
Michigan Math. J. 58 (2009)

Higmanian Rank-5 Association Schemes
on 40 Points

Mikhail Klin, Mikhail Muzychuk,
& Matan Ziv-Av

Dedicated to the memory of Donald G. Higman

1. Introduction

We pay our tribute to the mathematical heritage of D. G. Higman in an investi-
gation of imprimitive association schemes on 40 points with four classes that are
proper class II in the sense of [H4].

We prove that there are exactly four possible sets of intersection numbers, all
of which correspond to a parabolic of type 10 � K4. There exist exactly 15 asso-
ciation schemes for the first parameter set. The scheme in the case of the second
parameter set is unique, up to isomorphism. We provide an example for the third
parameter set, but the existence of a scheme for the fourth feasible parameter set
remains an open question.

Our results were originally obtained with the aid of a computer, but in many cases
we have been able to give computer-free constructions, which are presented here.
Additional supporting material is available from 〈http: //www.math.bgu.ac.il /
∼zivav/math / 〉.

Coherent configurations and coherent algebras are two of the significant con-
cepts introduced by Higman. These concepts are considered in Section 2 in an
effort to make our presentation more clear to the reader.

Many of the proofs in this paper are geometric in nature. In a number of cases we
even manage to use pictorial arguments, presenting a certain element of a consid-
ered group as a visible symmetry of a depicted diagram. In this fashion, following
in the spirit of H. S. M. Coxeter, a number of nice auxiliary objects (including the
configuration 83, the 4-dimensional cube, the Clebsch graph, and the cages on 50
and 40 vertices) are inspected in Section 3.

A short digest of part of Higman’s classification of rank-5 imprimitive associa-
tion schemes is given in Section 4 (a few regrettable typos have been corrected).
With the aid of Higman’s classification we prove Proposition 4.2, wherein four
feasible parameter sets for the schemes on 40 points are enumerated.

In fact, only one such scheme (denoted by m) was known before. The scheme
m is generated by the classical Deza graph on 40 vertices. This serves to justify
a new axiomatic system for a Deza family in a Higmanian house, as suggested in
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Section 5. Among our first wave of main results, we provide a new interpretation
of m using a master coherent configuration n, which is defined on the edges, quad-
rangles, and skew systems of quadrangles in the Clebsch graph �5. We thereby
discover a new partial linear space as a geometrization of the classical Deza graph.

In Section 6, the entire family of 15 association schemes algebraically isomor-
phic to m (aka Higmanian houses for Deza families on 40 points) is considered
as a follow-up to the extended abstract [KZ], in which an outline of the algorithm
for the enumeration of all such schemes is presented.

Elements of the recently developed theory of WFDF (Wallis and Fon-Der-Flaas)
coherent configurations are considered in Section 7, which may be of independent
interest. In Section 8, as an example, the scheme m and two of its algebraic twins
are revealed as merging schemes of a certain WFDF configuration.

In Section 9, the second wave of our results is presented. Such results are based
on newly discovered properties of an amazing graph R on 40 vertices: the Anstee–
Robertson cage of valency 6 and girth 5, which was also constructed independently
by C. W. Evans. The coherent closure of this graph R is a non-Schurian associ-
ation scheme of rank 5 (Theorem 9.4). This unexpected association scheme is
uniquely determined, up to isomorphism, by its intersection numbers, a nice sim-
ple consequence of the uniqueness of the cage on 40 vertices (Theorem 9.5).

We provide a computer-free geometric description of the group Aut(R), using
group amalgams and amalgamating brilliant images coined by our predecessors:
Anstee, Evans, and Robertson (Theorem 9.9). An interesting link to the cage on 40
vertices with the unique locally icosahedral graph on 40 vertices (see [BlBrBuC])
is also described. A number of association schemes considered in this section are
interpreted with the aid of Schur rings.

Finally, in Section 10 we consider a few other rank-5 association schemes. One
of these illustrates the third feasible set of parameters (as it is presented in Propo-
sition 4.2).
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W. Haemers, P. Hafner,T. Huang, G.A. Jones, L. Jörgensen, D. Mesner, N. Robert-
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grateful to Ch. Pech, S. Reichard, and A. Woldar for a long-standing fruitful co-
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2. Background Concepts

We provide a brief discussion of the most significant notions and notation. The
survey [FKM] may serve as a source for more details. We denote the dihedral
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group of order 2n byDn. A cyclic group of order n is denoted by Zn, thus reserv-
ing Cn for its traditional graph-theoretic notation as a regular connected graph of
valency 2 with n vertices. Our notation for strongly regular graphs follows [HeH].
The concept of a partial linear space is considered in [BrCN].

2.1. Main Notions

We refer to [BanI; BrCN] for more details.
A color graph is a pair (�, R), where� is a set of vertices and R a partition of

�2 into a set of binary relations on �.
According to Higman [H1], a coherent configuration is a color graph m =

(�, R), R = {Ri | i ∈ I }, such that the following conditions are satisfied:

1. The identity relation Id� = {(x, x) | x ∈�} is a union of suitable relations Ri
with i ∈ I ′ and I ′ ⊆ I.

2. For each i ∈ I there exists an i ′ ∈ I such that Rti = Ri′ , where Rti = {(y, x) |
(x, y)∈Ri}.

3. For any i, j, k ∈ I, the number pkij of elements z ∈� such that (x, z) ∈ Ri and
(z, y)∈Rj is constant provided that (x, y)∈Rk.

The numbers pkij are called intersection numbers of m. We refer to Ri as basic
relations, graphs �i = (�,Ri) as basic graphs, and adjacency matrices Ai =
A(�i) as basic matrices of m. The notion of a fiber of a coherent configuration,
and that of its type, appears in [H2]. The number |I | is called the rank of m, and
the number |�| is the order of m.

If (G,�) is a permutation group, 2-orb(G,�) denotes the set of all 2-orbits of
(G,�)—that is, orbits of the induced action of G on �2. It is easy to see that
(�, 2-orb(G,�)) is a coherent configuration. Such coherent configurations will
be called Schurian (cf. [FKM]).

The particular case of a coherent configuration m in which the identity relation
Id� is one of the basic relations of � is called a homogeneous coherent configu-
ration or an association scheme. Typically, the basic relation Id� is denoted by
R0. All remaining basic relations are called classes. As in [BanI], an association
scheme is not presumed to be commutative.

2.2. Coherent Closure

The notion of a coherent configuration may be reformulated in terms of matrices.
A coherent algebra W (see [H3]) is a set of square matrices of order n over the
field C that forms a matrix algebra, is closed with respect to the operations of
Schur–Hadamard multiplication and transposition, and contains both the identity
matrix I and the all-1 matrix J. The set of basic matrices {Ai | i ∈ I } of a coherent
configuration m serves as a standard basis of the corresponding coherent algebra
W, and in this case we write W = 〈A0,A1, . . . ,Ar−1〉. We may abuse notation,
referring toW and m as one and the same object.

The intersection of coherent algebras is again a coherent algebra. This implies
the existence of the coherent closure of B; denoted by 〈〈B〉〉, this is the smallest
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coherent algebra containing a prescribed set B of matrices of order n. An efficient
polynomial-time algorithm for the computation of coherent closure, often referred
to as WL-stabilization, is described in [Wei].

We call a graph � = (V,E) a coherent graph if E is a basic relation of the co-
herent closure 〈〈�〉〉. For example, each distance-regular graph is coherent.

2.3. Isomorphisms, Automorphisms, and Mergings

An isomorphism of color graphs (�, R) and (�′, R′) is a bijection φ from � to
�′ that induces a bijection of colors (relations) in R onto colors in R′. A weak
(or color) automorphism of � = (�, R) is an isomorphism of � with itself. If
the induced permutation of colors is the identity permutation, then we speak of a
(strong) automorphism.

We denote by CAut(�) and Aut(�) the groups of all weak and strong automor-
phisms of �, respectively. Clearly, Aut(�) � CAut(�). In the case where � is a
Schurian coherent configuration, the group CAut(�) coincides with the normal-
izer of Aut(�) in symmetric group S(�).

An algebraic isomorphism between coherent configurations (�, R) and (�′, R′)
is a bijection φ : R → R′ such that pkij = pk

φ

iφjφ
for all i, j, k ∈ I. An algebraic

isomorphism of a coherent configuration m = (�, R)with itself is called an alge-
braic automorphism of m. The group of algebraic automorphisms of m is denoted
by AAut(m).

Clearly, CAut(m)/Aut(m) ↪→ AAut(m). If the quotient group CAut(m)/Aut(m)
is a proper subgroup of AAut(m) then the algebraic automorphisms of m that are
not induced by φ ∈ CAut(m) are called proper algebraic automorphisms. See
[K+] for more details.

If W ′ is a coherent subalgebra of a coherent algebra W, then the correspond-
ing coherent configuration m′ is called a fusion (or merging configuration) of m.
If m = (�, 2-orb(G,�)) for a suitable permutation group G, then overgroups of
G in S(�) lead to fusions of m. Thus the most interesting fusions are the non-
Schurian fusions—in other words, those that do not emerge from a suitable over-
group of (G,�).

