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1. Introduction

One of the fundamental theorems in complex dynamical systems is a theorem
called the Fatou linearization theorem. This theorem provides a topological and
dynamical structure of a parabolic germ. A parabolic germ f is an analytic func-
tion defined in a neighborhood of a point z0 in the complex plane C such that (a) it
fixes z0 and (b) some power (f ′(z0))

q of the derivative f ′(z0) of f at z0 is 1.
Thus we can write f(z) in the following form:

f(z) = z0 + λ(z− z0)+ a2(z− z0)
2 + · · · + an(z− z0)

n + · · · , z∈U,

where U is a neighborhood of z0 and λ = e2πpi/q for p and q two relatively prime
integers. The number λ is called the multiplier of f. Two parabolic germs f and g
at two points z0 and z1 are said to be topologically conjugate if there is a homeo-
morphism h from a neighborhood of z0 onto a neighborhood of z1 such that

h � f = g � h.
If h is a K-quasiconformal homeomorphism, then we say that f and g are K-
quasiconformally conjugate.

By a linear conjugacy φ(z) = z− z0, we may assume that z0 = 0. So we only
consider parabolic germs at 0,

f(z) = λz+ a2z
2 + · · · + anzn + · · · , z∈U.

Assume we are given a parabolic germ f at 0 whose multiplier λ = e2πip/q with
(p, q) = 1. Then

f q(z) = z+ azn+1 + o(zn+1), n ≥ 1.

If a 	= 0, then n + 1 is called the multiplicity of f. Here n = kq is a multi-
plier of q. The Leau–Fatou flower theorem states that the local topological and
dynamical picture of f around 0 can be described as follows. There are n petals
pairwise tangential at 0 such that each petal is mapped into the (kp)th petal count-
ing counterclockwise from this petal. These petals are called attracting petals. At
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the same time, there are n repelling petals—that is, n other petals also pairwise
tangential at 0 and for which the inverse f −1 maps each petal into the (kp)th petal
counting counterclockwise from this petal. Thus f q maps every attracting petal
into itself and f −q maps every repelling petal into itself. Furthermore, the Fatou
linearization theorem states that the map

f q(z) : P → P
from any attracting petal P into itself is conjugate to G(w) = w + 1 from a right
half-plane into itself by a conformal map.

The union of all attracting petals and repelling petals forms a neighborhood of
0. If two parabolic germs are topologically conjugate, then they have the same
Leau–Fatou flowers in any neighborhood of 0. A parabolic germ is quasiconformal
rigidity as follows.

Theorem 1. Suppose f and g are two parabolic germs at 0 and suppose f and
g are topologically conjugate. Then, for every ε > 0, there are neighborhoodsUε
and Vε about 0 such that f |Uε and g|Vε are (1+ ε)-quasiconformally conjugate.

The method in our proof of this theorem involves holomorphic motions. In the
proof, the reader could find a beautiful application of holomorphic motions to the
study of parabolic germs. A special case of this theorem has been proved by Mc-
Mullen [16, Thm. 8.1]. His proof used the Ahlfors–Weill extension theorem, which
states that a conformal mapping of the unit disk can be extended to a quasiconfor-
mal homeomorphism as long as the hyperbolic norm of the Schwarzian derivative
of this conformal mapping is less than 2.

The idea used in this paper first appeared in [11], where we incorporated holo-
morphic motions into some new proofs of König’s theorem and Böttcher’s theo-
rem, which provide normal forms of attracting and super-attracting germs. Fur-
thermore, we used the same idea to prove normal-form theorems for integrable
asymptotically conformal attracting germs and for integrable asymptotically con-
formal super-attracting germs in [12]. Here we continue this idea for parabolic
germs, so this is a sequel paper in our research for applications of holomorphic
motions to complex dynamical systems. However, from the technical point of
view, the parabolic case is much more delicate because it is structurally unsta-
ble. Thus we need more carefully to construct quasiconformal conjugacies from
holomorphic motions in order to have a sequence of quasiconformal conjugacies
contained in a compact subset in the space of all quasiconformal mappings.

As an interesting by-product of our proofs of Theorems1and 5, we prove a theo-
rem stating that a quasiconformal homeomorphism can be used to glue an arbitrary
finite number of parabolic germs in the Riemann sphere at different points. This
theorem may be viewed as a generalization of the Ahlfors–Weill extension theo-
rem that basically considers one germ.

Theorem 2. Let {fi}ki=1 denote a finite number of parabolic germs at distinct
points {zi}ki=1 in the complex plane C. Then, for every ε > 0, there exist a number
r > 0 and a (1+ ε)-quasiconformal homeomorphism f of Ĉ such that

f |�r(zi ) = fi |�r(zi ), i = 1, . . . , k.
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Corollary 1. Let {fi}ki=1 denote a finite number of germs at distinct points
{zi}ki=1 such that λi = f ′

i (zi) 	= 0 for 1 ≤ i ≤ k. Then, for every ε > 0, there
exist a number s > 0 and a (1 + ε)-quasiconformal homeomorphism f of Ĉ

such that
f |�s(zi ) = fi |�s(zi ), i = 1, . . . , k.

