
Michigan Math. J. 58 (2009)

Local Polynomial Convexity
of Certain Graphs in C2
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1. Introduction

Let K be a compact subset of Cn, and denote by K̂ the polynomial convex hull
of K:

K̂ = {z∈Cn : |p(z)| ≤ ‖p‖K for every polynomial p in Cn}.
We say that K is polynomially convex if K̂ = K. A compact K is called locally
polynomially convex at a ∈ K if there exists a closed ball B̄(a, r), centered at a

and with radius r > 0, such that B̄(a, r) ∩ K is polynomially convex. A compact
K ⊂ C is polynomially convex if C\K is connected. In higher dimensions there
is no such topological characterization of polynomially convex sets, and it is usu-
ally hard to determine whether a given compact set is polynomially convex. By
a well-known result of Wermer ([We]; see also [AWe, Thm. 17.1]), every totally
real manifold is locally polynomially convex. Recall that a C1 smooth real man-
ifold M is called totally real at p ∈ M if the real tangent space TpM contains
no complex line. In this paper, we are concerned with local polynomial convex-
ity at the origin of the graph �f of a C 2 smooth function f near 0 ∈ C such that
f(0) = 0.

By the theorem of Wermer just cited, we know that if ∂f

∂z̄
(0) = 0 then �f is lo-

cally polynomially convex at the origin. Thus it remains to consider the case where
∂f

∂z̄
(0) = 0. The work associated with this direction of research is too numerous to

list here; instead, the reader is referred to [B1; B2; Wi] and the references given
therein. The general scheme of studying local polynomially convexity of �f is by
pulling back �f under a proper holomorphic map. Then the inverse of �f is a finite
union X1∪ · · · ∪Xk of totally real graphs. Using Wermer’s theorem, we conclude
that the inverse of �f is a finite union of locally polynomially convex compact sets
meeting only at the origin.

Next, under some appropriate assumptions on f , one can show that there is a
polynomial map p : C2 → C such that the sets p(Xk) are contained in disjoint
open sectors with vertex at the origin. Then a lemma of Kallin ([Ka]; see also [Pa])
implies that X1 ∪ · · · ∪ Xk is locally polynomially convex at the origin. Finally,
since polynomial convexity behaves nicely under proper holomorphic transforma-
tions, we conclude that �f is locally polynomially convex at the origin.
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This scheme was first carried out in [FS], where it is proved that if f(z) =
|z|2 + γ (z2 + z̄)2 + o(|z|2) then �f is locally polynomially convex provided γ >

1/2. Using the same line of argument, Bharali [B1; B2] studies the case where f

vanishes to higher order. One drawback of this strategy is that it is not possible
to describe explicitly a Stein neighborhood basis of �f near the origin when �f is
locally polynomially convex at that point.

In this paper, as in [D], we employ the theory of plurisubharmonic functions
and plurisubharmonic hulls to attack the problem. More precisely, we construct
nonnegative smooth functions vanishing exactly on �f . These functions are, in
general, plurisubharmonic only on open sets whose boundaries contain the origin.
Under some technical assumptions, we may add small strictly plurisubharmonic
functions to obtain plurisubharmonic functions on certain open sets containing the
(local) polynomially convex hull of �f . By invoking the classical (and nontrivial)
fact about equivalence of plurisubharmonic and polynomial hulls, we conclude
that �f is locally polynomially convex at the origin. One advantage of this ap-
proach is that it gives a fairly explicit construction of a Stein neighborhood basis
of �f when �f is locally polynomially convex at the origin; see the remarks fol-
lowing the proof of Theorem 2.1. We should say that a complete characterization
of smooth functions f such that �f is locally polynomially convex at the origin is
still open even when f is real-analytic.
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2. Local Polynomial Convexity of Graphs

First we fix the notation that will be used later on. We let �f(z) := ∂2f

∂z∂z̄
(z), where

f is a C2 smooth function. We denote by B(a, r) the open ball with center a and
radius r.

Now we come to the main result of this work.