For each subgroupK ≤ AAut(m), its orbits on the set of relations define a merg-
ing coherent configuration, called the algebraic merging defined by K. Again,
those algebraic mergings that are non-Schurian are of special interest because they
are, in a sense, “less predictable” combinatorial objects.

Let W ′ and W ′′ be coherent subalgebras of a coherent algebraW. Suppose W ′
and W ′′ are not isomorphic but there exists a φ ∈AAut(W ) that maps W ′ to W ′′.
Then we sayW ′ andW ′′ form a pair of twins inside ofW.

2.4. Decomposable Schemes

IfW1,W2 are homogeneous coherent algebras of orders n1, n2 and ranks r1, r2, re-
spectively, then their tensor (direct) productW1 ⊗W2 is a homogeneous coherent
algebra of order n1n2 and rank r1r2.
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Let m1 = (�1,R) and m2 = (�2, S) be two association schemes of orders
n1, n2 and ranks r1, r2, respectively. Let � = �1 ×�2. We define on � the basic
relations Id�,  i = {((u1, v1), (u2, v2)) | (u1, u2) ∈ Ri, 1 ≤ i ≤ r1 − 1}, and
#j = {((u, v1), (u, v2)) | (v1, v2)∈ Sj , u∈�1, 1 ≤ j ≤ r2 − 1}. The system m =
(�, {Id�} ∪ { i | 1 ≤ i ≤ r1 − 1} ∪ {#j | 1 ≤ j ≤ r2 − 1}) turns out to be an
association scheme of order n1n2 and rank r1 + r2 − 1. We use the notation m =
m1 � m2 (or m = m1 wr m2) and call m the wreath product of m1 and m2.

Note that a more general definition of wreath product (see e.g. [EvPT; Wei])
provides an association scheme that is algebraically (but not necessarily combi-
natorially) isomorphic to m1 � m2.

An association scheme is called primitive if all its nonreflexive (directed) basic
graphs are (strongly) connected; otherwise it is imprimitive. An association scheme
is imprimitive if and only if it admits nontrivial equivalence relations as a union
of suitable basic relations. Such equivalence relations are called imprimitivity
systems [BanI]; alternative names are parabolics [H4] or closed sets [Zie]. For
each imprimitive association scheme m with corresponding imprimitivity system
σ, we may define a quotient scheme m/σ on the set of equivalence classes of σ.
Following Higman, for a pair (m, σ) we speak of its rank as the rank of the asso-
ciation scheme induced by m on an arbitrary class of σ. In this case, we refer to its
corank as the rank of m/σ. If m has rank r, then the sum of the rank and corank of
(m, σ) is at most r + 1, with equality if and only if m is algebraically isomorphic
to m1 � m2, where m1 is the quotient scheme and m2 is isomorphic to an induced
scheme on the classes of σ.

An imprimitive association scheme is called decomposable if it can be repre-
sented as a tensor or as a (generalized) wreath product of smaller schemes. De-
composable schemes are commonly regarded as trivial objects. Thus, our real
interest shall be in imprimitive schemes that are indecomposable.

2.5. Computer Tools

Several computer programs were used in this work. First, COCO is a collection
of programs designed to investigate coherent configurations. It was developed
in Moscow in the early 1990s, mainly by Faradžev and Klin [FK; FKM]. Using
COCO allows one to find all association schemes that are invariant with respect to
a given permutation group, together with their automorphism groups.

Second, GAP (see [Gap; Sch]) is an acronym for Groups, Algorithms, and Pro-
gramming. It is a system for computation in discrete abstract algebra. The system
supports many diverse and mobile extensions (“packages”, in GAP nomencla-
ture). One such package is GRAPE [Soi], which is designed for the construction
and analysis of finite graphs. The GRAPE package is itself dependent on an exter-
nal program, nauty [Mc], which is designed to calculate the automorphism group
of a graph.

The COCO version 2 initiative (due to S. Reichard et al.) aims to re-implement
the algorithms in COCO, WL-stabilization, and so forth as a GAP package. In
addition, it should reflect new theoretical results obtained since [FK].
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3. Preliminaries

3.1. Möbius–Kantor Configuration 83

The configuration 83 is a regular uniform incidence structure, with parameters
(v, b, k, r) = (8, 8, 3, 3), that forms a partial linear space. A classical model of 83

is formed by taking as points all nonzero vectors of GF(3)2 (the 2-dimensional
vector space over GF(3)) and as lines all sets of the form U + v, where U is any
1-dimensional subspace of GF(3)2 and v is any nonzero vector. This model easily
implies the following properties of 83.

Proposition 3.1. (a) The configuration 83 is unique up to isomorphism.
(b) The group Aut(83) has order 48 and is isomorphic to GL(2, 3).
(c) The configuration 83 is self-dual. The automorphism group of its Levi graph

is a group H of order 96 and isomorphic to GL(2, 3) : 2.
(d) The group H contains a unique (up to conjugacy) transitive subgroup K of

degree 16 that is isomorphic to GL(2, 3).

Proof. For the copy of the Levi graph that is depicted in Figure 3.1(a) we haveK =
〈g1, g2〉, where g1 = (0, 1, 9, 13, 15, 14, 6, 2)(8, 5, 11, 12, 7, 10, 4, 3, 8) and g2 =
(1, 8, 2)(3, 9,10)(5,12, 6)(7,13,14).

We call the Levi graph of 83 the Möbius–Kantor (MK) graph. The diagram shown
in Figure 3.1(a) is borrowed from [Cox2].

Remark. The MK graph may be represented as a regular map of type {8, 3} on
an orientable surface of genus 2. The group K preserves orientation of the map
on the surface (cf. [Cox2, Fig. 20]).

3.2. 4-dimensional Cube

We consider the 4-dimensional cube Q4. The vertices are binary sequences of
length 4, with two sequences adjacent if they differ in exactly one position. Also,

Figure 3.1 The MK graph without (a) and with (b) the skew 1-factor ofQ4



Higmanian Rank-5 Association Schemes on 40 Points 261

Figure 3.2 4-dimensional cubeQ4 with a skew 1-factor

a canonical labeling of the vertices ofQ4 by the numbers 0, . . . ,15 is used via dec-
imal representations of the corresponding binary sequences.

The graphQ4 is bipartite of girth 4. All quadrangles ofQ4 are readily identified:
two binary coordinates take a prescribed value while the remaining two coordi-
nates vary. Clearly,Q4 has

(
4
2

) · 22 = 24 quadrangles.
We may represent Q4 as a Cayley graph over the group E24 (the elementary

abelian group of order 16) with the connection set X4 = {0001, 0010, 0100,1000}.
The full automorphism group P of Q4 is the exponentiation S2 ↑ S4 of order
24 · 4! = 384 (cf. [FKM]).

We look at the smallest orbits of P on the 1-factors ofQ4. The orbit of length 4
is formed by the Cayley graphs over E24 with connection set {x}, x ∈X4, which
we refer to as direct 1-factors. Removal of a direct 1-factor evidently splits Q4

into two disjoint copies of the 3-dimensional cube Q3. The orbit of length 8 will
be called the orbit of skew 1-factors. A representative of this orbit is visible in
Figure 3.1(b) (bold edges), and in Figure 3.2 one can immediately recognize the
same graph with the same 1-factor asQ4.

Proposition 3.2. The group P = Aut(Q4) contains a transitive subgroup K,
which is isomorphic to GL(2, 3) and is the stabilizer in P of a skew 1-factor.

Proof. To begin, consider the following explicit description of the structure of
a skew 1-factor. Remove a direct 1-factor, and start from the resulting pair of
disjoint copies of Q3. Take a pair of antipodal vertices in one copy of Q3 (say,
{2, 5}). The remaining six vertices of this copy form an induced hexagon. Split
this hexagon into two copies of 3 �K2, and choose one of them (say, with edge set
{{0, 4}, {1, 3}, {6, 7}}). The neighbors of the remaining copy of 3 �K2 in the corre-
sponding direct 1-factor give three more edges ({8, 9}, {11,15}, and {12,14}). Now
there is unique way to add two more edges in order to obtain the depicted skew
1-factor.

Easy combinatorial counting shows that there are a total of 4·2·2
2 = 8 ways to ob-

tain a skew 1-factor. All skew 1-factors are isomorphic with respect to the group
P = Aut(Q4); hence the stabilizerK ′ of a skew 1-factor is a subgroup of order 48
in P.
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To identify the group K ′, consider Q4 as it is depicted in Figure 3.2. Remove
from it the skew 1-factor and observe (using Figure 3.1(b)) that the remaining
subgraph coincides with a copy of the MK graph in Figure 3.1(a). Thus we con-
clude thatK ′ is a subgroup of index 2 inH, and with the aid of Proposition 3.1 we
obtain K ′ = K.
Remark. This embedding of the MK graph intoQ4 goes back to [Cox1].

3.3. Clebsch Graph

The Clebsch graph �5 is the unique strongly regular graph with parameters
(v, k, l, λ,µ) = (16, 5,10, 0, 2). The Clebsch graph is a Cayley graph over E24

with the connection set X5 = {0001, 0010, 0100,1000,1111}. The group G =
Aut(�5) ∼= E24 � S5 is a rank-3 group. We may use also the auxiliary graph
5 � K2. In these terms, G is the subgroup (S5 � S2)

pos of even permutations in
Aut(5 �K2). Note that G is isomorphic to the irreducible Coxeter group D5.