We prove these two results by again applying holomorphic motions. In the study
of complex dynamical systems, an important method for constructing a new dy-
namical system from an old one is the surgery method, which cuts certain parts
from the old one and glues some desired dynamical phenomena by quasiconfor-
mal mappings to yield a new complex dynamical system. However, it is difficult
to control the Teichmüller distance between the new and old systems. Theorem 2
and Corollary 1, together with the ideas in their proofs, suggest some ways to con-
trol this Teichmüller distance.

The paper is organized as follows. Because our proof involves holomorphic mo-
tions, we introduce this interesting topic in Section 2. In Section 3, we continue
the idea in [11; 12] of giving a conceptual proof of the Fatou linearization theorem
(Theorem 5) by incorporating holomorphic motions. In Section 4 we give a proof
of Theorem 1; we prove Theorem 2 and Corollary 1 in Section 5.

Acknowledgments. I would like to thank the referee for useful suggestions re-
garding my further modification of the paper. This work was partially done when
I visited the Academy of Mathematics and System Science and the Morningside
Center of Mathematics at the Chinese Academy of Sciences in Beijing. I would
like to thank these institutions for their hospitality.

2. Holomorphic Motions and Quasiconformal Maps

In the study of complex analysis, the measurable Riemann mapping theorem plays
an important role. A measurable function µ on Ĉ is called a Beltrami coefficient
if its L∞-norm

k = ‖µ‖∞ < 1.

The corresponding equation
Hz̄ = µHz

is called the Beltrami equation. The measurable Riemann mapping theorem states
that the Beltrami equation has a solution H, which is a quasiconformal homeo-
morphism of Ĉ, whose quasiconformal dilatation is less than or equal to K =
(1+ k)/(1− k). It is called a K-quasiconformal homeomorphism.

The study of the measurable Riemann mapping theorem has a long history; in
the 1820s, Gauss considered its connection with the problem of finding isother-
mal coordinates for a given surface. As early as 1938, Morrey [18] systematically
studied homeomorphic L2-solutions of the Beltrami equation. But it took almost
twenty years until, in 1957, Bers [4] observed that these solutions are quasicon-
formal (see [13, p. 24]). Finally, the existence of a solution to the Beltrami equa-
tion under the most general possible circumstance (i.e., for measurable µ with
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‖µ‖∞ < 1) was shown by Bojarski [6]. In this generality the existence theorem is
sometimes called the measurable Riemann mapping theorem.

If one considers only a normalized solution to the Beltrami equation (a solu-
tion that fixes 0, 1, and ∞), then H is unique and the solution is denoted by Hµ.

The solutionHµ is expressed as a power series made up of compositions of singu-
lar integral operators applied to the Beltrami equation on the Riemann sphere. In
this expression, if one considers µ as a variable then the solution Hµ depends on
µ analytically. This analytic dependence was emphasized by Ahlfors and Bers in
their 1960 paper [2] and is essential in determining a complex structure for Teich-
müller space (see [1; 13; 14; 19]). Note that when µ ≡ 0, H 0 is the identity map.
A 1-quasiconformal homeomorphism is conformal.

In light of the subsequent development of complex dynamics, this analytic de-
pendence presents the even more interesting phenomenon known as holomorphic
motions. Let

�r = {c ∈C | |c| < r}
denote the disk of radius 0 < r < 1 and centered at 0. We use � to mean the unit
disk. Given a measurable function µ on Ĉ with ‖µ‖∞ = 1, we have a family of
Beltrami coefficients cµ for c ∈� as well as a family of normalized solutionsH cµ.

Note that H cµ is a (1 + |c|)/(1 − |c|)-quasiconformal homeomorphism. More-
over, H cµ is a family that is holomorphic on c. Consider a subset E of Ĉ and its
image Ec = H cµ(E). One can see that Ec moves holomorphically in Ĉ when c
moves in �. That is, for any point z ∈ E, z(c) = H cµ(z) traces a holomorphic
path starting from z as c moves in the unit disk. Surprisingly, the converse of this
fact is also true, which follows from the famous λ-lemma of Mañé, Sad, and Sul-
livan [15] in complex dynamical systems. Let us begin to understand this fact by
first defining holomorphic motions.

Definition 1 (Holomorphic motions). Let E be a subset of Ĉ. Let

h(c, z) : �× E→ Ĉ

be a map. Then h is called a holomorphic motion of E parameterized by � and
with base point 0 if:

(1) h(0, z) = z for z∈E;
(2) for any fixed c ∈�, h(c, ·) : E→ Ĉ is injective;
(3) for any fixed z, h(·, z) : �→ Ĉ is holomorphic.