Theorem 2.1. Let f be a C2 smooth function on a neighborhood of 0 ∈ C.

Assume that there exist a holomorphic function g defined near 0 ∈ C and a con-
stant λ∈ (0,1) satisfying the following conditions:

(i) |f |2 ≤ Re(fg);
(ii) g(0) = 0;

(iii) |g�f̄ | < λ
∣∣ ∂f

∂z̄

∣∣2 + Re(f�f̄ ) for every z = 0.

Then �f is locally polynomially convex at the origin in C2. Furthermore, there
exists an r > 0 small enough such that a continuous function on Xr := �f ∩ B̄(0, r)

can be approximated uniformly by polynomials.
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Observe that (i) and (ii) imply |f | ≤ |g| and f(0) = 0. Also, it follows from (iii)
that the set

{
z : ∂f

∂z̄
(z) = 0

}
consists of the origin only.

Before taking up the proof of Theorem 2.1, it is worth mentioning the following
simple consequence, which is easier to appreciate. The �f considered here is the
same as in Theorem 1.1 in [B1]. Our sufficient condition (i) has the same formal
structure as condition (1.1) in [B1], but we shall soon show how our choice of γ

in (i) makes it less restrictive than Bharali’s condition. See the remarks following
the proof of Corollary 2.2.

Corollary 2.2. Let k ≥ 1 be an integer. Let

f(z) = αz2k + β|z|2k + γz̄2k + R(z)

be a C 2 smooth function near 0∈C. Assume that :

(i) |γ | > α|β|, where α is the largest root of the equation

4x3 − 10x 2 + 5x − 3 = 0;
(ii) ∂R

∂z̄
(z) = o(|z|2k−1) and �R(z) = o(|z|2k−2).

Then �f is locally polynomially convex at the origin.

Proof. By considering the biholomorphic transformation (z, w) �→ (z, w−αz2k ),
we may assume that α = 0. After a rotation, we may establish further that γ > 0.

We rewrite condition (i) as

|β|(|β| + |γ |)2 < (|γ | − |β|)(4|γ |2 − 5|γβ| + 2|β|2). (1)

According to Theorem 2.1, it suffices to show that the function g(z) = az2k sat-
isfies the conditions of the theorem for appropriately chosen a > 0. For this, by
(ii) we may write

∂f

∂z̄
(z) = 2kγz̄2k−1 + kβzkz̄ k−1 + o(|z|2k−1),

�f̄(z) = k2β̄|z|2k−2 + o(|z|2k−2).

On the one hand, for every λ > 0 and z small enough we have

λ

∣∣∣∣∂f

∂z̄
(z)

∣∣∣∣
2

+ Re(f(z)�f̄(z))

= k2|z|2k−2(λ|2γz̄ k + βzk|2 + |β|2|z|2k + Re(β̄γ z̄2k )) + o(|z|4k−2)

≥ k2|z|4k−2(λ(4|γ |2 − 4|γβ| + |β|2) + |β|2 − |βγ |) + o(|z|4k−2).

On the other hand,

Re(g(z)�f̄(z)) ≤ ak2|β||z|4k−2 + o(|z|4k−2).

In view of (i), we may choose a > 0 and λ∈ (0,1) such that
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a|β| < λ(4|γ |2 − 4|γβ| + |β|2) + |β|2 − |γβ|
and

(|β| + |γ |)2 < a(|γ | − |β|).
It is straightforward to check that the two conditions of Theorem 2.1 are fullfilled
with the given choices of g and λ.

Remarks. 1. If k = 1 then our result is a special case of the Forstneric–Stout
theorem mentioned in the Introduction. In [Sl, Prop. 1], the author constructs an
explicit Stein neighborhood basis for �f in the case where k = 1, β ∈ [0,1/2), and
γ = 1/4. This method, however, does not seem to cover the case where f van-
ishes to higher order. In contrast, once we have furnished a proof of Theorem 2.1,
it will be fairly easy to construct an explicit Stein neighborhood basis for a large
subclass of the graphs �f considered in Theorem 2.1. See the remark following
the proof of Theorem 2.1.

