest has an automor-
phism exchanging the two trees; thus it is of type ν = {2} and gives a summand
h(X(2))(2a). Because of this kind of automorphism of weighted forests, it seems
difficult to compute λ(ν,m).

• • • •
• •a b

��
�� 		
		

��
�� 		
		

Figure 3 An unlabeled weighted forest when n = 4
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Question. Is there a clean formula for λ(ν,m)? (Perhaps in terms of a generat-
ing function?)

6. Appendix: A Formula for the Motive of a Blow-up

Suppose f : Ỹ → Y is the blow-up of a nonsingular projective variety Y along a
nonsingular closed subvariety V of Y, and denote by P the exceptional divisor.
Denote by i, j, f , g the morphisms as in the following fiber square.

P
j

��

g

��

�

Ỹ

f

��

V
i

�� Y

Denote by N := NVY the normal bundle of V in Y. Let h := c1(ON(1))∈A1(P ),
and let r := codimV Y be the codimension of V in Y.

For 1 ≤ k ≤ r − 1, define αk ∈ Corr−k(Ỹ,V ), βk ∈ Corr k(V, Ỹ ), pk ∈
Corr0(Ỹ, Ỹ ), α0 ∈ Corr0(Ỹ,Y ), β0 ∈ Corr0(Y, Ỹ ), and p0 ∈ Corr0(Ỹ, Ỹ ) as follows:



α0 := &f ,

β0 := &t
f ,

p0 := β0 � α0 = &t
f � &f = (f × f )∗�Y ,

αk := −(j, g)∗
( r−1−k∑

l=0

g∗cr−1−k−l(N )hl
)

= −(j, g)∗
({

g∗c(N )
1

1 − h

}
r−1−k

)
,

βk := (g, j)∗hk−1,

pk := βk � αk;

(A.1)

here the subscript r−1−k in the definition of αk signifies taking the codimension-
(r −1− k) component. We will give the proof of the following proposition at the
end of this section.

Proposition A.1. Define αk ,βk ,pk ,α0,β0,p0 as before. Then the following
statements hold.

(i) α0β0 = �Y , αkβk = �V for 1 ≤ k ≤ r − 1, and αiβj = 0 for i �= j.

(ii) p0,p1,p2, . . . ,pr−1 are mutually orthogonal projectors of Ỹ, and
r−1∑
i=0

pi = �Ỹ in A(Ỹ × Ỹ );

that is, equality holds up to rational equivalence.
(iii) We have the following isomorphisms of motives:

α0 : (Ỹ,p0, 0) � h(Y ) with inverse morphism β0;
αk : (Ỹ,pk , 0) � h(V )(k) with inverse morphism βk for 1 ≤ k ≤ r − 1.
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Define & := ⊕r−1
i=0 αi and & ′ := ∑r−1

i=0 βi. Then Proposition A.1 can be conve-
niently reformulated as follows.

Theorem A.2. The correspondence & gives a canonical isomorphism in CHM,

& : h(Ỹ ) ∼= h(Y )⊕
r−1⊕
k=1

h(V )(k),

with an inverse isomorphism given by & ′.

Remark. If the normal bundle N of V in Y is trivial (e.g., when V is a point),
then P is isomorphic to a product spaceV × P r−1 and h = c1(OP (1)) can be rep-
resented (not canonically) by a product space H = V × P r−2 in P. In this case,
we have simple forms for the projectors:

pk = −(j × j)∗(H r−1−k ×V H
k−1) for 1 ≤ k ≤ r − 1;

p0 = �+
r−1∑
k=1

(j × j)∗(H r−1−k ×V H
k−1).

In general, for a nontrivial normal bundle N, more terms involving the Chern
classes ofN are needed and the correspondences cannot be represented by explicit
and natural algebraic cycles.

Remark. The isomorphism of motives in Theorem A.2 is also a consequence of
the “Theorem on the additive structure of the motif” of Ỹ in [Man, Sec. 9]. In our
notation, this theorem states that there is a split exact sequence

0 �� h(V )(r)
a �� h(Y )⊕ h(P )(1)

b �� h(Ỹ ) �� 0.

The correspondences appearing in our theorem are not given, at least not explic-
itly, in Manin’s paper.

In order to clarify this point, define:

E = cr−1(g
∗N/ON(−1))∈Ar−1(P ), cE = δP∗(E)∈ Corr(P,P);

a = (i∗ , cE � g∗), a ′ = g∗;
b = f ∗ + j∗ , b ′ its right inverse;

d = �Y×P − aa ′, d ′ = �Y ⊗ (�P − pP0 ) (where pP0 = chr−1 � g∗ � g∗).

Denote by e :
⊕r−1

k=1V(k) → (P,�P − pP0 ) the isomorphism implicitly defined
in [Man, Sec. 7], and denote by e ′ the inverse of e.

We have the isomorphisms

h(Y )⊕ ⊕r−1
k=1 h(V )(k)

�Y⊗e
��
(Y " P, (�Y ,�P − pP0 ))

�Y⊗e ′
		

d ��
(Y " P,�Y"P − aa ′)

d ′
		

b ��
(Ỹ,�Ỹ ).

b ′
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Hence the following is an isomorphism of Chow motives:

(�Y ⊗ e ′) � d ′ � b ′ : h(Ỹ ) ∼= h(Y )⊕
r−1⊕
k=1

h(V )⊗ Lk

with inverse b � d � (�Y ⊗ e).