For example, for a measurable function µ on Ĉ with ‖µ‖∞ = 1,

H(c, z) = H cµ(z) : �× Ĉ → Ĉ

is a holomorphic motion of Ĉ parameterized by � and with base point 0.
Observe that continuity does not directly enter into the definition; the only re-

striction is in the c direction. However, continuity is a consequence of the hypoth-
eses from the proof of the λ-lemma of [15, Thm. 2], where the following lemma
was also proved.
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Lemma 1 (λ-lemma). A holomorphic motion of a set E ⊂ Ĉ parameterized by
� and with base point 0 can be extended to a holomorphic motion of the closure
of E parameterized by the same � and with base point 0.

Furthermore, Mañé, Sad, and Sullivan showed in [15] that f(c, ·) satisfies the Pesin
property. In particular, when the closure of E is a domain, this property can be
described as the quasiconformal property. A further study of this quasiconformal
property was given by Sullivan and Thurston [21] and by Bers and Royden [5].
In [21] it is proved that there exists a universal constant a > 0 such that any holo-
morphic motion of any setE ⊂ Ĉ parameterized by� and with base point 0 can be
extended to a holomorphic motion of Ĉ parameterized by�a and with base point
0. In [5], classical Teichmüller theory is used to show that this constant actually
can be taken to be 1/3. In the same paper it is shown that, in any holomorphic mo-
tionH(c, z) : �× Ĉ → Ĉ,H(c, ·) : Ĉ → Ĉ is a (1+|c|)/(1−|c|)-quasiconformal
homeomorphism for any fixed c ∈ �. The expectation in both [5] and [21] was
that a = 1. This was eventually proved by Slodkowski in [20]. Several different
proofs have been given for Slodkowski’s theorem (cf. [3; 8; 9]).

Theorem 3 (Holomorphic motion theorem). Suppose

h(c, z) : �× E→ Ĉ

is a holomorphic motion of a set E ⊂ Ĉ parameterized by � and with base point
0. Then h can be extended to a holomorphic motion

H(c, z) : �× Ĉ → Ĉ

of Ĉ that is also parameterized by � and with base point 0. Moreover, for every
c ∈�,

H(c, ·) : Ĉ → Ĉ

is a (1+ |c|)/(1− |c|)-quasiconformal homeomorphism of Ĉ. The Beltrami co-
efficient of H(c, ·) given by

µ(c, z) = ∂H(c, z)

∂z̄

/
∂H(c, z)

∂z

is a holomorphic function from � into the unit ball of the Banach space L∞(C)
of all essentially bounded measurable functions on C.

The reader can read our recent expository paper [10] for a complete proof of this
theorem and related topics.

3. Leau–Fatou Flowers and Linearization

Since the idea in [11] and [12] plays an important role in the proof of Theorem 1,
we begin by using it to give a conceptual proof of the Fatou linearization theorem.
This proof is again an application of holomorphic motions.
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Suppose f(z) is a parabolic germ at 0. Then there is a constant 0 < r0 < 1/2
such that f(z) is conformal with the Taylor expansion

f(z) = e2πpi/qz+ higher-order terms, (p, q) = 1, |z| < r0.

Suppose f m 	≡ id for all m > 0. Then, for appropriate r0, we have

f q(z) = z(1+ azn + ε(z)), a 	= 0, |z| < r0,

where n is a multiple of q and ε(z) is given by a convergent power series of the form

ε(z) = an+1z
n+1 + an+2z

n+2 + · · · , |z| < r0.

Suppose N ⊂ �r0 is a neighborhood of 0. A simply connected open set P ⊂
N ∩ f q(N ) with f q(P) ⊂ P and 0 ∈ P̄ is called an attracting petal if f m(z)
for z ∈ P converges uniformly to 0 as m→ ∞. An attracting petal P ′ for f −1 is
called a repelling petal at 0.

Theorem 4 (Leau–Fatou flower). There exist n attracting petals {Pi}n−1
i=0 and n

repelling petals {P ′
j }n−1
j=0 such that

N0 =
n−1⋃
i=0

Pi ∪
n−1⋃
j=0

P ′
j

is a neighborhood of 0.

See [17] for a proof of this theorem.
For each attracting petal P = Pi, consider the change of coordinate

w = φ(z) = d

zn
, d = − 1

na
,

on P. Suppose the image of P under φ(z) is a right half-plane

Rτ = {w ∈C | �w > τ }.
Then

z = φ−1(w) = n

√
d

w
: Rτ → P

is a conformal map. The form of f q in the w-plane is

F(w) = φ � f � φ−1(w) = w + 1+ η
(

1
n
√
w

)
, �w > τ,

where η(ξ) is an analytic function in a neighborhood of 0. Suppose

η(ξ) = b1ξ + b2ξ
2 + · · · , |ξ| < r1,

is a convergent power series for some 0 < r1 ≤ r0. Take 0 < r < r1 such that

|η(ξ)| ≤ 1

2
∀|ξ| ≤ r.