The two smallest orbits of G on 1-factors are inherited from Q4. The orbit of
length 5 consists of direct 1-factors—that is, Cayley graphs overE24 with connec-
tion set {x}, x ∈X5. Using the labeling of the vertices of �5 borrowed from Q4,
we define the orbit of length 40 consisting of skew 1-factors. A skew 1-factor inQ4

may be considered as a representative of this orbit. Each skew 1-factor of �5 has
a natural mate in the form of the corresponding direct 1-factor. Two such 1-factors
together provide a subgraph of �5 of form 4 � C4, where C4 is a quadrangle. A
list of such skew systems of quadrangles is provided in the Appendix.

Proposition 3.3. The groupG acts transitively on each of the following systems:
40 quadrangles, 40 edges, and 40 skew systems of quadrangles. The stabilizers of
representatives of these orbits are (respectively) the groups D4 × S3, S4 × S2

∼=
S3 � S2, and K = GL(2, 3).

Proof. The group P = Aut(Q4) is embedded in the group G = Aut(�5). By the
definition of a skew system of quadrangles (inherited from skew 1-factors), the
stabilizer of such a system inG coincides with the stabilizer of the corresponding
skew 1-factor inQ4, that is, withK (see Proposition 3.2). The proofs for quadran-
gles and edges are straightforward.

3.4. Anstee–Robertson Graph

The Hoffman–Singleton graph, HoSi [HoS], is the unique strongly regular graph
with parameters (50, 7, 42, 0,1). The group Aut(HoSi) ∼= P�U(3, 52) has order
252,000. The Robertson model of HoSi ([R]; see also [BoMu]) consists of five
pentagons Pj and five pentagrams Qk , where vertex i of Pj is joined to vertex
i + jk (mod 5) ofQk.

Following [R], let us consider the Robertson decomposition of HoSi. After re-
moving from HoSi one pentagon and one pentagram (together, forming a Peter-
sen graph P), we obtain a graph R induced on the remaining 40 vertices. This
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Figure 3.3 Hamiltonian model of the Anstee–Robertson graph

graph R is regular of valency 6 with girth 5 and can be characterized as the unique
(5, 6)-cage.

R. P. Anstee found his own way to graph R (see [A]). He showed that its adja-
cency matrix S satisfies

S 2 + S = J40 − A+ 6I40,

where A = A(10 � K4). Anstee claimed that Aut(R) ∼= Z4 × S5, but we used
GAP to find that Aut(R) is a nonsplit extension of Z4 by S5 (see Section 9.4). As
correctly observed by Anstee, the quotient graph of R (with respect to the imprim-
itivity system consisting of ten disjoint independent sets of size 4) is isomorphic
to the complement P̄ of the Petersen graph. However, Aut(P ) does not embed in
Aut(R).

For the Hamiltonian model of Evans (see e.g. [Eva]), we work with the Anstee
model, wherein labels of the vertices have been shifted by −1to the segment [0, 39].
Figure 3.3 represents a factorization of R into three regular spanning subgraphs
of valency 2. The first and second subgraphs are disjoint Hamiltonian cycles, and
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the remaining subgraph (shown with bold lines) is the graph 8 � C5 consisting of
eight disjoint cycles of length 5. Four of these cycles are Robertson pentagons and
the other four are pentagrams.

Proposition 3.4. The groupAut(R) contains the following subgroups: Z20 with
two orbits of length 20; D5, the dihedral group of order 10; and a group H ∼=
Z4 ×D5 of order 40 with two orbits of length 20.

Proof. Let

g1 = (0,17,14,11, 4,1,18,15, 8, 5, 2,19,12, 9, 6, 3,16,13,10, 7)

(20, 37, 34, 31, 24, 21, 38, 35, 28, 25, 22, 39, 32, 29, 26, 23, 36, 33, 30, 27)

and

g2 = (4,16)(5,17)(6,18)(7,19)(8,12)(9,13)(10,14)(11,15)(20, 22)(21, 23)

(24, 38)(25, 39)(26, 36)(27, 37)(28, 34)(29, 35)(30, 32)(31, 33).

The diagram shows that Z20 = 〈g1〉 preserves both Hamiltonian cycles and that the
permutation g2 exchanges these cycles. In the established notation,D5

∼= 〈g4
1 , g2〉

and H ∼= Z4 ×D5 = 〈g1, g2〉.
Remark. GroupH is the largest subgroup of Aut(R) of the form Z4 ×Y, where
Y ≤ Aut(P ) (see Section 9).

4. Rank-5 Imprimitive Association Schemes:
Higman’s Classification

In comparison with ranks 3 and 4, the classification of rank-5 association schemes
is not as fully developed. Following [H4], we consider symmetric imprimitive
schemes of rank 5. Because 5 is prime, each decomposable scheme is wreath
decomposable. Higman suggested considering three classes of symmetric inde-
composable imprimitive schemes containing a parabolic E:

Class of E I II III

rank of E 3 2 2
corank of E 2 3 2

If a quotient scheme from class II is imprimitive then the global scheme H has
one additional parabolic E ′ of rank 3. In this case, H may also be attributed to
class I. Clearly class III has empty intersection with classes I and II.

For each of the three classes, a description of the corresponding intersection
matricesMi = (ptsi), 0 ≤ i, s, t ≤ 4, and character multiplicity tables is provided.
There are interesting examples of schemes belonging to class I and to the intersec-
tion of classes I and II. We also mention a family of class III schemes that goes
back to the Ph.D. thesis of Chang [Ch], written under the supervision of Higman.

We will regard schemes belonging to class II but not to class I as proper class
II schemes. No example of such a scheme is mentioned in [H4].
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Assume that H is a proper class II association scheme on a set � of nv points,
and let E be a parabolic in H with n classes of size v. Let one of the classes of
the quotient scheme �/E be a strongly regular graph with n vertices and the tra-
ditional parameters k, l, λ,µ, r, s, f , g. Here n = 1 + k + l.
Proposition 4.1. (a) The valencies of H have the form v0 = 1, v1 = v−1, v2 =
kS, v3 = k(v − S), and v4 = lv.

(b) The character multiplicity table of H is:



1 v − 1 kS k(v − S) lv

1 v − 1 rS r(v − S) −(r + 1)v

1 v − 1 sS s(v − S) −(s + 1)v

1 −1 x1 −x1 0

1 −1 x2 −x2 0




1

f

g

z1

z2

Here S (1 ≤ S < v) is an extra parameter, x1, x2 are the roots of the equation
x 2 − (

rv
S

− λ(v− S))x − kS(v−S)
v−1 = 0, τ = p2

33 is one more extra parameter, and
z1 + z2 = n(v − 1), where

z1 = n(v − 1)x2

x2 − x1
and z2 = n(v − 1)x1

x1 − x2
.

(c) 0 < µ < k.

Proof. The formulas in parts (a) and (b) are given in [H4] (note that we have
corrected a typo in the value for v3 that occurred on page 213). Part (c) follows
immediately from the definition of a proper class II scheme.

In fact, [H4] provides a lot more information that is helpful in the enumeration of
feasible sets of parameters. Unfortunately, there were a couple of misprints in the
text, as follows.

• Page 213: In matrixM2, the entry (2, 2) should be (2λS − τ)− (λS−τ)v
S

.

• Page 214, line −11: The end of the sentence should read “and τv
S

= λ(v − S).”
In [KZ] we discovered an example of a rank-5 proper class II scheme on 40 points.
It turns out that this example was known before (see [ChHu]), and it seems to be
the only such example that appears in the literature. This motivated us to consider
more systematically the Higmanian schemes on 40 points.

Proposition 4.2. There are just four feasible parameter sets for a putative rank-
5 proper class II scheme on 40 points:

Case k l S v0 v1 v2 v3 v4 τ

a1.1 6 3 2 1 3 12 12 12 2
a1.2 6 3 2 1 3 12 12 12 3
a2 6 3 1 1 3 6 18 12 1
a3 3 6 2 1 3 6 6 24 0
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Proof. In our case nv = 40, 1< v < 40.We immediately observe that n∈ {5,10}.
Assume that n = 5, so k = l = 2, λ = 0, µ = 5, and v = 8. Note that p2

23 =
λS− τ. Hence in this case p2

23 = −τ ≥ 0, implying that τ = 0. For each feasible
value of S, the solution to the equation x 2 = 2S(8−5)

7 is irrational. Therefore z1 =
z2 = 35

2 /∈ Z , a contradiction.
Now assume that n = 10 and v = 4. Let us first consider the Petersen graph P

in the role of the quotient graph. Thus k = 3, l = 6, λ = 0, and µ = 1.We use the

intersection number p2
24 = µS 2

v
to conclude that S = 2, and the formula for p2

23
again implies that τ = 0. This yields the parameter set corresponding to case a3.

Now we consider the complement P̄ of the Petersen graph in the role of the
quotient graph; that is, k = 6, l = 3, λ = 3, and µ = 4.