2. It is also natural to compare Corollary 2.2 with the main results in [B1; B2]
concerning local polynomial convexity of graphs. Roughly speaking, in our con-
text [B1, Thms. 1.1, 1.2] and [B2, Thm. 1.2] state that �f is locally polynomially
convex if |γ | > λk|β| for λk > 0 satisfying λk ↑ ∞ when k → ∞. This con-
dition is much more restrictive than our condition (i), at least when k is large
enough. However, we must say that a condition like our (ii) is not needed in [B1]
or [B2], where less regularity is assumed on f. Nevertheless, in the most inter-
esting case—namely, when f is real-analytic near the origin—condition (ii) is
redundant and Corollary 2.2 follows from (i) alone.

For the proof of Theorem 2.1, we first introduce the following auxiliary functions.
Consider the function θ : [0,+∞) → R defined by

θ(t) =
{

e−1/t, t > 0,

0, t = 0.

For x ≥ 0, set

χ(x) =
∫ x

0
θ(t) dt.

It is easy to check that χ(0) = χ ′(0) = χ ′′(0) = 0 and that χ ′(x) = x 2χ ′′(x) and
χ ′′(x) > 0 for x > 0. Moreover, χ ′′(x) decreases to 0 faster than any exponent
of x.

The key technical lemma in the proof of Theorem 2.1 is the following.

Lemma 2.3. Let h be a C2 smooth function on an open set U ⊂ C. Set

F(z, w) = |w − h(z)|2 ∀(z, w)∈U × C.

Let ' be the open subset of U × C defined by

' := {
(z, w)∈U × C : Re((w − h(z))�h̄(z))(1+ F(z, w)) <

∣∣ ∂f

∂z̄
(z)

∣∣2}
.

Then ϕ := χ � F is plurisubharmonic on '.
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Proof. We have

∂ 2ϕ

∂w∂w̄
(z, w) = ∂ 2F

∂w∂w̄
(z, w)χ ′(F(z, w)) +

∣∣∣∣ ∂F

∂w
(z, w)

∣∣∣∣
2

χ ′′(F(z, w)),

∂ 2ϕ

∂z∂z̄
(z, w) = ∂ 2F

∂z∂z̄
(z, w)χ ′(F(z, w)) +

∣∣∣∣∂F

∂z
(z, w)

∣∣∣∣
2

χ ′′(F(z, w)),

∂ 2ϕ

∂z∂w̄
(z, w) = ∂ 2F

∂z∂w̄
(z, w)χ ′(F(z, w)) + ∂F

∂z
(z, w)

∂F

∂w̄
(z, w)χ ′′(F(z, w)).

Now it suffices to check the following inequalities on ':

(a) ∂2ϕ

∂w∂w̄
≥ 0, ∂2ϕ

∂z∂z̄
≥ 0;

(b) ∂2ϕ

∂w∂w̄

∂2ϕ

∂z∂z̄
≥ ∣∣ ∂2ϕ

∂z∂w̄

∣∣2
.

Since χ ′(F ) = F 2χ ′′(F ) and ∂2F
∂w∂w̄

= 1, an easy computation gives ∂2ϕ

∂w∂w̄
≥ 0 on

U × C. Moreover,

∂ 2ϕ

∂w∂w̄
(z, w) = 0 �⇒ F(z, w) = 0 �⇒ ∂ 2ϕ

∂z∂z̄
(z, w) = 0.