Then F(Rτ ) ⊂ Rτ for any τ ≥ 1/r n because

�F(w) = �w + 1+�η
(

1
n
√
w

)
≥ �w + 1

2
for all �w ≥ τ.
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Theorem 5 (Fatou linearization theorem). Suppose τ > 1/r n+1 is a real num-
ber. Then there is a conformal map /(w) : Rτ → 0 such that

F(/(w)) = /(w + 1) ∀w ∈Rτ .
Here we give a new proof by incorporating holomorphic motions. For other proofs,
see [7;17].

3.1. Construction of a Holomorphic Motion

For any x ≥ τ, let
E0,x = {w ∈C | �w = x}

and
E1,x = {w ∈C | �w = x + 1}

and let
Ex = E0,x ∪ E1,x.

Then Ex is a subset of Ĉ. Define

Hx(w) =
{
w, w ∈E0,x;
2(w) = w + η(1/ n

√
w − 1

)
, w ∈E1,x.

Since Hx(w) is injective on both E0,x and E1,x and since

�(Hx(w)) ≥ �(w)− 1

2
= x + 1− 1

2
= x + 1

2
, w ∈E1,x ,

the images of E0,x and E1,x underHx(w) do not intersect. HenceHx(w) is injec-
tive. Moreover, Hx(w) conjugates F(w) to the linear map w �→ w + 1 on E0,x;
that is,

F(Hx(w)) = Hx(w + 1) ∀w ∈E0,x.

We introduce a complex parameter c ∈� into η(ξ) as follows. Define

η(c, ξ) = η(crξ n√x − 1
) = b1

(
crξ

n
√
x − 1

)+ b2
(
crξ

n
√
x − 1

)2 + · · ·
for |c| < 1 and |ξ| ≤ 1/ n

√
x − 1. Since

∣∣crξ n√x − 1
∣∣ ≤ r, it follows that η(c, ξ) is

a convergent power series and that |η(c, ξ)| ≤ 1/2 for |c| < 1 and |ξ| ≤ 1/ n
√
x − 1.

We are thus led to introduce a complex parameter c ∈� for Hx(w) by defining

Hx(c,w) =
{
w, (c,w)∈�× E0,x;
2(w) = w + η(c,1/ n√w − 1

)
, (c,w)∈�× E1,x.

Lemma 2. The map Hx(c,w) : �× Ex → Ĉ is a holomorphic motion.

Proof. (1) It is clear that Hx(0,w) = w for w ∈Ex.
(2) By Rouché’s theorem it follows that, for any fixed c ∈�, Hx(c, ·) is injec-

tive on E0,x and on E1,x. Since

�Hx(c,w) = �w +�η
(
c,

1
n
√
w − 1

)
≥ �w − 1

2
∀w ∈E1,x ,
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the images of E0,x and E1,x under Hx(c, ·) do not intersect. Therefore, Hx(c, ·) is
injective on Ex.

(3) For any fixed w ∈E0,x we haveHx(c,w) = w, soH(·,w) is a holomorphic
function of c. For any fixed w ∈E1,x ,

Hx(c,w) = w + η
(
cr n
√
x − 1

n
√
w − 1

)
,

which is a convergent power series of c and so is holomorphic. We have proved
the lemma.

By Theorem 3,
Hx(c,w) : �× Ex → Ĉ

can be extended to a holomorphic motion

H̃x(c,w) : �× Ĉ → Ĉ.

For each c ∈�,
hc(w) = H̃x(c,w) : Ĉ → Ĉ

is a (1+|c|)/(1−|c|)-quasiconformal homeomorphism. If c(x) = 1/
(
r n
√
x − 1

)
,

then hc(x) is a quasiconformal extension ofHx(w) to Ĉ whose quasiconformal di-
latation is less than or equal to

K(x) = 1+ 1/r n
√
x − 1

1− 1/r n
√
x − 1

.

Note that K(x)→ 1 as x →∞.
3.2. Construction of Quasiconformal Conjugacies

Suppose
Sx = {w ∈C | x ≤ �w ≤ x + 1}

is the strip bounded by two lines �w = x and �w = x + 1. Consider the restric-
tion of hc(x)(w) on Sx , which we still denote as hc(x)(w).

For any w0 ∈Rτ ∪ E0,τ , let wm = F m(w0). Since wm − wm+1 tends to 1 as m
goes to ∞ uniformly on Rτ ∪ E0,τ , it follows that

wn − w0

m
= 1

m

m∑
k=1

(wk − wk−1)→ 1

uniformly on Rτ ∪ E0,τ as m goes to ∞. So wm is asymptotic to m as m goes to
∞ uniformly in any bounded set of Rτ ∪ E0,τ .