Let S = 1. Since both τ and λS− τ are intersection numbers, we have 0 ≤ τ ≤
λS = 3. For τ = 0, 3 the values x1, x2 are irrational, yet τv

S
�= λ(v − S). For τ =

1 we obtain x1,2 = 6, −1; however, z1 = 10·3·(−1)
−7 /∈ Z. The value τ = 2 leads to

the case a2.
Now let S = 2, so that 0 ≤ τ ≤ 6. For τ ∈ {0,1, 5, 6} we have irrational x1, x2,

yet τv
S

�= λ(v − S). For τ = 3 we have irrational x1 = −x2, which yields the
parameter set corresponding to case a1.2.

Finally, for τ = 2 and τ = 4 we obtain rational values of x1 and x2. We cal-
culated corresponding tensors of the structure constants and recognized that they
are algebraically isomorphic, with the algebraic isomorphism exchanging the re-
lations R2 and R3. Therefore, we were able to restrict ourselves to the case τ = 2
alone, thus obtaining the parameter set corresponding to case a1.1.

In what follows we will completely characterize the cases a1.1 and a2; we also
discuss the remaining two cases.

5. Classical Deza Graph on 40 Vertices

The notion of a Deza graph goes back to [DeD]. In an explicit form, the concept
was introduced in [E+] as a generalization of strongly regular graphs. Namely,
a regular graph is a Deza graph if the number of common neighbors of two dis-
tinct vertices takes one of two possible values (not necessarily dependent on the
adjacency of the two vertices). This notion also has a natural formulation in terms
of matrices. Suppose that � is an n-vertex graph with adjacency matrixM while
A and B are symmetric (0,1)-matrices such that A + B + I = J. Then � is an
(n, k, b, a) Deza graph if

M 2 = aA+ bB + kI. (∗)
Note that � is strongly regular if and only if A or B isM in (∗).

Both matricesA andB may be regarded as adjacency matrices of suitable graphs
�A and�B , in which case�A and�B are called Deza children (recall that [DeD] was
written by Antoine and Michel Deza). The cases when Deza children are strongly
regular are of special interest. This is exactly the graph considered in [DeD] and
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Table 5.1 Valencies of relations in n

Fiber Quadrangles Edges Skew 1-factors

Quadrangles 1, 3,12,12,12 4,12,12,12 4,12, 24
Edges 4,12,12,12 1, 3, 4, 8, 24 8, 8, 24
Skew 1-factors 4,12, 24 8, 8, 24 1, 3, 4, 8, 24

that is the subject of our consideration. We will call this original Deza graph the
classical Deza graph.

5.1. Deza Family in a Higmanian House

We consider Higmanian association schemes of type a1.1. The classical Deza graph
and its two Deza children may be embedded into such an association scheme (see
[ChHu; DHu]). This motivates our axiomatization.

Definition 5.1. Assume we have a Deza family on nv points consisting of Deza
graph � and Deza children �A and �B with adjacency matrices M, A, and B, re-
spectively. Assume that S is the adjacency matrix of the graph n � Kv such that
S +M + A′ + B + I = J and S + A′ = A.

Assume in addition that one of the matrices A and B (say B) is the adjacency
matrix of a suitable strongly regular graph  = �B. If 〈S,M,A′,B, I 〉 is a sym-
metric Higmanian rank-5 association scheme of class II, then the scheme will be
called a Higmanian house for the Deza family (�,�A,�B).

5.2. Master Coherent Configuration on 120 Points

LetG = Aut(�5) as in Section 3.3. LetK = GL(2, 3) be the stabilizer of a skew
1-factor (i.e., a skew system of quadrangles) in �5, letQ = D4 × S3 be the stabi-
lizer of a quadrangle, and let T = S4 × S2 be the stabilizer of an edge in �5.

We consider the Schurian coherent configuration n with three fibers of size 40
that appears from the action ofG on the cosets ofQ, T, andK inG, interpreted as
all possible quadrangles, edges, and skew systems in �5 (see the Appendix). Ini-
tial information about n was obtained with the aid of COCO: n has rank 35 with the
valencies of basic relations presented in Table 5.1, and Aut(n) = G. Restriction
of n to the first fiber defines a Higmanian association scheme m of type a1.1. Re-
strictions of n to the second or third fibers define schemes of rank 5. The rank-16
configuration on the first and third fibers has a merging scheme of rank 5 that
comes from GQ(3). The rank-16 configuration on first and second fibers has two
non-Schurian merging schemes of rank 6 and 5, respectively.

Proposition 5.1. LetG act on the set � of 40 quadrangles of �5. Then the fol-
lowing statements hold.
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Table 5.2 2-orbits of the association scheme m

Invariants of representatives

Common Common Skew or
No. Representative vertices edges direct system Valency Name

0 (0, 1, 5, 4) 4 4 N/A 1 Loops
1 (2, 3, 7, 6) 0 0 Direct 3 Spread
2 (0, 1, 3, 2) 2 1 N/A 12 Deza
3 (8, 9,11,10) 0 0 Skew 12 GQ(3)
4 (3,11, 4,12) 1 0 N/A 12 Petersen[E4]

(a) 2-orb(G,�) = (R0,R1,R2,R3,R4,R5); see Table 5.2.
(b) The relation R0 ∪R1 is an equivalence relation. The relations R2,R3,R4 can

be described (respectively) as the edge set of a Deza graph, the point graph
of a generalized quadrangle, and the wreath product of the Petersen graph
with the empty graph 4 �K1 on four vertices.

Proof. The original proof was obtained with the aid of COCO. It is a straightfor-
ward exercise to prove (a) with the aid of the Appendix and the invariants intro-
duced in Table 5.2. ConsiderQ = (0,1, 5, 4) as a reference quadrangle, and count
the number of common vertices and common edges of other quadrangles withQ.
When the number of common vertices is zero, we take into account additional in-
formation. Namely, consider �5 as a Cayley graph over E24 with connection set
X5 (see Section 3.3). Consider subgroups of order 4 generated by two elements
of X5, and identify quadrangles as cosets of such subgroups. This implies that
R0 ∪ R1 is an equivalence relation. Its equivalence classes may be called direct
systems of disjoint quadrangles. Similarly, we explain relation R4 as the wreath
product of the Petersen graph with the empty graph 4 �K1.

To prove the property of the basic graph �2 = (�,R2), inspect the 14 paths of
length 2 of quadrangles having a common edge (i.e., adjacent in �2). The inter-
pretation of relation R3 will then follow from Proposition 5.2.

5.3. Two Incidence Structures

Let us define an incidence structure S1 on two fibers of the master coherent con-
figuration n. The points are quadrangles in �5, the lines are skew systems of
quadrangles in �5, and incidence is defined as set inclusion.

Proposition 5.2. S1 is a generalized quadrangle of order 3 that is isomorphic
toQ(4, 3). Aut(S1) is a rank-3 group of order 51,840.

Proof. GroupG acts transitively on the lines of S1. Let L = GL(2, 3) be the sta-
bilizer of a reference line l. According to Table 5.1, L has orbits of length 4, 12,
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and 24 on the point set �. Choose representatives of these orbits, and identify
lines that contain said representatives and also intersect l. Next count the number
of flags in S1 to confirm that all axioms of a generalized quadrangle of order 3 are
fulfilled. The dual incidence structure to S1 contains spreads (aka direct systems
of quadrangles). Thus S1 is isomorphic to Q(4, 3), and its automorphism group
is well known.

We define the incidence structure S2 = (�, S ) on the remaining fibers of n.
Again, points will be the elements of the set � of quadrangles in �5, while lines
will be the edges of �5. Incidence is the dual of inclusion.

Proposition 5.3. (a) S2 is a symmetric incidence structure with 40 points and
40 lines of size 4, forming a partial linear space.

(b) For each line l ∈ S, there are precisely:

• 12 points p /∈ l through which there are no lines intersecting l;
• 12 points p /∈ l through which there is exactly one line intersecting l; and
• 12 points p /∈ l through which there are exactly two lines intersecting l.

Proof. Since (G, S) is transitive, we may select an arbitrary reference line—say,
{12,14}. The stabilizer T of this line has orbits in � of length 4, 12, 12, and 12
with representatives (1,14,12, 3), (0, 2, 3,1), (0, 4, 5,1), and (0,15,14,1), respec-
tively. Now check that the lines intersecting the reference line and containing the
given representative points have the claimed properties.

Proposition 5.4. The classical Deza graph is the point graph �2 of S2. More-
over, S2 is uniquely reconstructed from its point graph �2, and Aut(S2) =
Aut(�2) = G.
Proof. It was proved in Proposition 5.1 that R2 is the edge set of a Deza graph.
According to Proposition 5.2, the graph �3 is the point graph of Q(4, 3). These
two facts uniquely characterize the classical Deza graph.

Each edge of �5 corresponds to a clique of size 4 in �2. Thus we have at least
40 such cliques. Since �2 has exactly 40 cliques of size 4, it follows that S2 may
be recovered from �2 and thus Aut(S2) = Aut(�2) contains G.