Therefore, (a) is a consequence of (b). It is also immediate to check that (b) is
equivalent to the following inequality on ':

(
∂ 2F

∂w∂w̄
F 2 +

∣∣∣∣ ∂F

∂w

∣∣∣∣
2)(

∂ 2F

∂z∂z̄
F 2 +

∣∣∣∣∂F

∂z

∣∣∣∣
2)

≥
∣∣∣∣ ∂ 2F

∂z∂w̄
F 2 + ∂F

∂z

∂F

∂w̄

∣∣∣∣
2

,

which (after rearranging) is a consequence of the following inequality on ':

F 2 ∂ 2F

∂w∂w̄

∂ 2F

∂z∂z̄
+

∣∣∣∣ ∂F

∂w

∣∣∣∣
2

∂ 2F

∂z∂z̄
+ ∂ 2F

∂w∂w̄

∣∣∣∣∂F

∂z

∣∣∣∣
2

≥ F 2

∣∣∣∣ ∂ 2F

∂z∂w̄

∣∣∣∣
2

+ 2 Re

(
∂ 2F

∂w∂z̄

∂F

∂z

∂F

∂w̄

)
. (2)

We now apply the special form of F to obtain, for every (z, w) ∈ U × C, the
expressions

∂F

∂z
(z, w) = −(w̄ − h(z))

∂h

∂z
(z) − (w − h(z))

∂h̄

∂z
,

∂F

∂w
(z, w) = w̄ − h(z),

∂ 2F

∂z∂w̄
(z, w) = −∂h

∂z
(z),

∂ 2F

∂z∂z̄
(z, w) =

∣∣∣∣∂h

∂z
(z)

∣∣∣∣
2

+
∣∣∣∣∂h

∂z̄
(z)

∣∣∣∣
2

+ 2 Re((w − h(z))�h̄(z)).

Inserting these relations into both sides of (2) and then applying the definition of
', we obtain the desired conclusion.
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Lemma 2.4. Let h be a C2 smooth function near 0∈C such that h(0) = 0. Then,
for all α ∈ (0,1), there is an r > 0 sufficiently small that the function ϕ(z, w) =
χ(|w − h(z)|2) is plurisubharmonic on the open set

'r =
{
(z, w)∈B(0, r) : Re((w − h(z))�h̄(z)) < α

∣∣ ∂h
∂z̄

(z)
∣∣2}

.

Proof. The result follows directly from Lemma 2.3 and the continuity of both h

and �h.

We also need the following classical facts.

Proposition 2.5. Let K ⊂ Cn be compact.
(i) If K = K̂ then there exists a continuous plurisubharmonic function u on Cn

such that u = 0 on K and u > 0 on Cn \ K.

(ii) z∈ K̂ if only if u(z) ≤ supK u for every plurisubharmonic function u on Cn.

The first assertion, due to Catlin (see [Si]), is a variation of [H, Thm. 2.6.11].
The other is a consequence of the solution of the Levi problem in Cn (see [H,
Thm. 4.3.4]).

The following auxiliary fact is of independent interest.

Lemma 2.6. Let K ⊂ Cn be compact and let U ⊂ Cn be an open neighborhood
of K̂. Assume that there is a plurisubharmonic function u on U such that u ≤ 0
on K. Then u ≤ 0 on K̂.

Proof. After shrinking U and convolving u with suitable smoothing kernels, we
may assume that u is bounded from below. By Proposition 2.5(i), there exists a
continuous plurisubharmonic function v on Cn such that v = 0 on K̂ whereas
v > 0 on Cn \ K̂. By [Po, Lemma 4.1] we can find a plurisubharmonic function
u′ on Cn such that u′ = u on K̂. Applying Proposition 2.5(ii) yields

sup
K̂

u = sup
K̂

u′ = sup
K

u′ = sup
K

u ≤ 0.

The lemma is proved.

Proof of Theorem 2.1. We may assume that g ≡ 0, since the case g ≡ 0 is trivial.
Thus g vanishes near the origin only at that point. For r > 0, put Xr = �f ∩B̄(0, r).

We claim that, for r > 0 small enough,

X̂r ⊂ Kr := {(z, w)∈ B̄(0, r) : |w| ≤ |g(z)|}. (3)

Indeed, consider the function

ψ(z, w) = |w|2 − Re(wg(z)).