Let x0 = τ and xm = �(F m(x0)). Then xm is asymptotic to m as m goes to
∞. For each m > 0, let

ϒm = F −m(E0,xm ∪ {∞})
be a curve passing through x0 = τ and ∞; let

0m = F −m(Rxm)

be a domain with boundary ϒm.
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Let

Si,xm = F −i(Sxm), i = m,m+ 1, . . . ,1, 0,−1, . . . ,−m+ 1,−m, . . . .

Then

0m =
i=m⋃
−∞
Si,xm .

Let
Am = {w ∈C | τ +m ≤ �w ≤ τ +m+ 1}

and let Ai,m = Am − i for i = m,m+ 1, . . . ,1, 0,−1, . . . ,−m+ 1,−m, . . . . Let

βm(w) = w + xm − τ −m : C → C.

Then βm(w) is a conformal map and

βm(Am) = Sxm.
Define

ψm(w) = hc(xm) � βm(w).
Then ψm(w) is a K(xm)-quasiconformal homeomorphism on Am. Moreover,

F(ψm(w)) = ψm(w + 1) for all �w = m+ τ.
Now define

ψm(w) = F −i(ψm(w + i)) ∀w ∈Ai,m
for i = m,m − 1, . . . ,1, 0,−1, . . . ,−m+ 1,−m, . . . . Then ψm(w) is a K(xm)-
quasiconformal homeomorphism from Rτ to 0m and

F(ψm(w)) = ψm(w + 1) ∀w ∈Rτ .

3.3. Improvement to Conformal Conjugacy

Let w0 = τ and wm = F m(w0) for m = 1, 2, . . . . Recall that

Rxm = {w ∈C | �w > xm},
where xm = �wm.

For any w̃0 ∈Rxm+1, let w̃m = F m(w̃0) for m = 1, 2, . . . . Since

F ′(w) = 1+O
(

1

|w|1+1/n

)
, w ∈Rτ ,

and since w̃m/m→ 1 as m→ ∞ uniformly on any compact set, there is a con-
stant C > 0 such that

C−1 ≤ |w̃m − wm|
|w̃1 − w1| =

m∏
k=1

|w̃k+1 − wk+1|
|w̃k − wk| =

m∏
k=1

(
1+O

(
1

k1+1/n

))
≤ C

as long as w1 and w̃1 remain in the same compact set. Since

wm+1 = wm + 1+ η
(

1
n
√
wm

)
and

∣∣∣∣η
(

1
n
√
wm

)∣∣∣∣ ≤ 1

2
,
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the distance betweenwm+1 andRxm is greater than or equal to 1/2. Hence the disk
�1/2(wm+1) is contained in Rxm , which implies that the disk �1/(2C)(w1) is con-
tained in 0m for every m = 0,1, . . . . Thus the sequence

ψm(w) : Rτ → 0m, m = 1, 2, . . . ,

is contained in a weakly compact subset of the space of quasiconformal mappings.
Let

/(w) : Rτ → 0

be a limiting mapping of a subsequence. Then / is 1-quasiconformal and thus
conformal and satisfies

F(/(w)) = /(w + 1) ∀w ∈Rτ .
This completes the proof of Theorem 5.

4. Quasiconformal Rigidity, Proof of Theorem 1

In this section, we prove Theorem 1 by using an idea similar to that used in the
proof of Theorem 5.

4.1. Conformal Conjugacies on Attracting Petals

Suppose f and g are two topologically conjugate parabolic germs, and suppose
that f m, gm 	≡ id for all m > 0. (If some f m ≡ identity then gm ≡ identity, too.)
Suppose λ and n+ 1 are their common multiplier and multiplicity. Suppose 0 <
r0 < 1/2 such that both f and g are conformal in�r0 . Without loss of generality,
we assume that λ = 1 and that f and g have the respective forms

f(z) = z(1+ zn + o(zn)) and g(z) = z(1+ zn + o(zn)), |z| < r0.

By Theorem 4, for any small neighborhood N ⊂ �r0 there exist n attracting
petals {Pi,f }n−1

i=0 and n repelling petals {P ′
i,f }n−1

i=0 for f in N. Let us assume that
every Pi,f is the maximal attracting petal in N. Similarly, we have the same pat-
tern of attracting petals {Pi,g}n−1

i=0 and the repelling petals {P ′
i,g}n−1

i=0 for g.
From Theorem 5 and also [17, p. 107], for every 0 ≤ i ≤ n − 1 there is a con-

formal map
ψi : Pi,g → Pi,f

such that
f(ψi(z)) = ψi(g(z)), z∈Pi,g.