Let us consider the edge {0,1} ∈ S as a reference point. Then the edges {1, 5},
{4, 5}, {13,15}, and {10,14} correspond to the 2-orbits of (G, S) with valencies 8,
4, 24, and 3, respectively. Check that the edge l0 = {0,1} (regarded as a line of
S2) has intersection size 1 with lines l1 = {1, 5} and l2 = {4, 5} and that its in-
tersection with the remaining two lines is empty. Each of the three points on line
l1 not belonging to l0 is incident to exactly one point on l0. Similarly, each of the
three points on the line l2 is incident with no point on l0.

We define an auxiliary graph  with vertex set S and edge set {{0,1}, {1, 5}}G.
Thus  is isomorphic to the line graph of �5. Note that Aut(S2) acts faithfully
on  as a subgroup of Aut( ). Using the classical Whitney–Jung theorem (see
e.g. [Ha]), we obtain Aut( ) ∼= Aut(�5) ∼= G.
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Table 6.1 Higmanian schemes

�i mi |Aut(�)| |orb(Aut(�))| |Aut(m)| |orb(Aut(m))| Geom. 4-cliques

�1 1.1 48 4,123 48 same no 32
�2 2.1 384 16, 24 384 same no 8
�2 2.2 384 16, 24 192 same yes 40
�3 3.1 8 28, 42, 82 8 same no 20
�4 4.1 12 1, 33, 63,12 12 same no 24
�5 5.1 64 8,162 64 same yes 40
�5 5.2 64 8,162 32 42, 82,16 no 24
�6 6.1 51,840 40 1920 same yes 40
�7 7.1 192 4,12, 24 192 same no 24
�7 7.2 192 4,12, 24 32 42, 82,16 yes 40
�8 8.1 8 28, 42, 82 8 same no 28
�9 9.1 48 2, 4, 6,12,16 16 24, 44,16 no 32
�10 10.1 16 42, 84 16 same no 32
�10 10.2 16 42, 84 8 48, 8 no 32
�11 11.1 144 4,12, 24 48 same no 32

Corollary. The association scheme (�, 2-orb(G,�)) represents the Schurian
Higmanian association scheme m, which is a Higmanian house for the classical
Deza family defined by S2 and its point graph �2.

6. A Family of Algebraically Isomorphic
Association Schemes on 40 Points

We wish to classify all association schemes that are algebraically isomorphic to m.
It is easy to see that m = 〈〈R2〉〉. We may replace �3 (the point graph ofQ(4, 3))
with an arbitrary strongly regular graph of valency 12 on 40 vertices. There are
precisely 28 such graphs that are nonisomorphic (see [Sp]). In [KZ] we described
the algorithm (implemented in GAP) that we use here to search for all association
schemes that are algebraically isomorphic to m.

In terms of the labeling in [Sp] of strongly regular graphs, precisely the first 11
graphs admit at least one scheme algebraically isomorphic to m. Altogether we
obtain 15 schemes. Of special interest are those Deza graphs that are also geomet-
ric (i.e., point graphs of a structure analogous to S2, as described in Section 5.3).

Our main computational results are recorded in Table 6.1. For each graph and
each association scheme, we give the order of the automorphism group and the
lengths of its orbits on vertices. The classical scheme m coincides with the scheme
m6.1. The number of 4-cliques in each of the 15 Higmanian graphs is also pro-
vided. Of these, 14 schemes are non-Schurian.

The geometric Deza graphs are precisely those that have exactly 40 4-cliques,
and they generate the Higmanian schemes m2.2, m5.1, m6.1, and m7.2. All four geo-
metric Deza graphs share the same intersection property as the one formulated in
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Proposition 5.3(b). Two of the schemes (m2.1 and m2.2) have reasonably large
automorphism groups; they may be described as certain mergings of the rank-16
coherent configuration X2,1 and the rank-20 coherent configuration X2,2, respec-
tively. Note that AAut(X2,1) has order 2 whereas AAut(X2,2) has order 24. Both
configurations have proper algebraic automorphisms. In particular, m2.1 and m are
algebraic twins in X2,1.

In the next two sections we will split m into a coherent configuration of rank
190. This will allow us to interpret a few of the detected Higmanian schemes as
remarkable mergings of the resulting high-rank configuration.

7. WFDF Coherent Configurations

We describe a concept recently introduced in [M], following ideas of Wallis and
Fon-Der-Flaas. A specific example will be investigated in Section 8. Another par-
ticular significant example was considered in [K+].

As the first (internal) ingredient we consider a complete affine amorphic asso-
ciation scheme of order n (see [GIvK]). It has n2 vertices and n + 1 classes, and
it bijectively corresponds to an affine plane of order n.

Figure 7.1 Parallel classes

Example 7.1. Figure 7.1depicts three parallel classes of an affine plane of order 2,
also known as classes of a complete affine scheme on four points.

Example 7.2. The complement of the Petersen graph (the triangular graph
T(5)) is geometrical. Indeed, its maximal cliques with respect to inclusion are
{{i, j}, {i, k}, {j, k}} for each subset {i, j, k} ⊆ [1, 5] of size 3. The ten cliques rep-
resent blocks of a uniform partial linear space.

We are now in a position to define WFDF configurations as a kind of a “blow up”
of an external structure, namely of a partial linear space. Each point of the space
will be replaced by a copy of an affine plane. In this way we obtain the fibers of
the resulting configuration.

Definition 7.1. Let Oi = (Vi, {Ci,1, . . . ,Ci,n+1}), 1 ≤ i ≤ m, be a copy of an
affine plane of order n, where |Vi | = n2. Here Ci,j , 1 ≤ j ≤ n + 1, is a parallel
class of lines in Oi, regarded as a disconnected graph n�Kn consisting of n copies
of the complete graph Kn. The m planes Oi are labeled by elements from [1,m].
Let S be a partial linear space with m points and assume that each point of S is
incident to at most n+ 1 lines of S.
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Consider the set V = V1 ∪ V2 ∪ · · · ∪ Vm, where the Vi are pairwise disjoint.
Identify V with the Cartesian product V = [1, n2] × [1,m], in which case we
have Vi = [1, n2] × {i} for each i. We now define an arc partition of the complete
graphKn2m with vertex setV—in other words, a complete color graph with n2 ·m
vertices.

Each set Vi plays the role of a fiber in our forthcoming coherent configuration.
Inside of this fiber we naturally have n + 2 colors (i.e., relations Ci,j , 1 ≤ j ≤
n + 1 and also the identity relation  i on Vi). It remains to define relations be-
tween different fibers.

Consider the Levi graph L(S) of the partial linear space S = ([1,m], H). For
each point i ∈ [1,m], we label all blocks from H that are incident to i by distinct
elements of [1, n+1] (this is possible by our assumption on S). Let us denote by
fi the bijection used in this labeling. Take an arbitrary block h∈ H, and let i, j ∈
[1,m] be incident to h. Assume that fi assigns si to (i,h) while fj assigns sj to
(j,h). Take the class Csi from fiber Vi and the class Csj from Vj . Each such class
can be regarded as a partition of [1, n2] into n subsets of cardinality n. Consider
a bijection σij between the partitions associated with the classes Csi and Csj with
σij = σ−1

ji .

With the aid of σij we define a directed regular bipartite graph Rij of valency n:
each vertex from class x of partition Csi is joined by an arc with each vertex from
class xσij in partition Csj . DefineRij = (Vi ×Vj )\Rij . Note that if i and j are not
collinear in S then Rij is empty. In this case, we obtain just one relation Rij =
Vi ×Vj between the fibers Vi and Vj .

When |h| > 2 we require some additional conditions on the bijection σij . For
all i, j, k ∈ h we shall assume that

σij · σjk = σik. (∗∗)
Thus, if we fix i and choose σij arbitrarily for each j �= i, then (∗∗) determines σjk.

Proposition 7.1. The color graph C = (V,R) defines a coherent configuration.

Proof. LetW be spanned by the adjacency matrices of relations from R. We must
check that the product of any two basic matrices belongs toW.

We consider separate cases. If both relations are from the same fiber then apply
[GIvK, Lemma 3.2]. Let both relations be between the same pair of distinct fibers
Vi andVj . If i and j are not collinear thenA(Rij )·A(Rij ) = 0 andA(Rij )·A(Rji) =
n2A((Vi)

2). Otherwise we get A(Rij ) · A(Rji) = nA(n � Kn), where n � Kn is a
partition of Vi defined by the bijection fi. In this case, all other nonzero products
of the relations (i.e., A(Rij ) · A(Rji) and A(Rij ) · A(Rij )) are immediate conse-
quences of the preceding equalities. If the first relation is between fibersVi and Vj
and the second relation is between fibers Vj and Vk , where i, j, k are pairwise dis-
tinct, then: (1) if i, j, k are not collinear then A(Rij ) · A(Rjk) = A(Vi × Vk); and
(2) if i, j, k are collinear then A(Rij ) ·A(Rjk) = nA(Rik). Finally, if the first rela-
tion is between fibersVi and Vj and the second is between fibersVk and Vl , where
i, j, k, l are all distinct, then the product of the two matrices is zero.
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8. WFDF Configuration on 40 Points
and Some of Its Mergings

We started from the classical Higmanian association scheme m on 40 points, col-
ored the ten cells of the parabolic relation E with ten distinct colors, and then
constructed the coherent closure of the resulting colored graph. As a result,
we obtained a rank-190 coherent algebra W with ten fibers that turns out to be
Schurian. Using some experimental programs from COCO-II, we described the
groups Aut(W ), CAut(W ), CAut(W )/Aut(W ), and AAut(W ). We checked that
the configuration corresponding to W satisfies all the axioms presented in Sec-
tion 7 for the particular case in which the internal and external structures coincide
with the objects presented in Examples 7.1 and 7.2, respectively. Finally, we con-
structed a model for our WFDF configuration on 40 points. With the aid of this
model, we were able to achieve a computer-free interpretation of a major part of
our discoveries.