Therefore, to write down the correspondence (�Y ⊗ e ′) � d ′ � b ′, we must find
explicitly the right inverse b ′ of b. However, in [Man] the construction of b ′ is
based on the surjectivity of γ : A(Ỹ × (Y " P)) → A(Ỹ × Ỹ ) as follows. By the
surjectivity of γ, there is a cycle class c ∈ A(Ỹ × (Y " P)) (which is not explic-
itly given in [Man]) such that γ (c) = �Ỹ ∈ A(Ỹ × Ỹ ). Then b ′ is defined to be
(1 − aa ′)c.

On the other hand, the correspondences & and & ′ that were constructed in The-
orem A.2 yield an explicit construction of b ′. Indeed, b ′ = d � (�Y ⊗ e) � &.
Proof of Proposition A.1. In the proof, we assume that 1 ≤ k ≤ r −1 and that 0 ≤
i, j ≤ r − 1.

The idea is as follows. We study the morphisms αi∗ , βi∗ , and pi∗ of Chow
groups induced by the correspondences αi, βi, and pi. As a consequence, the
identities of morphisms of Chow groups that are induced by the identities in parts
(i) and (ii) of Proposition A.1 hold. On the other hand, Manin’s identity prin-
ciple asserts that the identities of morphisms of Chow groups imply the identi-
ties of correspondences—provided the correspondences are universal in certain
sense.

By [V, Thm. 9.27], an element ỹ ∈A(Ỹ ) can be expressed uniquely as

ỹ =
r−1∑
i=1

j∗(g∗ai · hi−1)+ f ∗y.

It is standard to verify the following statements.

(αk) The morphism αk∗ : A(Ỹ ) → A(V ) maps ỹ #→ ak.

(βk) The morphism βk∗ : A(V ) → A(Ỹ ) maps x #→ j∗(g∗x · hk−1).

(α0) The morphism α0∗ : A(Ỹ ) → A(Y ) maps ỹ #→ y.

(β0) The morphism β0∗ : A(Y ) → A(Ỹ ) maps y #→ f ∗y.
To give a flavor, we prove only the statement (αk) (i.e., αk∗(ỹ) = ak).

Define a0 = −i∗y. Since j ∗j∗z = −h · z for all z∈A(P ), we have

j ∗ỹ =
r−1∑
i=1

j ∗j∗(g∗ai · hi−1)+ j ∗f ∗y = −
r−1∑
i=1

g∗ai · hi + g∗i∗y

= −
r−1∑
i=0

g∗ai · hi.

By definition (see [F, Sec. 3]), the ith Segre class of N is

si(N ) := g∗(hi+r−1).

Therefore,
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αk∗(ỹ) = −g∗
(
j ∗ỹ ·

r−1−k∑
l=0

g∗cr−1−k−l(N ) · hl
)

= −g∗
((

−
r−1∑
i=0

g∗ai · hi
)

·
( r−1−k∑

l=0

g∗cr−1−k−l · hl
))

= g∗
( r−1∑

i=0

r−1−k∑
l=0

g∗(aicr−1−k−l)h
i+l

)

=
r−1∑
i=0

ai

( r−1−k∑
l=0

cr−1−k−l si+l+1−r

)
.

Because c(N )s(N ) = 1, where c(N ) := ∑
ci(N ) is the total Chern class and

s(N ) := ∑
si(N ) is the total Segre class, we have

r−1−k∑
l=0

cr−1−k−l si+l+1−r =
+∞∑
l=−∞

cr−1−k−l si+l+1−r = {c(N )s(N )}i−k = δik.

The first equality holds because si+l+1−r = 0 for l < 0 and cr−1−k−l = 0 for l >
r − 1 − k. It follows that αk∗(ỹ) = ak , as we claimed.

The statements (αk), (βk), (α0), and (β0) immediately imply the following
identities:

αk∗βk∗ = idA(V ), α0∗β0∗ = idA(Y ),

αi∗βj∗ = 0 for i �= j,

(pipj )∗ = δijpi∗ ,
r−1∑
i=0

pi∗ = idA(Ỹ ).

For any smooth scheme T, we write T × Ỹ to denote the blow-up of T × Y

along the smooth subvariety T × V. Denoting j ′ = idT × j, g ′ = idT × g, f ′ =
idT × f , and i ′ = idT × i, we have the following fiber square.

T × P
j ′

��

g ′
��

�

T × Ỹ

f ′
��

T × V
i′ �� T × Y

We can construct the correspondences α ′
i,β

′
i,p

′
i for this fiber square as we did in

(A.1); the result is

α ′
i = idT ⊗ αi, β ′

i = idT ⊗ βi, p ′
i = idT ⊗ pi.

Then (i) and (ii) follow from Manin’s identity principle.
For part (iii) of the proposition, in order to show that αk gives an isomorphism

(Ỹ,pk , 0) � h(V ) ⊗ Lk with inverse βk , we must show that pk = pk � βk � αk
and id = id � αk � βk; but these equalities are direct consequences of αkβk = �V

from part (i). The proof for (Ỹ,p0, 0) � h(Y ) is similar.
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