4.2. Repelling Petals

For each 0 ≤ i ≤ n− 1, let

w = φ(z) = − 1

nzn

be the change of coordinate. Then f and g in the w-coordinate system have the
respective forms
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F(w) = w + 1+ ηf
(

1
n
√
w

)
and G(w) = w + 1+ ηg

(
1
n
√
w

)
,

where both

ηf (ξ) = a1ξ + a2ξ + · · · and ηg(ξ) = b1ξ + b2ξ + · · · , |ξ| < r1,

are convergent power series for some number 0 < r1 < r0. Take a number 0 <
r < r1 such that

|ηf (ξ)|, |ηg(ξ)| ≤ 1

4
, |ξ| ≤ r.

Without loss of generality, we assume that ηg(w) ≡ 0; that is, G(w) = w + 1.
Suppose that both repelling petals P ′

i,f and P ′
i,g are changed to a left half-plane

L−r n = {w ∈C | �w < −r n}.

4.3. Construction of a Holomorphic Motion

Take τ0 = r n. Let
Uτ0 = {w ∈C | �w > τ0}

be an upper half-plane and let

D−τ0 = {w ∈C | �w < −τ0}
be a lower half-plane. Define

/(w) =
{
φ � ψi � φ−1(w), w ∈Uτ0;
φ � ψi+1 � φ−1(w), w ∈Dτ0 .

(If i + 1 = n, we consider it as 0.) Then

F(/(w)) = /(G(w)), w ∈Uτ0 ∪Dτ0 .

We have the property that /(w)/w→ 1 as w→∞ (see [17, p. 109]).
Let a = e−2πτ0 . Consider the covering map

ξ = β(w) = e2πiw : C → C \ {0},
which maps Uτ0 to �a \ {0} and D−τ0 to C \ �̄1/a.

The inverse of w = β−1(ξ) is a multivalued analytic function on C \ {0}. We
take one branch as β−1. Since /(w) is asymptotic to w as w→∞, the map

θ(ξ) = β �/ � β−1(ξ)

is analytic in �a and in �̄c1/a = Ĉ \ �̄1/a. Suppose that

θ(ξ) = ξ + a2ξ
2 + · · · , |ξ| < a,

and

θ(ξ) = ξ + b1

ξ
+ · · · , |ξ| > 1

a
,

are two convergent power series.
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For any τ > τ0, let ε = e−2πτ. Suppose �̄c1/ε = (Ĉ \ �̄1/ε), and let

E = �ε ∪ �̄c1/ε;
E is a subset of Ĉ. We now introduce a complex parameter c ∈� into θ(ξ) such
that it is a holomorphic motion of E parameterized by � and with base point 0.

Define

θ(c, ξ) = ε

ca
θ

(
caξ

ε

)
= ξ + a2

(
ca

ε

)
ξ 2 + · · · , |c| < 1, |ξ| ≤ ε,

and

θ(c, ξ) = ca

ε
θ

(
εξ

ca

)
= ξ + b1

ξ

(
ca

ε

)2

+ · · · , |c| < 1, |ξ| ≥ 1

a
.

We claim that
θ(c, ξ) : �× E �→ Ĉ

is a holomorphic motion. Here is a proof.
(1) It is clear that θ(0, ξ) = ξ for all ξ ∈E.
(2) For any fixed c 	= 0 ∈�, θ(c, ξ) on �ε is a conjugation map of θ(ξ) by the

linear map ξ �→ (ca/ε)ξ, and θ(c, ξ) on �̄c1/ε is a conjugation map of θ(ξ) by the
linear map ξ �→ (ε/(ca))ξ. Hence they are injective. Because the image θ(c,�ε)
is contained in �a and the image θ(c, �̄c1/ε) is contained in �̄c1/a , they do not in-
tersect. So θ(c, ·) on E is injective.

(3) For any fixed ξ ∈�ε, since |caξ/ε| < a for |c| < 1, θ(·, ξ) is a convergent
power series of c. So θ(·, ξ) is holomorphic on c. For any fixed ξ ∈ �̄c1/ε, since
|εξ/(ca)| > 1/a for |c| < 1, θ(·, ξ) is a convergent power series of c. So θ(·, ξ) is
holomorphic on c. We have proved the claim.

Let Eτ = Uτ ∪ D−τ . Then β(Eτ ) = E. Thus we can lift the holomorphic
motion

θ(c, ξ) : �× E→ Ĉ

to obtain a holomorphic motion

h0(c,w) : �× Eτ → Ĉ.

When c(τ ) = ε/a, h(c(τ ),w) = /(w).
Let w1 = −τ + iτ and w2 = −τ − iτ. Consider the vertical segment connect-

ing them,
sτ = {tw1 + (1− t)w2 | 0 ≤ t ≤ 1}.

Let
s ′τ = sτ + 1 = {tw1 + (1− t)w2 + 1 | 0 ≤ t ≤ 1}.