Model of W. Start with group H = E24 regarded as a 4-dimensional vector
space over F2. Let {e1, e2, e3, e4} be the standard basis of H, and consider the set
X5 = {e1, e2, e3, e4, e1 + e2 + e3 + e4}. Clearly these five vectors are linearly de-
pendent; however, any four are independent. Every pair of distinct vectors from
X5 generates a subgroup of order 4 in H, and this subgroup has four cosets in H.
Since there are ten possible pairs, we have altogether a set � of 40 cosets. The
group H acts faithfully on � via translation.

Proposition 8.1. LetW ′ = (�, 2-orb(H,�)).

(a) W ′ is a rank-190 Schurian coherent configuration with ten fibers of size 4.
Each fiber corresponds to four cosets of the same subgroup. The association
scheme induced by each fiber is isomorphic to a complete affine scheme on
four points as described in Example 7.1.

(b) Let �i and �j be two fibers generated by disjoint 2-element subsets of
X5. Then all arcs starting in �i and ending in �j form one relation from
2-orb(H,�). Let �i and �j be two fibers generated by 2-element subsets
having a common point. Then 2-orb(H,�) contains exactly two relations
formed by arcs starting in �i and ending in �j .

(c) One hasW ′ ∼=W. ThusW ′ forms a WFDF coherent configuration with inter-
nal structure isomorphic to an affine plane of order 2 and external structure
isomorphic to one described in Example 7.2.

Proof. As a control sum the reader may count 10 · 4 + 30 · 1 + 60 · 2 = 190 rela-
tions of three different kinds.

In what follows we will identify the coherent configurationsW andW ′.

Proposition 8.2. The group (H,�) is 2-closed ; that is, Aut(W ) = H.
Proof. The group Aut(W ) is the stabilizer of all cells of the parabolic 10 �K4 in
Aut(m). Further, Aut(m) coincides with the group G of order 1920. Since H is
the maximal normal 2-subgroup of G, we obtain H = Aut(W ).
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Proposition 8.3. The centralizer CSym(�)(H ) of (H,�) is an elementary abe-
lian group of order 220.

Proof. The action of H on each of its ten orbits is unfaithful and coincides with
the regular group E4, which is self-centralizing. Now apply [Wie, Prop. 4.3].

Proposition 8.4. CAut(W ) = NSym(�)(H ), and

CAut(W ) ∼=
(
S5,

{
[1, 5]

2

})
� (E4,E4) ∼= E220 � S5,

a group of order 223 · 3 · 5.

Proof. The color group of an arbitrary Schurian coherent configuration coincides
with the normalizer of its automorphism group in the corresponding symmetric
group. Apply Proposition 8.2. The group

(
S5,

{
[1, 5]

2

}) � (E4,E4) is a semidirect
product of E220 with S5; hence S5 normalizes E220 , which in turn coincides with
the group CSym(�)(H ). By Proposition 8.1(c), the group CAut(W ) acts on the
fibers as a subgroup of the automorphism group of the point graph of the exter-
nal structure, which is known to be isomorphic to T(5). Because

(
S5,

{
[1, 5]

2

}) =
Aut(T (5)), it follows that CAut(W ) ∼= E220 �L, whereL ≤ S5. Finally we check
that L = S5.

Corollary 8.5. CAut(W )/Aut(W ) is a group of order 219 · 3 · 5.

Proposition 8.6. (a) AAut(W ) is isomorphic to the group E220 � S5.

(b) CAut(W )/Aut(W ) is a nonnormal subgroup of index 16 in AAut(W ).

Proof. Both parts were confirmed using COCO-II and GAP. For a computer-free
proof, count the structure constants of W and then consider particular algebraic
automorphisms ofW that generate the group A.

Remark. In its action on 40 squares,G = Aut(�5) is a subgroup of CAut(W ).
If we now consider the unfaithful action of G on the 190 colors ofW, we see that
its kernel H ∼= E24 coincides with Aut(W ). ThusG/H embeds in AAut(W ) as a
subgroup S isomorphic to S5.

Proposition 8.7. (a) There are 220 subgroups of A = AAut(W ) that are conju-
gate inA to the subgroup S. These subgroups split into threeQ-conjugacy classes
under the action of the subgroupQ = CAut(W )/Aut(W ) of A. The cardinalities
of these classes are 65,536, 655,360, and 327,680.

(b) Representatives of the Q-conjugacy classes lead to three algebraic merg-
ings that are algebraically isomorphic to m. The mergings are 2.1, 6.1, and 7.1
as designated in Table 6.1. In fact, these three schemes are algebraic “triplets”.
More explicitly, we obtain two non-Schurian schemes from the classical Schurian
one with the aid of suitable algebraic automorphisms from A.

Proof. Confirmed via COCO-II.
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9. Coherent Closure of Cage on 40 Vertices

9.1. Computer-aided Results

In what follows we consider the same copy of the graph R as in Section 3. Set
G = Aut(R). GAP shows that G has order 480. Furthermore, using COCO we
find thatG acts transitively of rank 7 on the vertex set� of R with subdegrees 1, 2,
1, 12, 6, 12, and 6. Representatives of the corresponding 2-orbits are (0, 0), (0,1),
(0, 2), (0, 4), (0, 8), (0, 9), and (0,10), respectively. COCO returns seven nontriv-
ial merging schemes of the symmetric association scheme X = (�, 2-orb(G,�)).
Among these is the scheme ma2 = (�, {R0,R1 ∪ R2,R3,R4,R5 ∪ R6}). COCO
shows that Aut(ma2) = G, so ma2 is a non-Schurian association scheme. Because
{0, 8} is an edge of R , we know that R = �4. Finally, we conclude that ma2 is
a proper class II scheme that represents case a2 of Proposition 4.2. Using GAP
once more, we find that G = (SL(2, 5) : Z2) : Z2. We now give a computer-free
explanation of these results using the fact that R is the unique cage on 40 vertices.

9.2. A Few Subgroups of G

Proposition 9.1. (a) The group G has an imprimitivity system S consisting of
ten blocks of size 4. Each block of the system induces an empty subgraph of size 4.
There is only one such system in G. The stabilizer in G of a block is a group Z4

acting semiregularly on �.
(b) The quotient graph R/S of the graph R with respect to S is the complement

P̄ of the Petersen graph. One has |Aut(R)| ≤ 480.

Proof. This proposition is a summary of results from [A] after certain corrections
(see Section 3.4). The system S consists of blocks of order 4 that form the ma-
trix given by Anstee. The group Z4 = 〈g5

1〉 is the stabilizer of each block in the
system S. Uniqueness of S was proved by Anstee. Thus Aut(R) ∼= Z4.Y, where
Y ≤ S5.

Recall the subgroup H ≤ Aut(R) with H ∼= Z4 ×D5 = 〈g1, g2〉 from Proposi-
tion 3.4.

Proposition 9.2. There exists a subgroupQ ≤ Aut(R) of order 80 acting tran-
sitively on �. One hasQ ∼= Z4.AGL(1, 5). Moreover,Q contains a regular sub-
group R.

Proof. Set

g3 = (0, 20, 3, 21, 2, 22,1, 23)(4, 28,19, 33, 6, 30,17, 35)

(5, 31,16, 32, 7, 29,18, 34)(8, 36,15, 25,10, 38,13, 27)

(9, 39,12, 24,11, 37,14, 26)

and check that g3 ∈G. LetQ = 〈g1, g2, g3〉. Note that g3 normalizes 〈g1, g2〉 and
interchanges two orbits of length 20 of 〈g1, g2〉 on �. ThereforeQ is isomorphic
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to Z4.Y, where Y ∼= AGL(1, 5). Define R = 〈g4
1 , g3〉. The group R is transitive

and a proper subgroup ofQ, soR is the required regular subgroup of order 40.

9.3. Coherent Closure of the Graph R
The following lemma is regarded as folklore.

Lemma 9.3. Let m = (�, {Ri | i ∈ I }) be an association scheme and let τ =
{τ0 = {0}, τ1, . . . , τs} be a partition of I. Define Sj = ⋃

i∈τj Ri for all 0 ≤ j ≤
s. Let �j = (�, Sj ), 0 ≤ j ≤ s. Let x ∈ � be a reference vertex and let σ =
{{x},�1(x), . . . ,�s(x)} be a partition of � into the neighbor sets of x in the graphs
�0, . . . ,�s , respectively.

Assume that the relations S1, . . . , Ss are symmetric and that the adjacency ma-
trices A(�i) for 2 ≤ i ≤ s are expressible as suitable polynomials in A(�1). If σ
is an equitable partition with respect to �1, then m′ = (�, {Sj | j ∈ [0, s]}) is a
merging association scheme of m. Moreover, in this case 〈〈�1〉〉 = m′.