Clearly ψ is plurisubharmonic near the origin. Moreover, by part (i) of the the-
orem we have ψ ≤ 0 on Xr for r > 0 small enough. Thus by Lemma 2.6 we
have ψ ≤ 0 on X̂r . This proves our claim. Let χ be the function defined before
Lemma 2.3. Using Lemma 2.4, we can find r > 0 small enough such that the
function χ(|w − f(z)|2) is plurisubharmonic on the open set
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'r := {
(z, w)∈B(0, r) : Re((w − f(z))�f̄(z)) < λ

∣∣ ∂f

∂z̄

∣∣2}
.

Next, for (z, w)∈Kr with z = 0, by (iii) we have

Re((w − f(z))�f̄(z)) ≤ |w�f̄(z)| − Re(f(z)�f̄(z))

≤ |g(z)�f̄(z)| − Re(f(z)�f̄(z))

< λ

∣∣∣∣∂f

∂z̄

∣∣∣∣
2

.

It follows from the previous estimates, from (3), and from assumption (ii) that,
for every ε > 0, there exists a δε ∈ (0, r) (independent of r) such that the function

ϕε(z, w) := χ(|w − f(z)|2) + ε(|z|2 + |w|2) (4)

is plurisubharmonic on 'r ∪B(0, δε), an open neighborhood of X̂r . Observe that
ϕε ≤ εr 2 on X̂r . Therefore, applying Lemma 2.6 yields ϕε ≤ εr 2 on X̂r . By let-
ting ε → 0 we infer that X̂r = Xr. Finally, we note that �f \{(0, 0)} is locally
contained in totally real surfaces. Using the main theorem in [OPW], we conclude
that continuous functions on Xr are uniformly approximable by polynomials. The
proof is thereby completed.

Remarks. 1. Under the additional assumption that there exists a λ′ ∈ (0,1)

satisfying
|f |2 ≤ λ′ Re(fg), (5)

we will construct an explicit Stein neighborhood basis for �f near the origin in C2.

The case g ≡ 0 is trivial, so consider the case g ≡ 0. We first determine δε such
that the function ϕε defined in (4) is plurisubharmonic on the ball B(0, δε). Since
g(0) = 0 and g is holomorphic, there exists an integer k ≥ 1 and 0 < a1 < a2

such that, for z near the origin,

a1|z|k ≤ |g(z)| ≤ a2|z|k. (6)

It follows from (5) that |f | ≤ λ′|g|. Thus we can find a constant a3 > 0 such that,
in the closed ball B̄(0, δε) with δε > 0 small enough, the following estimate holds:

F(z, w) ≤ 2(|w|2 + |f(z)|2) < a3δ2
ε .

By the choice of χ, there exists a constant a4 > 0 such that the following estimates
hold in a small neighborhood of the origin in C2:∣∣∣∣ ∂ 2ϕ

∂z∂z̄

∣∣∣∣ ≤ a4F k,

∣∣∣∣ ∂ 2ϕ

∂z∂w̄

∣∣∣∣ ≤ a4F k,

∣∣∣∣ ∂ 2ϕ

∂w∂w̄

∣∣∣∣ ≤ a4F k.

Choose

δε =
(

ε

2a4ak
3

)1/2k

. (7)

It is easy to check that ϕε is plurisubharmonic in B(0, δε). Next, we let

ψε(z, w) = ϕε(z, w) + χ̃(|w|2 − λ′ Re(g(z)w)),
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where χ̃(x) is equal to 0 when x ≤ 0 and to Ax when x > 0; here A > 0 is a
constant to be chosen later. For r > 0 we define

Ur := {(z, w)∈B(0, r) : |w| < |g(z)|}.
By the proof of Theorem 2.1, there exists an r0 > 0 such that ϕε is plurisub-
harmonic on Ur0; this implies that ψε is plurisubharmonic on Ur0 ∪ B(0, δε) for
every 0 < ε < r0 small enough. Now we fix r ∈ (0, r0). For s ∈ (r, r0) and ε > 0
small enough, define the open sets

Vs,ε := {(z, w)∈Us ∪ B(0, δε) : ψε(z, w) < εs2}.
Clearly ⋂

s>r,ε>0

Vs,ε = Xr.