Define

h1(c, tw1 + (1− t)w2) = th0(c,w1)+ (1− t)h0(c,w2) : �× sτ → Ĉ

and

h2(c, tw1 + (1− t)w2 + 1) = F(h1(c, tw1 + (1− t)w2) : �× s ′τ → Ĉ.
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Both of these maps are holomorphic motions. Since

h2(c, tw1 + (1− t)w2 + 1)

= th0(c,w1)+ (1− t)h0(c,w2)+ 1+ η(th0(c,w1)+ (1− t)h0(c,w2))

and since
|η(w)| ≤ 1/4 for all |w| ≥ τ,

the images of these two holomorphic motions do not intersect. Therefore, we
define a holomorphic motion

h(c,w) =


h0(c,w), (c,w)∈�× Eτ ,
h1(c,w), (c,w)∈�× sτ ,
h2(c,w), (c,w)∈�× s ′τ ,

of > = Eτ ∪ sτ ∪ s ′τ parameterized by � and with base point 0.
For c(τ ) = ε/a, h(c(τ ),w) is a conjugacy from F to G on Eτ ∪ sτ ; that is,

F(h(c(τ ),w)) = h(c(τ ),G(w)), w ∈Eτ ∪ sτ .
By Theorem 3, there is an extended holomorphic motion of h(c,w),

H(c,w) : �× Ĉ �→ Ĉ,

such that for each c ∈�, H(c, ·) is a (1+ |c|)/(1− |c|)-quasiconformal homeo-
morphism of Ĉ.

Let H(w) = H(c(τ),w) and

K(τ) = 1+ c(τ )
1− c(τ ) .

Note that K(τ) → 1 as τ → ∞. Then H(w) is a K(τ)-quasiconformal homeo-
morphism of Ĉ such that

H(w) = h(c(τ ),w) ∀w ∈>.
Let

A0 = {w ∈C | −τ ≤ �w ≤ −τ + 1}
and A−m = A0 −m for m = 1, 2, . . . . Define

/(w) = F −m(H(w +m)), w ∈A−m, m = 0,1, . . . .

Then /(w) is a K(τ)-quasiconformal homeomorphism defined on the left half-
plane

L−τ+1 = {w ∈C | �w ≤ −τ + 1}
and extends /(w) on Uτ ∪D−τ .

Now let
ψ(z) = φ−1 �/ � φ(z).

It extends
ψi : Pi,g → Pi,f and ψi+1 : Pi+1,g → Pi+1,f

in a small neighborhood N to a K(τ)-quasiconformal homeomorphism
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ψ(z) : Pi,g ∪ P ′
i,g ∪ Pi+1,g → Pi,f ∪ P ′

i,f ∪ Pi+1,f

and
f � ψ(z) = ψ � g(z) ∀z∈Pi,g ∪ P ′

i,g ∪ Pi+1,g.

If we work out these expressions for every 0 ≤ i ≤ n − 1, we find that for
any ε > 0 there is a neighborhood Uε of 0 and a (1+ ε)/(1− ε)-quasiconformal
homeomorphism

ψ(z) : Uε → Vε = ψ(Uε)
that extends every ψi : Pi,g → Pi,f in Uε and such that

f � ψ(z) = ψ � g(z) ∀z∈Uε.
This completes the proof of Theorem 1.

5. Gluing Germs in the Riemann Sphere,
Proofs of Theorem 2 and Corollary 1

Suppose �r(z) is the disk of radius r > 0 centered at z.

Proof of Theorem 2. Denote

Bi(r) = fi(�r(zi)).
Let r0 > 0 be a number such that

Bi(r) ∩ Bj(r) = ∅, 1 ≤ i 	= j ≤ k, 0 < r ≤ r0.

Let

Er =
n⋃
i=1

�̄r(zi)

be a closed subset of Ĉ.

For any 0 < r ≤ r0, write

fi(z) = z+ ai,2(z− zi)2 + · · · + ai,n(z− zi)n + · · · , |z− zi | ≤ r.
Let

ηi(ξ) = ai,2ξ
2 + · · · + ai,nξn + · · · .

Then
fi(z) = z+ ηi(z− zi), |z− zi | ≤ r.

Let φ(z) be defined on Er as

φ(z) = fi(z) = z+ ηi(z− zi) for |z− zi | ≤ r, i = 1, . . . , k.

We introduce a complex parameter c ∈� into φ(z) as follows. Define

φ(c, z) = z+ r

cr0
ηi

(
cr0

r
(z− zi)

)
, |z− zi | ≤ r, i = 1, . . . , k.

Then
φ(c, z) : �× Er → Ĉ

is a map. We will check that it is a holomorphic motion.
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For any fixed c ∈�, we have

φ ′
z(c, z) = 1+ η ′i

(
cr0

r
(z− zi)

)
, |z− zi | ≤ r, i = 1, . . . , k.

By picking r0 > 0 small enough, we can assume that

|f ′
i (z)| = |1+ η ′i(z− zi)| ≥ 1− |η ′i(z− zi)| > 0, |z− zi | < r0, i = 1, . . . , k.