The intersection diagram of R in Figure 9.1 was constructed as follows. Fix ver-
tex 0 and consider the setN(0) = N1(0) of neighbors of 0. Consider the setsN2(0)
and N3(0) of the vertices at distance 2 and 3 from 0. Split the set N2(0) into two
setsN2,1(0) andN2,2(0), whereN2,2(0) contains precisely those vertices ofN2(0)
that have a neighbor in N3(0). Check that the obtained partition is equitable. The
sets in the partition are as follows: N0(0) = {0}, N1(0) = {8,12, 25, 28, 34, 39},

N2,1(0) = {4, 5, 6, 7,16,17,18,19, 20, 21, 22, 23},
N2,2(0) = {9,10,11,13,14,15, 24, 26, 27, 29, 30, 31, 32, 33, 35, 36, 37, 38},

and N3(0) = {1, 2, 3}.

1 6

18

12

3

6 1 ����������������

2

1

����������������

3

1

3

2
1 6

N0(0) N1(0)

N2,1(0)

N2,2(0) N3(0)

Figure 9.1 Intersection diagram of graph R

Theorem 9.4. The coherent closure 〈〈R〉〉 of graph R is an association scheme
with four classes and valencies 1, 6, 12, 18, and 3. This association scheme is a
proper class II Higmanian scheme of rank 5 that belongs to type a2.

Proof. We apply Lemma 9.3 in conjunction with Proposition 9.2, together with the
above observation about the intersection diagram of R depicted in Figure 9.1.
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We use the notation ma2 for the resulting Higmanian association scheme 〈〈R〉〉.
This is our first example of a scheme of type a2.

Theorem 9.5. Any association scheme m′ that is algebraically isomorphic to
ma2 is also combinatorially isomorphic to ma2.

Proof. Let A0 = I, A′
1, A′

2 = S, A′
3, and A′

4 be the basic matrices of the scheme
m′. Consider the basic graph R′ defined by the matrix A′

2; this is a connected reg-
ular graph of valency 6. We construct for R′ the intersection diagram as was done
for R. Any algebraic isomorphism from ma2 to m′ sends R to R′, so R′ has the
same intersection diagram as R. From the diagram we conclude that R′ does not
contain triangles and quadrangles but does contain cycles of length 5. Therefore
R′ is a regular graph of valency 6 and girth 5; hence it is a cage on 40 vertices and
so is unique up to isomorphism. Thus, both ma2 = 〈〈R〉〉 and m′ = 〈〈R′ 〉〉 are
isomorphic.

9.4. Full Automorphism Group

Observe that N = SL(2, 5) is the unique subgroup of index 4 in G = Aut(ma2).

(Note that Aut(R) = Aut(ma2) because 〈〈R〉〉 = ma2.) Our goal is to substanti-
ate this computer-aided knowledge. We will construct a new model of the graph
R. Consider the subgroup K = HL(2, 5) of GL(2, 5) consisting of the matrices
whose determinants belong to F

∗2
5 (here “H” stands for “half”). Clearly, |K| =

1
2 |GL(2, 5)| = 240. Let V = (GF(5))2 \ {0} be the set of nonzero row vectors
of (GF(5))2. Then K acts transitively on V via right multiplication of a row by a
matrix.

LetO = {{x, y, z} ∈ {
V
3

} ∣∣ x + y + z = 0)
}
. Three elements of a typical subset

{x, y, z} ∈O are pairwise independent, and the element z is uniquely determined
by x and y. Therefore |O| = 24·20

3! = 80.
Now consider the natural action of K on O by {x, y, z}A = {xA, yA, zA}. We

regard o0 = {(1, 0), (0,1), (4, 4)} as a reference point in O.

Proposition 9.6. Group (K,O) has two orbits, each of length 40.

Let � = oK0 be the orbit containing o0 under the action of K for |�| = 40.

Proposition 9.7. The transitive permutation group (K,�) has rank 10, with four
2-orbits of valency 1 and six 2-orbits of valency 6.

Proof. The stabilizer Ko0 of o0 is of order 240
40 = 6. Note that any matrix whose

two rows are elements of o0 is inKo0; thus we get all ofKo0 explicitly, as follows:

Ko0 =
{
I,

(
0 1
1 0

)
,

(
0 1
4 4

)
,

(
4 4
0 1

)
,

(
1 0
4 4

)
,

(
4 4
1 0

)}
.

There are three other elements of � stabilized by Ko0 , namely

o1 = {(2, 0), (0, 2), (3, 3)}, o2 = {(3, 0), (0, 3), (2, 2)},
and o3 = {(4, 0), (0, 4), (1,1)}.
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Similarly, we have six remaining representatives of orbits of length 6. A list
of representatives of the ten 2-orbits of (K,�) follows: Ri = (o0, oi)K for i =
0,1, 2, 3; R4 = (o0, {(0,1), (1,1), (4, 3)})K; R5 = (o0, {(0,1), (1, 2), (4, 2)})K;
R6 = (o0, {(0, 2), (2,1), (3, 2)})K; R7 = (o0, {(0, 2), (2, 2), (3,1)})K; R8 =
(o0, {(0, 3), (2,1), (3,1)})K; R9 = (o0, {(0, 4), (1, 4), (4, 2)})K.
Proposition 9.8. � = (�,R5) is a simple graph of valency 6 and girth 5.

Proof. Observe thatR5 is a symmetric relation and that� has no triangles or quad-
rangles. Use the matrix

(
0 1
4 2

) ∈K to obtain a cycle of length 5 in �.

Corollary. � is isomorphic to the unique cage R on 40 vertices.

Theorem 9.9. G = Aut(R) is a group of order 480 that is isomorphic to Z4.S5.

Proof. According to Proposition 9.1, G ∼= Z4.Y for Y ≤ S5. We know from
Proposition 9.2 that Q ≤ G, where Q ∼= Z4.AGL(1, 5). It follows from Propo-
sitions 9.6 and 9.7 that K ≤ G. Note that K ∼= Z4.Y, where Y is a subgroup of
index 2 in PGL(2, 5) ∼= S5. Thus Y ∼= A5 and soG/Z4 is a subgroup of S5 that is
an amalgam of A5 and AGL(1, 5).

Corollary. The group G is not isomorphic to Z4 × S5.

9.5. Locally Icosahedral Graph on 40 Vertices

The group G = Aut(R) has a normal subgroup N ∼= SL(2, 5) with G/N ∼= E22 .

For each of the three involutions in E22 we get a subgroup of index 2 in G. One
of these groups is K (considered in Section 9.4) and the other two, say L andM,
have respective ranks 9 and 11. Now XK = (�, 2-orb(K,�)) admits 15 merging
schemes, including two non-Schurian schemes of rank 9 and 8. The first of these
latter schemes is obtained by merging relation R4 with R7, the second by merg-
ing relation R1 with R2 and R6 with R8. The automorphism group in the latter
case isK. During our attempts to explain these observations, we became aware of
[BlBrBuC].

Proposition 9.10. (a) There exists a unique locally icosahedral graph  on 40
vertices, Aut( ) = K = HL(2, 5).

(b) The intersection diagram of  with respect to the orbits of the stabilizer of
a point in Aut( ) is presented in Figure 9.2. The coherent closure of  is the
non-Schurian association scheme with seven classes described previously.

Proof. It is proved in [BlBrBuC] that there are precisely three locally icosahe-
dral graphs: the 600-cell on 120 vertices and its respective quotients on 60 and
40 vertices. Using GAP and the construction of the unique locally icosahedral
graph  on 40 vertices provided in [BlBrBuC], we obtained that its automor-
phism group is isomorphic (as a permutation group) to (K,�). Thus, graph  
may be described as a merging of 2-orbits of (K,�), namely R4 with R9. Using
the provided description of the 2-orbits, the reader may easily verify that we in-
deed obtain a locally icosahedral graph.
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Figure 9.2 Intersection diagram of graph  with respect to Aut( )

Analysis of the mergings of (�, 2-orb(G,�)) shows that 〈〈 〉〉 is a non-Schurian
rank-8 scheme and Aut( ) = K. The intersection diagram depicted in Figure 9.2
was constructed with the aid of GAP. It is easy to see that two cells of size 1 at
distance 3 from the reference vertex, as well as two cells of size 6 at distance 2
from the reference vertex (with external valencies 13, 22, 3), may be compressed
to a diagram with eight cells exactly as depicted in [BlBrBuC, p. 22]. This, to-
gether with Lemma 9.3, provides another justification for the existence of a rank-8
non-Schurian merging.

Remarks. 1. Using COCO-II, we found that the color automorphism group of the
scheme (�, 2-orb(K,�)) has order 480 while the algebraic automorphism group
of this scheme is isomorphic toE22 . The latter group (in action on 2-orbits) consists
of the permutations e, τ1 = (4, 7), τ2 = (1, 2)(6, 8), and τ3 = (4, 7)(1, 2)(6, 8).
Note that τ3 is induced by CAut(XK) = G. The centralizer algebra V(K,�) is
commutative, so existence of τ2 follows from the well-known fact that the sym-
metrization of a commutative association scheme is an association scheme (see e.g.
[BanI]). Thus 〈〈 〉〉 provides a nice illustration of the fact that the symmetriza-
tion of a commutative Schurian scheme is not necessarily Schurian. The auto-
morphisms τ2 and τ3 generate the entire algebraic automorphism group. Finally,
existence of τ1 and the corresponding non-Schurian rank-9 merging are simple
by-products of all our presented observations.