It remains to check that Vs,ε is pseudoconvex. Toward this end, since Us and
B(0, δε) are pseudoconvex, it suffices to check that

∂Vs,ε ∩ ∂B(0, δε) ∩ ∂Us = ∅.

Assume the contrary; then we can find a point (z0, w0)∈ ∂B(0, δε)∩∂Us such that
ψε(z0, w0) ≤ εs2. On the one hand, from (6) we obtain

|w0|2 − λ′ Re(g(z0)w0) ≥ |w0|2 − λ′|w0||g(z0)|
≥ (1− λ′)|g(z0)|2 ≥ (1− λ′)a2

1 |z0|2k. (8)

On the other hand, for ε small enough, (6) also implies

δ2
ε = |z0|2 + |w0|2 = |z0|2 + |g(z0)|2 ≤ 4|z0|2. (9)

Combining (7), (8), and (9) yields

|w0|2 − λ′ Re(g(z0)w0) ≥ a5ε,

where a5 is a positive constant that is independent of ε. Now we choose A =
r 2/a5. It follows that

ψε(z0, w0) > χ̃(|w0|2 − λ′ Re(g(z0)w0)) > εr 2.

This is a contradiction, so we are done.
2. The function f in Corollary 2.2 satisfies condition (5) with g as defined in

the proof of Corollary 2.2.

The next result shows that local polynomial convexity of totally real graphs is
well-behaved under nondegenerate holomorphic mappings.

Proposition 2.7. Let f be a C1 smooth function near 0∈C such that f(0) = 0.

Let p be a holomorphic function defined near the origin in C2 such that p(0, 0) =
0. Assume that :

(i) �g is locally polynomially convex at the origin, where g(z) = p(z, f(z));
(ii) �g contains no complex variety of dimension 1; and
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(iii) �f ∩ Q is contained in a union of smooth arcs passing through the origin,
where

Q := {
(z, w) : ∂p

∂w
(z, w) = 0

}
.

Then �f is locally polynomially convex at the origin.

Proof. Set 2(z, w) = (z, p(z, w)). Clearly 2 is a local biholomorphism outside
Q. For r > 0 we set

Xr := �f ∩ B̄(0, r) and Yr := �g ∩ B̄(0, r).

By part (i) of the proposition, we can choose r > 0 such that Yr is polynomially
convex and p is holomorphic on an open neighborhood of B̄(0, r). Pick r ′ > 0
small enough such that 2(Xr ′) ⊂ Yr . Then

X̂r ′ ⊂ 2−1(Yr).

We claim that X̂r ′ \Xr ′ ⊂ Q. So assume there exists a point p ∈ X̂r ′ \(Xr ′ ∪ Q).

Because 2 is a local biholomorphism near p, we can find a δ > 0 such that

Z := B(p, δ) ∩ (X̂r ′ \Xr ′)

has finite two-dimensional Hausdorff measure and 2 : Z → 2(Z) is bijective.
According to a theorem of Alexander and Sibony (see [AWe, Thm. 21.9]), Z is a
one-dimensional complex subvariety of B(p, δ). This contradicts (ii) and so the
claim follows. Finally, we assume that there exists a point q ∈ Q ∩ (X̂r ′ \Xr ′).
Then, by the Rossi local maximum principle (see [AWe,Thm. 9.1]), q ∈ (Xr ′ ∩Q)ˆ .
Observe that, by (iii) and the Stolzenberg–Alexander theorem on polynomially
convex hulls of finite union of smooth curves (see [AWe, Thm. 12.1]), the set
Xr ′ ∩ Q is polynomially convex. This is absurd, so we are done.

Finally, we have the following by-product of Corollary 2.2 and Proposition 2.7.

Corollary 2.8. Let k ≥ 2 be an integer and let β, γ be numbers satisfying con-
dition (i) of Corollary 2.2. Define

f(z) =
{

βz̄k + γz̄2k/zk, z = 0,

0, z = 0.

Then �f is locally polynomially convex at the origin.

Proof. It suffices to apply Proposition 2.7 with g(z, w) = zkw; then the desired
conclusion follows from Corollary 2.2.
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