Thus
φ ′
z(c, z) 	= 0 for all |z− zi | ≤ r, i = 1, . . . , k.

We get that φ(c, z) on each�r(zi) is injective. But images of�r(zi) and�r(zj ),
1 ≤ i 	= j ≤ k, are pairwise disjoint under φ(c, z). Hence φ(c, z) is injective
on Er.

It is clear that
φ(0, z) = z, z∈Er.

For any fixed z∈�r(zi), 1 ≤ i ≤ k,

φ(c, z) = z+ r

cr0
ηi

(
cr0

r
(z− zi)

)
.

Since ∣∣∣∣cr0

r
(z− zi)

∣∣∣∣ < r0,

it follows that

ηi

(
cr0

r
(z− zi)

)

is a convergent power series of c 	= 0∈�. For c = 0, we have φ(0, z) = z and so
φ(c, z) is holomorphic with respect to c ∈�. Therefore,

φ(c, z) : �× E(r)→ Ĉ

is a holomorphic motion.
Following Theorem 3, we have an extended holomorphic motion

φ̃(c, z) : �× Ĉ;
that is, φ̃(c, z)|�×Er = φ(c, z). Moreover, φ̃(c, ·) is a (1 + |c|)/(1 − |c|)-quasi-
conformal mapping for any c ∈�.

Let

f(z) = φ̃
(
r

r0
, z

)
.

Then f(z) is a (1+ r/r0)/(1− r/r0)-quasiconformal homeomorphism. Further-
more,

f |�r(zi ) = φ̃
(
r

r0
, z

)∣∣∣
�r(zi )

= φ
(
r

r0
, z

)∣∣∣
�r(zi )

= fi |�r(zi ).
Thus, for any given ε > 0, we take r = (2εr0)/(1 + ε); then f is a (1 + ε)-

quasiconformal mapping and extends fi for all i = 1, 2, . . . , k.We have completed
the proof.
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Proof of Corollary 1. First suppose that r0 > 0 and also that

fi(z) = zi + λi(z− zi), z∈Dr0(zi), λi 	= 0, 1 ≤ i ≤ k.
Suppose

�̄r0(zi) ∩ �̄r0(zj ) = ∅ for all 0 ≤ i 	= j ≤ k.
Let

a = max{|log λi | | 1 ≤ i ≤ k},
and let

s = r0e
−a/r

for any 0 < r < r0.

Let �s(zi) and Es = ⋃k
i=1 �̄s(zi). Define

φ(c, z) = zi + e(c/r) log λi (z− zi), c ∈�, z∈ �̄s(zi).
We will check that

φ(c, z) : �× Es → Ĉ

is a holomorphic motion.
For c = 0, we have φ(0, z) = z for all z∈Es.
For each fixed c ∈�, φ(c, z) on each �̄s(zi) is injective but the image of�s(zi)

under φ(c, z) is contained in �r0(zi). So φ(c, z) on Es is injective.
For fixed z∈Es , it is clear that φ(c, z) is holomorphic with respect to c ∈�.
Therefore,

φ(c, z) : �× Es → Ĉ

is a holomorphic motion.
By Theorem 3, we have an extended holomorphic motion

φ̃(c, z) : �× Ĉ → Ĉ;
that is, φ̃(c, z)|�×Es = φ(c, z). Moreover, for any c ∈ �, φ̃(c, ·) is a (1 + |c|)/
(1− |c|)-quasiconformal homeomorphism.

Let f(z) = φ̃(r, z). Then f(z) is a (1+ r)/(1− r)-quasiconformal homeomor-
phism. Furthermore,

f |�s(zi ) = φ̃(r, z)|�s(zi ) = φ(r, z)|�s(zi ) = fi |�s(zi ).
Now we consider the general situation,

fi(z) = zi + λi(z− zi)+ a2,i(z− zi)2 + · · · , z∈�r0(zi), λi 	= 0, 1 ≤ i ≤ k.
Let

gi(z) = zi + λ−1
i (z− zi), 1 ≤ i ≤ k.

Then
Fi(z) = fi � gi(z) = z+ a2,i

λ2
i

(z− zi)2 + · · · , 1 ≤ i ≤ k,
are all parabolic germs.

From Theorem 2 and the argument just given, for any ε > 0 we have 0 < s <
r ≤ r0 and two

√
1+ ε-quasiconformal homeomorphisms F(z) and G(z) of Ĉ

such that
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F |�r(zi ) = Fi |�r(zi ) and G|�s(zi ) = g−1
i |�s(zi )

and such that
G(�s(zi)) ⊂ �r(zi).

Then f(z) = F �G(z) is a (1+ε)-quasiconformal homeomorphism of Ĉ such that

f |�s(zi ) = F �G|�s(zi ) = fi � gi � g−1
i |�s(zi ) = fi |�s(zi ).

We have completed the proof.
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