2. The group K is mentioned in [BlBrBuC] as SL(2, 5) � Z4. We believe that
here we shed some new light on its origin and structure while also revealing some
interesting links to the Anstee–Robertson graph.

9.6. Some S-rings on 40 Points

The groupG of order 480 has two conjugacy classes of regular subgroups of order
40, each of size 6. The groups in each class are isomorphic to the group R (see
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Proposition 9.2). GAP identifies this group as Z5 : Z8, or group number 3 in the
catalog of groups of order 40. Of the three index-2 subgroups inG, only L andM
admit the regular group R as a subgroup. The group R can be defined by genera-
tors and relations as follows:

〈x, y | x 5 = y8 = 1, xy = yx3〉.
We may interpret the considered association schemes as S-rings over R. The fol-
lowing proposition is a presentation of computer results.

Proposition 9.11. (a) Group L contains a regular subgroup R ∼= Z5 : Z8. The
transitivity module T1 of L has the following basic sets:

T0 = {e}, T1 = {y, xy2, xy 4, x4y6, y3, x4}, T2 = {y2, y6}, T3 = {y 4},
T4 = {y 5, xy6, x, x4y2, y7, x4y 4}, T5 = {xy, x 2y7, x3y3, x 2y 4, x4y 5, x3y 4},
T6 = {xy3, x 2y6, x3y2, x 2y, x4y3, x3y}, T7 = {xy 5, x 2y3, x3y7, x 2, x4y, x3},

T8 = {xy7, x 2y2, x3y6, x 2y 5, x4y7, x3y 5}.
(b) The following S-rings appear as mergings of basic sets of T1:

I1 = {T0, T1 ∪ T4, T2, T3, T5, T6 ∪ T8, T7},
I2 = {T0, T2 ∪ T3, T1 ∪ T4, T5 ∪ T6 ∪ T8, T7}.

(c) GroupM contains a regular subgroupR ∼= Z5 : Z8. The transitivity module
T2 ofM has the following basic sets:

S0 = {e}, S1 = {y, y3, x4y 4, xy2, x4y6, x}, S2 = {y2, y6}, S3 = {y 4},
S4 = {y 5, y7, x4, xy6, x4y2, xy 4}, S5 = {xy, xy 5, x 2y7, x 2y3, x3y2, x3y6},
S6 = {xy3, x3, x 2y}, S7 = {xy7, x3y 4, x 2y 5}, S8 = {x 2, x3y 5, x4y7},
S9 = {x 2y2, x3y3, x3y7, x4y 5, x 2y6, x4y}, S10 = {x 2y 4, x3y, x4y3}.

(d) The following S-rings appear as mergings of basic sets of T2:

I′
1 = {S0, S1 ∪ S4, S2, S3, S5 ∪ S9, S6 ∪ S8, S7 ∪ S10},

I′
2 = {S0, S2 ∪ S3, S1 ∪ S4, S5 ∪ S9 ∪ S7 ∪ S10, S6 ∪ S8}.

(e) Choosing either T7 or S6 ∪ S8 as a connection set, one obtains graph R as
a Cayley graph over R.

Proof. Observe that I1 is the transitivity module arising fromG, while I2 is a non-
Schurian merging isomorphic to ma2. A similar explanation holds for I′

1 and I′
2.

10. Other Association Schemes on 40 Points

We once more consider the action of group G = Aut(�5) on n.

Proposition 10.1. Restrictions of n on the second and third fibers define asso-
ciation schemes with four classes and valencies 1, 3, 4, 8, and 24; however, these
schemes are not algebraically isomorphic. The association scheme on the third
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fiber is unique up to isomorphism and has a merging rank-3 scheme correspond-
ing to the generalized quadrangleW(3).

Proof. We use COCO and GAP. The uniqueness of a certain rank-5 scheme on 40
points was proved in [BanBaB]. In [Z] it was proved that this scheme is isomor-
phic to the one that appears on the third fiber of n.

Remark. The description of the scheme in [Z] was given in terms of 5 �K2 in-
stead of �5. We intend to consider this scheme once more in a forthcoming joint
paper of K. Abdukhalikov, E. Bannai, M.K., and M.Z-A.

Finally, we describe the origin of one more Higmanian association scheme.
The Schurian association scheme ma3 with valencies 1, 3, 6, 6, 24 appears twice

as a merging of classes in the total graph coherent configuration T (5) (as described
in [KZ]). These two mergings provide isomorphic schemes with automorphism
group of order 7680. GAP shows that this group is a split extensionE64 �S5. The
stabilizer of a point is a subgroup of order 192, identified by GAP asD4 × S4. We
hope to consider scheme ma3 in more detail in a forthcoming paper.

Unfortunately, we were not able to find an example of a scheme of type a1.2 as
in Proposition 4.2.

Appendix

40 quadrangles of �5

0 0,1, 2, 3 1 0,1, 4, 5 2 0,1, 8, 9 3 0,1,14,15
4 0, 2, 4, 6 5 0, 2, 8,10 6 0, 2,13,15 7 0, 4, 8,12
8 0, 4,11,15 9 0, 7, 8,15 10 1, 3, 5, 7 11 1, 3, 9,11

12 1, 3,12,14 13 1, 5, 9,13 14 1, 5,10,14 15 1, 6, 9,14
16 2, 3, 6, 7 17 2, 3,10,11 18 2, 3,12,13 19 2, 5,10,13
20 2, 6, 9,13 21 2, 6,10,14 22 3, 4,11,12 23 3, 7, 8,12
24 3, 7,11,15 25 4, 5, 6, 7 26 4, 5,10,11 27 4, 5,12,13
28 4, 6, 9,11 29 4, 6,12,14 30 5, 7, 8,10 31 5, 7,13,15
32 6, 7, 8, 9 33 6, 7,14,15 34 8, 9,10,11 35 8, 9,12,13
36 8,10,12,14 37 9,11,13,15 38 10,11,14,15 39 12,13,14,15

40 skew systems of quadrangles of �5 as lines of S1

0 0, 26, 33, 35 1 0, 27, 32, 38 2 1,18, 33, 34 3 0, 28, 31, 36
4 1,17, 32, 39 5 0, 29, 30, 37 6 2,18, 25, 38 7 4,12, 31, 34
8 1, 20, 24, 36 9 2,16, 26, 39 10 4,11, 30, 39 11 1, 21, 23, 37

12 3,17, 25, 35 13 5,12, 25, 37 14 4,14, 24, 35 15 6,10, 29, 34
16 2,19, 24, 29 17 3,16, 27, 34 18 5,10, 28, 39 19 4,13, 23, 38
20 2, 21, 22, 31 21 6,11, 25, 36 22 7,14,16, 37 23 5,15, 24, 27
24 8,10, 21, 35 25 3,19, 23, 28 26 7,10, 20, 38 27 5,13, 22, 33
28 3, 20, 22, 30 29 8,13,16, 36 30 7,15,17, 31 31 6,15, 23, 26
32 9,11, 21, 27 33 7,11,19, 33 34 6,14, 22, 32 35 9,13,17, 29
36 8,15,18, 30 37 9,12, 20, 26 38 8,12,19, 32 39 9,14,18, 28
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40 edges of �5 as lines of S2

0 0,1 0,1, 2, 3 1 0, 2 0, 4, 5, 6 2 0, 4 1, 4, 7, 8 3 0, 8 2, 5, 7, 9
4 0,15 3, 6, 8, 9 5 1, 3 0,10,11,12 6 1, 5 1,10,13,14 7 1, 9 2,11,13,15
8 1,14 3,12,14,15 9 2, 3 0,16,17,18 10 2, 6 4,16, 20, 21 11 2,10 5,17,19, 21

12 2,13 6,18,19, 20 13 3, 7 10,16, 23, 24 14 3,11 11,17, 22, 24 15 3,12 12,18, 22, 23
16 4, 5 1, 25, 26, 27 17 4, 6 4, 25, 28, 29 18 4,11 8, 22, 26, 28 19 4,12 7, 22, 27, 29
20 5, 7 10, 25, 30, 31 21 5,10 14,19, 26, 30 22 5,13 13,19, 27, 31 23 6, 7 16, 25, 32, 33
24 6, 9 15, 20, 28, 32 25 6,14 15, 21, 29, 33 26 7, 8 9, 23, 30, 32 27 7,15 9, 24, 31, 33
28 8, 9 2, 32, 34, 35 29 8,10 5, 30, 34, 36 30 8,12 7, 23, 35, 36 31 9,11 11, 28, 34, 37
32 9,13 13, 20, 35, 37 33 10,11 17, 26, 34, 38 34 10,14 14, 21, 36, 38 35 11,15 8, 24, 37, 38
36 12,13 18, 27, 35, 39 37 12,14 12, 29, 36, 39 38 13,15 6, 31, 37, 39 39 14,15 3, 33, 38, 39
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